

ORNL is managed by UT-Battelle, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Program Overview: VTO Powertrain Materials Core Program

Timeline/Budget

- Lab Call Award: July 2018
- Budget: \$30M/5 years
- Program Start: Oct 2018
- Program End: Sept 2023
- 30% Complete

Barriers

- Increasing engine power densities & higher efficiency engines; resulting in increasingly extreme materials demands (increased pressure and/or temperature)
- Affordability of advanced engine materials & components
- Accelerating development time of advanced materials
- Scaling new materials technologies to commercialization

FY20 Program Research Thrusts	FY20 Budget	Participating Labs		
1. Cost Effective LW High Temp Engine Alloys	\$1.05M	ORNL		
2. Cost Effective Higher Temp Engine Alloys	\$1.525M	ORNL, PNNL		
3. Additive Manufacturing of Powertrain Alloys	\$1.075M	ORNL		
4A. Advanced Characterization	\$1.025M	ORNL, PNNL, ANL		
4B. Advanced Computation	\$0.60M	ORNL		
5. Exploratory Research: Emerging Technologies	\$0.75M	ORNL, PNNL, ANL		

Partners

- Program Lead Lab
 - -Oak Ridge National Lab (ORNL)
- Program Partner Labs
 - –Pacific Northwest National Lab (PNNL)
 - -Argonne National Lab (ANL)

<u>Project Overview: Subtask 2A-2 Higher Temperature Heavy Duty Piston Alloys</u>

Timeline/Budget

Subtask 2A2 funding

- FY19: \$250k

- FY20: \$200k

- Pct. Complete: 30%

Barriers

- Accelerating alloy development time.
- Improving elevated temperature strength
- Maintaining oxidation resistance
- Affordability
- Manufacturability.

Thrust 2: Tasks/Subtasks	TRL	PI(s)	FY19	FY20			
Task 2A. Advanced Affordable Wrought Engine Alloys							
• 2A1. Oxidation Resistant Valve Alloys (900-950°C)	Low/ Mid	Muralidharan Pint	\$400k	\$400k			
• 2A2. High Temperature HD Piston Alloys	Low	Dean Pierce Muralidharan	\$250k	\$200k			
• 2A3. High Temperature Coatings	Low	Armstrong Dryepondt	\$175k	\$175k			
• 2A4. High Temperature Oxidation	Low	Pillai Haynes	\$150k	\$175k			
Task 2B. Affordable, High Performance Cast Engine Alloys							
-•2B1. Cast Higher Temp Austenitic Alloys	Low	Brady Yamamoto	\$250k	\$275k			
Subtotals \$1,225k							

Partners

- Subtask 2A2 Lead
 - -ORNL
- Subtask 2A2 Partners
 - -Thrust 4

Relevance

- Higher cylinder pressures and temperatures = higher efficiency.
- Current heavy duty diesel (HDD) piston steels (4140 & micro alloyed steel (MAS)) not suitable for temperatures >~500°C (low oxidation & fatigue resistance).
- Objective: develop affordable, innovative, higher temperature piston alloys

Subtask Targets:

- 4140 and MAS limited to ~500 °C.
 - Current industry baseline alloys
 - Strength loss above 500°C
 - Poor oxidation resistance above 500°C
- New developmental steel targets:
 - Operation between 600 & 800°C
 - Yield strength: 400 MPa @ ≥600 °C
 - Ultimate Tensile Strength: 525 MPa @ ≥600°C
 - Cyclic oxidation resistance @ peak temperatures, in air + water vapor
 - Long term microstructural stability
 - Affordable & manufacturable

Current commercial heavy duty piston alloys

Heavily oxidized MAS piston with crack

Milestones

2020	Task 2A2: Higher Temperature Heavy-Duty Piston Alloys
Q1	Milestone: Perform testing of mechanical and oxidation properties of different developmental alloys and down select promising alloy concepts.
	Status: COMPLETE , mechanical testing and oxidation testing completed. Down selected three concept groups.
Q2	Milestone: Fabricate and process optimized alloys for further evaluation
	Status: COMPLETE, New optimized alloys have been arc melted and processed.
Q3	Milestone: Evaluate mechanical properties and correlate with microstructure of optimized alloys.
	Status: ON TRACK
Q4	Milestone: Evaluate oxidation and thermal properties of optimized alloys
	Status: ON TRACK

Approach:

- Evaluate existing, highertemperature commercial steels
 - Two 12Cr martensitic steels (12Cr-A and 12Cr-B)
 - High alloy content = Good performance but high cost
 - 4140 (1Cr-1Mn wt.%)
- Evaluate novel, developmental martensitic steels
- Three developmental concepts:
 - Low chromium (Cr) alloys (0-3 wt.%): Lowest cost, high strength, 550-600°C.
 - Medium Cr alloys (3-8wt.% Cr): Moderate cost, high strength, good oxidation resistance, 600-650°C
 - High Cr (8-15 wt.% Cr): Highest cost and oxidation resistance,650-700°C.

Commercial Alloy Mechanical Property Evaluation

- Commercial 12Cr strength superior to alloy 4140
- 12Cr commercial alloys near targets in astempered condition.
- But strength drops after long term thermal aging

Commercial Alloy Oxidation Evaluation

- Alloy 4140:
 - Accelerated oxidation kinetics @500 & 550°C
 - Oxide intrusion
 - Spallation

- 12Cr commercial
 - 600°C: 12CrA/B optimal slow growing chromia scale
 - 550°C: 12Cr-A breakaway oxidation
 - 550°C: 12Cr-B stable oxidation behavior to 500h

Break-away iron oxidation at 550C in 12Cr-A After 500h

Low Cost Low Cr alloys Retain Strength at High Temperature

 Achieved target strength levels

> Commercial and low Cr developmental alloys: astempered condition

Low Cost Low Cr alloys With Improved Oxidation Resistance over 4140

- Novel alloying strategies employed
- Lower operating temperatures
- Potential for improved oxidation resistance and strength over 4140 at limited extra cost

Outer hematite (Fe₂O₃)oxide layer

Inner magnetite (Fe₃O₄) oxide layer

Base alloy

20 µm

250 cycles in air+ 10% water vapor

Medium Cr Developmental Alloys Show **Exceptional Strength**

Commercial and medium Cr developmental alloys: as-tempered condition

- Strength targets met in as-tempered condition
- Long term aging to beconducted

Medium Cr Developmental Alloys Show Good Oxidation Resistance

- 1st iteration:
 - exceptional oxidation resistance, low strength
- 2nd iteration:
 - Novel alloying to improve strength, maintain oxidation resistance.
 - Med. Cr-A and B: fast kinetics (spallation in A)
 - Med. Cr-C and D: slow kinetics (no spall)
 - 600 °C testing ongoing
- 3rd iteration underway

Collaborations

- Thrust 4A: Advanced Characterization-ORNL
 - TransmissionElectron Microscopy& Atom ProbeTomography
 - Resulting design
 knowledge: Large
 Cr carbides in 12Cr
 steel provide minimal
 strengthening

Commercial 12Cr-B Tempered 650 °C then aged 500h at 650 °C

Responses to Previous Year Reviewer's comments

Project was not reviewed last year

Remaining Challenges and Barriers

- Increase oxidation performance of low and medium Cr alloys while maintaining low cost.
- Further understand mechanisms resulting in improved strength and oxidation resistance in lower cost alloys
- Manufacturability of developmental alloys (melting practice and forgeability)

Proposed Future Research

• FY21:

- Scale up material to larger sizes to permit full size test specimens and different types of testing.
- Perform more relevant tests (long term oxidation and elevated temperature fatigue testing) to better simulate engine operation
- Establish collaborations with industry partners to begin addressing barriers to commercialization of new alloys

Project Summary

Commercial Alloy Evaluation

- Evaluated elevated temperature mechanical and oxidation behavior of commercial martensitic 12Cr steels relative to current piston steels.
- 12Cr commercial steels may offer acceptable strength and oxidation resistance but at high cost.

Medium Cr Developmental Alloy Evaluation

 Novel alloys with improved strength, similar oxidation resistance, and 20-40% lower material cost relative to 12Cr commercial alloys have been developed

Low Cr Developmental Alloy Evaluation

• Low cost low Cr alloys developed with higher strength than commercial 12Cr alloys and good oxidation resistance from 500 to 575°C.

Back up slides

Technical Backup Slide: Chemical Composition of Current Industry Steels

Composition in wt.% of Steels Currently used in Heavy Duty Diesel Engines										
Alloy	C	Si	Mn	P	S	Cr	V	Ti	Mo	Fe
MAS	0.34	0.65	1.58	0.01	0.035	0.11	0.09	0.01	-	97.18
4140H	0.47	0.18	1.03	0.027	0.027	0.99	-	-	0.2	97.08

Compositions from: Chen et al., SAE Technical Paper Series, 2000-01-1232

Technical Backup Slide: Developmental Alloy Cost Summary

 Estimated and normalized raw material cost of developmental alloys relative to 4140

