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Overview 

• Start: June 2011 
• End: Dec. 2014 
• 50% complete 

• Total project funding 
– DOE $1,250K 

• Funding received in F2011 
• $250K 

• Funding for FY12 
• $250K  

Timeline 

Budget 

Barriers 

• Argonne National Laboratory 
• Saft Batteries 
• U of Texas, Austin 
• U of Utah 
• U of Maryland 

Partners 

• SOA electrolytes based on 
carbonate solvents decompose 
near or above 4.5 V 

• Lack of reliable 5 V cathodes as 
characterization platform. 

• Lack of understanding of oxidation 
stability and reactive pathway of 
the electrolyte at the 
cathode/electrolyte interface 
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Objectives 

• Develop high voltage electrolytes for high voltage 
Li-ion batteries for increased energy density  
– Explore and identify solvents or additives for electrolytes that 

allow the operation of high voltage cathodes  
– Understand the reactive pathways and reaction products at 

the electrode/electrolyte interface through computation and 
surface characterization for guiding the development of 
improved electrolyte components 

– Identify and/or develop structurally stable high voltage 
cathode materials 
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Milestones 

• Sep 2010 – Go/No-Go: 
– Identify solvents and/or additives allowing the operation of high voltage cathodes 
– Develop or identify structurally stable cathodes as a testing vehicle for electrolytes 
– Understand oxidation stability and reactive pathway of electrolytes through 

computation and experiments 

• May 2011:  
– Demonstrate the effectiveness of solvents or additives in allowing the improved 

operations of cells with 4.7 V LiNi0.5Mn1.5O4 and/or 4.8 V LiCoPO4 cathodes 

– Develop stabilized LiCoPO4 with metal substitution 
– Calculate oxidation potential of solvents and validate with experiments 

• Sep 2012:  
– Evaluate effectiveness of additives in both half cells and full cells with graphite anode 
– Understand reactive pathways of electrolyte components through computational 

effort, surface characterization and SEI chemistry studies 
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Approach 

 

• Identify and/or develop high voltage cathodes as a testing 
vehicle 
– Collaborate with ANL on LiNi0.5Mn1.5O4 and xLi2MnO3·(1-x)LiMO2 

– Investigate validity of LiCoPO4 

• Computational effort 
– Understand oxidative stability of solvents in electrolytes 
– Understand reactive pathways of additives and electrolytes on cathodes 
– Develop ability to predict and design electrolyte components  

• Develop additives for carbonate based electrolytes 
– Search additives that would interact and form protective interfacial 

layers on cathodes  
– Understand interfacial chemistry at the cathode/electrolyte interface 

through surface characterization techniques  
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Technical Accomplishments 

High voltage cathodes (J. Allen, R. Jow) 
• Stabilized 4.8 V LiCoPO4 by Fe doping demonstrated much improved rate capability and 

capacity retention. 

• LiCoPO4 can sustain polaron with slightly higher migration energy barrier than that in 
LiFePO4 (DFT calculations). 

Computational: Electrolytes and Electrode/Electrolyte Interface  
(O. Borodin, R. Jow) 
• Oxidation potentials of solvents calculated using DFT would be lowered by the presence 

of anions and were more in agreement with experiments 

• Conductivity of Li2EDC calculated using MD simulations agrees well with experiments. 

• Energy barrier for conduction is 78 kJ/mol.  

Additives for high voltage electrolytes (A. Cresce, J. Ho, J. Read, K. Xu) 
• Demonstrated that the full cell, graphite/LiNi0.5Mn1.5O4, cycled in electrolyte with HFiP 

additive achieved 80% capacity retention and 99.87% coulombic efficiency in 200 cycles. 

• XPS surface analysis revealed the presence of fluorinated alkyl substructure on cathode. 

• Higher degrees of fluorination of additives resulted in better cycling performance. 
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LiCoPO4 and Stabilized LiCoPO4 

Li0.92Co0.8Fe0.2PO4 demonstrated 
good rate capability. 

DFT calculations using validated HSE06  at 
steps along a linearly interpolated path between 
two calculated polarons+.  

Migration 
barrier, eV 

σ, S/cm 

LiFePO4 0.20 1.8x10-8 

LiMnPO4 0.33 <10-10 

LiCoPO4 0.23 ~10-9 + M.D. Johannes, K. Hoang, J.L. Allen, K. Gaskell, Phys. Rev. B, 
2012, 85, 115106.. 
∗ S. P. Ong, V. L. Chevrier, and G. Ceder, Phys. Rev. B, 2011, 
83, 075112. 

Li0.92Co0.8Fe0.2PO4 
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Overview of Computational 
Studies 

Oxidation potentials and decomposition reactions for 
solvent, solvent (or additive)-anion, solvent-lithium salt 

and additives (quantum chemistry) 

SEI : Li2EDC  EC:DMC(3:7)/LiPF6 SEI 

Predict: electrolyte reduction, SEI 
properties, SEI – electrolyte interface 

(quantum chemistry, MD) 

Structure and transport in bulk electrolytes (carbonate-alkylphosphate/LiPF6) 
and SEI components with a focus of Li+ competitive solvation in mixed 

solvents: (MD simulations) 

MD and DTF studies revealed: 
 The presence of  BF4

−, PF6
−, ClO4

− , or 
B(CN)4

− anion lowered the  carbonate 
solvent oxidation potential  by H− and 
F− abstraction and promoted 
decomposition kinetics; 

 Fluorine transfer was observed for 
HFiP/PF6

−complexes. 

Battery pic from Kang Xu  

Experiment 
Phil Ross LBNL 
(ARL material) 

 λ of Li2EDC, (LiO2COCH2)2, 
predicted using MD simulations 
with revised and validated  FF.  

 λ is in good agreement with 
experimental data. 

 Activation energy: 78 kJ/mol 

HFIP/PF6
− complex 

-1e 
-1e 

-1e 
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EC oxidation 

- 1e 

-1e 

-1e 

-1e 

ε=1 ε=4.2 ε=20.5 ε=78.4 
(EC)2 6.2 5.9 5.9 

EC/BF4
- 4.6 6.0 6.3 6.3 

EC/LiBF4  8.7 6.6 

EC/PF6
- 4.9 6.3 6.6 6.6 

M052/cc-pvTz level calculations 

Oxidation Potential in eV 

 Influence of anions, salt, explicit solvent and CoPO4 surface on EC oxidation was investigated. 
 Oxidation potential of (EC)2 , at e=20, is the lowest indicating that it might be the preferred 

pathway for oxidation at non-active electrodes compared to the EC-anion decomposition. 
 Co-O bond is formed between CoPO4 and EC. 

initial optimized 

CoPO4/(EC)2 GGA+U (periodic DFT) 
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23.8 

M1 4.8 

50.0 

M2 4.0 

10.3 

M3 -18.2 

31.1 M4 5.7 

35.7 
M5 24.4 

40.5 

41.2 

M7 13.1 

M8 -29.5 

Lindan Xing Uof Utah calculations. Relative energy (kcal/mol) from B3LYP/6-311++G(d) PCM(Solvent=water) 

Relative energy of TS 

Relative energy of 
initial product 

85.8 

M6 79.7 

In collaboration with BATT program 

Reactive Pathway of (EC)2 
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Li2EDC Amorphous (melt) vs. Crystalline 

 A revised polarizable force field has been developed for Li2EDC that is compatible with 
APPLE&P electrolyte force field. 

 Ea for Li2EDC conductivity  was 78 kJ/mol, which is similar to the 68 kcal/mol measured 
for the Li+ charge transfer at the graphite/electrolyte interface. 

 The averaged conductivity of crystalline Li2EDC is similar to conductivity of the amorphous 
phase. 

 At temperatures below 450 K anion motion contributes less than 15% to charge transport. 
 
 

Amorphous 
(melt) 

Crystalline 
(layered) 

Li2EDC data from P. Ross 
LBNL 
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Correlation of  
Experiment and Computation 

Conditions Experiment Computation  
Ea for Li+ 
charge 
transfer at 
interface 1 

Ea for Li 
diffusion 

Graphite/Electrolyte 
interface 

68 kJ/mol 78 kJ/mol for Li conduction 
barrier in Li2EDC 3, a key SEI 
component 

NCA/Electrolyte 
interface 

52 kJ/mol 

LFP/Electrolyte 
interface 

32 kJ/mol 

Li diffusion in LFP 29 kJ/mol 2 20 kJ/mol for polaron 
migration barrier in LFP 4 

NCA: Lithium nickel cobalt aluminum mixed oxide, LFP: lithium iron phosphate 
1. Jow,  T. R.; Marx, M. B.; Allen, J. L., J. Electrochem. Soc., 2012, 159(5), A604. 
2. Allen, J. L.; Jow, T. R.; Wolfenstine, J., Chem. Mater., 2007, 19, 2108-2111.  
3. Borodin, O. et al., unpublished. 
4. Johannes, M. D.; Hoang, K.; Allen, J. L.; Gaskell, K., Phys. Rev. B, 2012, 85, 115106. 
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High Voltage 
Electrolyte Additives 

A. v. Cresce, J. Ho, J. Read,  
and K. Xu 

 

Electrochemistry Branch 
U. S. Army Research Laboratory 
Adelphi, MD 20783-1197, USA 
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Cathode/Electrolyte Interphases 

Anode: 
• Faster Li+-transport 
• Less consumption of Li+ (irreversible 

capacity) 
 
Cathode: 
• Stabilization at high potential (> 4.5 V) 

Different Focuses on Anode- and Cathode-Interphases 

Li+-desolvation Li+-solvation 

Li+-solvation no longer plays 
directing role in cathode SEI 
formation mechanism 
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Interphases on Anode and Cathode 

Anode  
(Graphitic) 

Cathode  
(Metal Oxide) 

1.59 nm 

Charge 
(lithiation) 

• Reductive decomposition 
• Lithiation process 

• Solvent co-intercalation 
• Lattice held together by van de Waals force 

• 3D: partially penetrated graphene 
• Coverage of Li+-exit/entrance sites 

• kinetic control over Li+-transport 

In the last two decades >90% effort are on anode SEI 

• Both are related to electrode structure 
• Both are little understood 

• Doubt still exists about the existence 
• potential < 4.5 V vs. Li (~1.5 V vs. SHE) 

• Oxidative decomposition 
• Delithiation 

• Solvent co-intercalation impossible 
• Lattice held together by Coulombic/covalent 

• “Patchy” instead of “continuous” 
• No coverage of Li+-exit/entrance sites 

• deactivation of metal cores 

Charge 
(delithiation) 
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Cathode SEI: on 5.0 V Class Cathodes 
A. v. Cresce, K. Xu 

Preliminary Results (A. v. Cresce) 
• New electrolyte forms stable interphase on both spinel 

LiNi0.5Mn1.5O4 and olivine LiCoPO4 surfaces 

0
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Cresce & Xu, JES, 2011, 158, A337 

• Baseline electrolyte: LiPF6/EC/EMC 
(30:70) 

• 1% additive causes significant impact 
on cell stability 

• Further refinements are on-going 

ARL LiCoPO4 (4.80 V) (J. Allen) 

Rutgers & UTA LMNO (4.60 V) 

O

PO O

O

F3C CF3

CF3

CF3

F3C

F3C

HFiP SOA 

SOA + 1% HFiP 
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ANL LMNO: Full Cells 

Confirmation from 
industry partner 
• CE% ~ 99.87% 
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1st cycle CE: 73.04%
2nd cycle CE: 96.65%
3rd cycle CE: 97.35%
4th cycle CE: 98.22%

Capacity/mAh/g -1

Exfoliation/PC reduction

Surface Chemistries of HFiP 

Where did HFiP end up with? 
• Chemically phosphate can be reduced at 

anode 
• It was found to even form good SEI on 

graphite in neat PC 
 

What mechanism did it stabilize 
electrolyte against cathode surface? 
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Surface Analysis with HR-XPS 

The fate of phosphate in electrolyte 
• Phosphate ends up on cathode and anode 
• Fluorinated alkyls substructure on cathode  

O

PO O

O

F3C CF3

CF3

CF3

F3C

F3C

HR-XPS conducted on both cathode and 
anode cycled in baseline and HFiP-
containing electrolytes 
• P 2p absent in control samples 
• P2p on test samples 

• 5~10 X more on cathode than anode 
• C1s for CF3 only found on cathode 
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M+ 

(M-HF)+ 

(CF3)+ 

(M-F)+ 

O

P
O OF3C

CF3 CF3

CF3

O

P
O OF3C

CF3 CF2

CF3

O

PO O

O

F3C CF3

CF3

F3C

F3C

O

P
OF3C

CF3

O

P
OF3C

CF3

F

(M-CF3)+ 

• 1.2 Kg HFiP made at ANL 
• GC-MS by Dzwiniel (ANL) 

HFiP Scaled Up by ANL 
P. Faguy (DOE) 

Even HR-XPS cannot pin-point the structure of cathode interphase 
• Perhaps inference from MS? 

• Possible participation of TM 
cores (TM reduction) 
• New bond-formation between 
M and O/P/F/C 
• Deactivation on cathode 
surface at TM centers 
• similar to catalyst poisoning 
• spectroscopic evidence 

Charge 
(delithiation) 
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Tailoring an Interphase  
----- on Cathode Surface 

 

Interphase on Electrolyte/Cathode 
Unlike Electrolyte/Anode Junction, interphase 
on cathode is little studied 
• Oxidation Chemistry unknown 
• Formation mechanism? 

 

• Perfluorination helps 
• Phosphazene might help (?) 
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Synthesis of Perfluorinated Additive PFBP 
(Drs. XQ Yang and HS Lee, BNL) 

PFBP 
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H
 

• Presence of remaining H in HFiP undesired 
• Perfluorinated additives synthesized 
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A New 5 V Battery Chemistry:  
Double Intercalation (J. Read, ARL) 

- + 

• Double-intercalation chemistry 
• Symmetric graphite cell 
• High voltage (> 5.0 V) 
• Concept was proposed in early 1990s (J. Dahn) 

• never realized due to lack of electrolytes:  
• good SEI on anode, high V stability on cathode 

• our high V electrolytes could revive this concept 
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Future Work 

• Collaborate with ANL on LiNi0.5Mn1.5O4 and xLi2MnO3·(1-x)LiMO2 for 
the testing of ARL electrolytes.  

• Continue the development of stabilized LiCoPO4. 
• Perform computational screening of redox stability and 

decomposition reactions of the fluorinated alkylphosphate-based 
additives using DFT calculations. Predict bulk and interfacial 
properties of electrolytes with fluorinated alkylphosphate-based 
additives. 

• Study decomposition reactions of solvent and additives at cathode 
surfaces. 

• In-situ/Direct characterization of SEI under Li ion chemistry 
environments 

• Synthesis of new solvents/additive based on more understanding 
about the chemical processes at interphases 
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Summary 

• Stabilized high voltage LixCo0.8Fe0.2PO4 in couple with the high voltage 
electrolyte has greatly improved the capacity retention and rate capability 
 Stability of the cathode materials including LiNi0.5Mn1.5O4 and xLi2MnO3·(1-x)LiMO2  

are critical for the success of high voltage Li-ion batteries 

• Oxidation potentials and reactive pathway of EC and alkyl phosphate has 
been successful calculated with respect to the influence of anion, salt, explicit 
solvent and CoPO4 computationally.  
 The  conductivity of Li2 EDC was calculated using MD simulation and agrees with experiment.  
 The presence of  BF4

−, PF6
−, ClO4

− , or B(CN)4
− anion lowered the  carbonate solvent oxidation 

potential  by H− and F− abstraction and promoted decomposition kinetics; 
 Fluorine transfer was observed for HFiP/PF6

−complexes. 

• Effectiveness of HFiP additive has been successfully demonstrated in a full 
cell, graphite/LiNi0.5Mn1.5O4, cycled in electrolyte with HFiP additive achieved 
80% capacity retention and 99.87% coulombic efficiency in 200 cycles. 
 XPS surface analysis revealed the presence of fluorinated alkyl substructure on 

cathode. 
 Higher degrees of fluorination of additives resulted in better cycling performance. 
 Elevated temperature tests are on-going 

 
 
 

 


