

High Voltage Electrolytes for Li-ion Batteries

PI: T. Richard Jow

U. S. Army Research Laboratory 2800 Powder Mill Road Adelphi, MD 20783

17 May 2012

Project ID: ES024

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: June 2011
- End: Dec. 2014
- 50% complete

Budget

- Total project funding
 - DOE \$1,250K
- Funding received in F2011
 - \$250K
- Funding for FY12
 - \$250K

Barriers

- SOA electrolytes based on carbonate solvents decompose near or above 4.5 V
- Lack of reliable 5 V cathodes as characterization platform.
- Lack of understanding of oxidation stability and reactive pathway of the electrolyte at the cathode/electrolyte interface

Partners

- Argonne National Laboratory
- Saft Batteries
- U of Texas, Austin
- U of Utah
- U of Maryland

Objectives

- Develop high voltage electrolytes for high voltage Li-ion batteries for increased energy density
 - Explore and identify solvents or additives for electrolytes that allow the operation of high voltage cathodes
 - Understand the reactive pathways and reaction products at the electrode/electrolyte interface through computation and surface characterization for guiding the development of improved electrolyte components
 - Identify and/or develop structurally stable high voltage cathode materials

Milestones

Sep 2010 – Go/No-Go:

- Identify solvents and/or additives allowing the operation of high voltage cathodes
- Develop or identify structurally stable cathodes as a testing vehicle for electrolytes
- Understand oxidation stability and reactive pathway of electrolytes through computation and experiments

May 2011:

- Demonstrate the effectiveness of solvents or additives in allowing the improved operations of cells with 4.7 V LiNi_{0.5}Mn_{1.5}O₄ and/or 4.8 V LiCoPO₄ cathodes
- Develop stabilized LiCoPO₄ with metal substitution
- Calculate oxidation potential of solvents and validate with experiments

Sep 2012:

- Evaluate effectiveness of additives in both half cells and full cells with graphite anode
- Understand reactive pathways of electrolyte components through computational effort, surface characterization and SEI chemistry studies

Approach

Identify and/or develop high voltage cathodes as a testing vehicle

- Collaborate with ANL on LiNi_{0.5}Mn_{1.5}O₄ and xLi₂MnO₃·(1-x)LiMO₂
- Investigate validity of LiCoPO₄

Computational effort

- Understand oxidative stability of solvents in electrolytes
- Understand reactive pathways of additives and electrolytes on cathodes
- Develop ability to predict and design electrolyte components

Develop additives for carbonate based electrolytes

- Search additives that would interact and form protective interfacial layers on cathodes
- Understand interfacial chemistry at the cathode/electrolyte interface through surface characterization techniques

Technical Accomplishments

High voltage cathodes (J. Allen, R. Jow)

- Stabilized 4.8 V LiCoPO₄ by Fe doping demonstrated much improved rate capability and capacity retention.
- LiCoPO₄ can sustain polaron with slightly higher migration energy barrier than that in LiFePO₄ (DFT calculations).

Computational: Electrolytes and Electrode/Electrolyte Interface (O. Borodin, R. Jow)

- Oxidation potentials of solvents calculated using DFT would be lowered by the presence of anions and were more in agreement with experiments
- Conductivity of Li₂EDC calculated using MD simulations agrees well with experiments.
- Energy barrier for conduction is 78 kJ/mol.

Additives for high voltage electrolytes (A. Cresce, J. Ho, J. Read, K. Xu)

- Demonstrated that the full cell, graphite/LiNi_{0.5}Mn_{1.5}O₄, cycled in electrolyte with HFiP additive achieved 80% capacity retention and 99.87% coulombic efficiency in 200 cycles.
- XPS surface analysis revealed the presence of fluorinated alkyl substructure on cathode.
- Higher degrees of fluorination of additives resulted in better cycling performance.


LiCoPO₄ and Stabilized LiCoPO₄

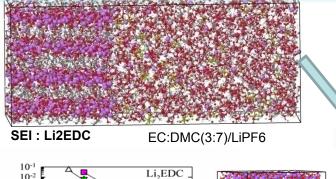
DFT calculations using validated HSE06 at steps along a linearly interpolated path between two calculated polarons+.

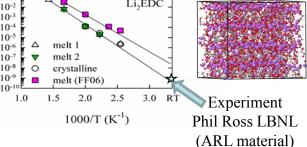
	Migration barrier, eV	σ , S/cm
LiFePO ₄	0.20	1.8x10 ⁻⁸
LiMnPO ₄	0.33	<10 ⁻¹⁰
LiCoPO ₄	0.23	~10-9

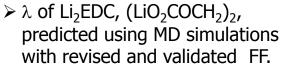
Li_{0.92}Co_{0.8}Fe_{0.2}PO₄ demonstrated good rate capability.

⁺ M.D. Johannes, K. Hoang, J.L. Allen, K. Gaskell, *Phys. Rev. B*, **2012**, 85, 115106..

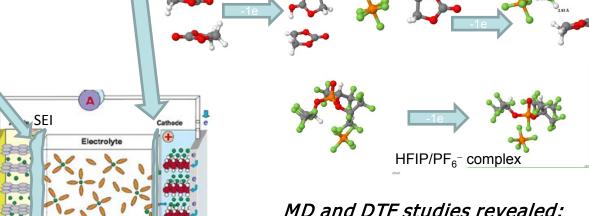
^{*} S. P. Ong, V. L. Chevrier, and G. Ceder, *Phys. Rev.* B, **2011**, 83, 075112.




Overview of Computational Studies

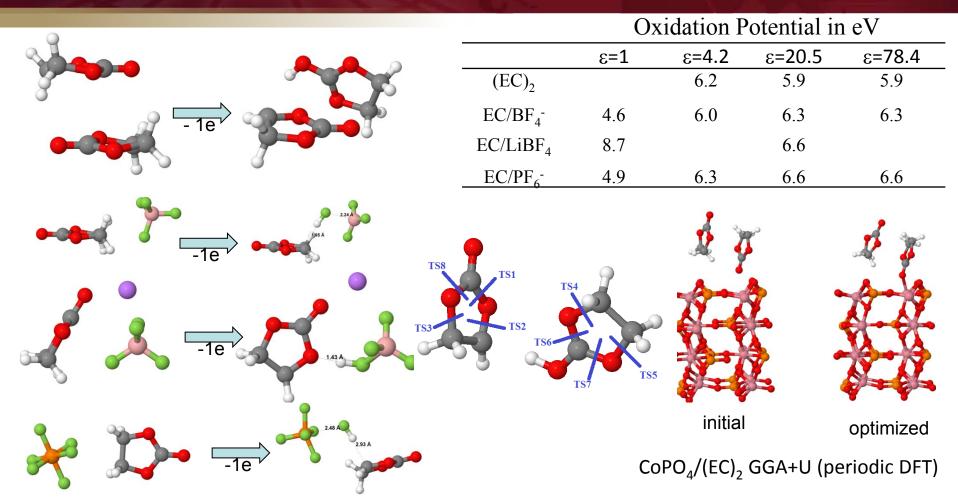


Predict: electrolyte reduction, SEI properties, SEI – electrolyte interface (quantum chemistry, MD)

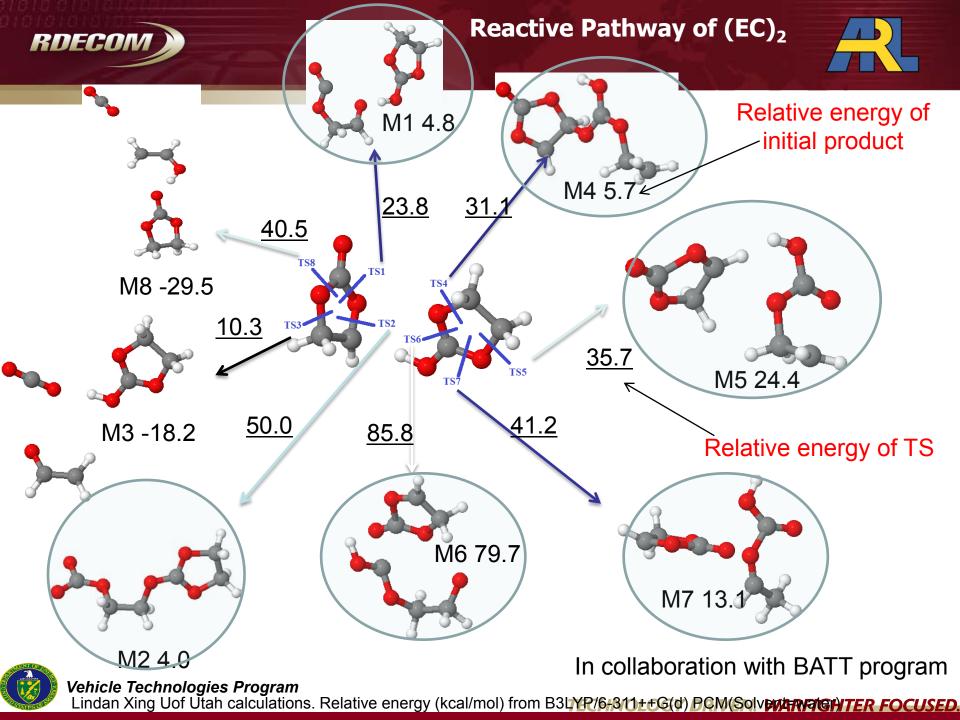

Oxidation potentials and decomposition reactions for solvent, solvent (or additive)-anion, solvent-lithium salt and additives (quantum chemistry)

- $\triangleright \lambda$ is in good agreement with experimental data.
- > Activation energy: 78 kJ/mol

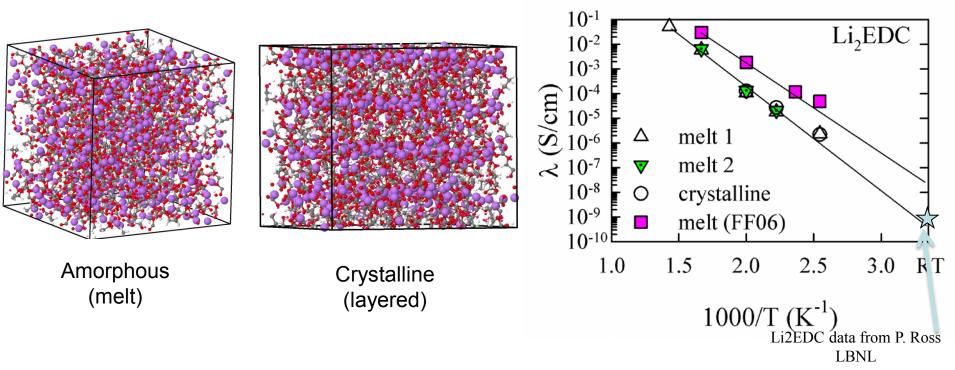
- \triangleright The presence of BF₄-, PF₆-, ClO₄-, or B(CN)₄⁻ anion lowered the carbonate solvent oxidation potential by H- and F- abstraction and promoted decomposition kinetics;
- Fluorine transfer was observed for HFiP/PF₆-complexes.



Structure and transport in bulk electrolytes (carbonate-alkylphosphate/LiPF₆) and SEI components with a focus of Li⁺ competitive solvation in mixed solvents: (MD simulations)


EC oxidation

- ➤ Influence of anions, salt, explicit solvent and CoPO₄ surface on EC oxidation was investigated.
- \triangleright Oxidation potential of (EC)₂, at e=20, is the lowest indicating that it might be the preferred pathway for oxidation at non-active electrodes compared to the EC-anion decomposition.
- ➤ Co-O bond is formed between CoPO₄ and EC.



Li₂EDC Amorphous (melt) vs. Crystalline

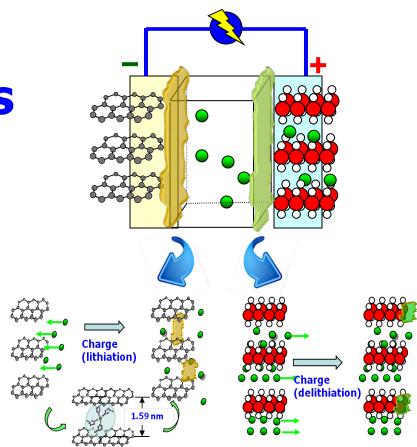
- ✓ A revised polarizable force field has been developed for Li₂EDC that is compatible with APPLE&P electrolyte force field.
- ✓ E_a for Li₂EDC conductivity was 78 kJ/mol, which is similar to the 68 kcal/mol measured for the Li⁺ charge transfer at the graphite/electrolyte interface.
- ✓ The averaged conductivity of crystalline Li₂EDC is similar to conductivity of the amorphous phase.
- ✓ At temperatures below 450 K anion motion contributes less than 15% to charge transport.

Correlation of Experiment and Computation

Conditions	Experiment		Computation
	E _a for Li ⁺ charge transfer at interface ¹	E _a for Li diffusion	
Graphite/Electrolyte interface	68 kJ/mol		78 kJ/mol for Li conduction barrier in Li ₂ EDC ³ , a key SEI component
NCA/Electrolyte interface	52 kJ/mol		
LFP/Electrolyte interface	32 kJ/mol		
Li diffusion in LFP		29 kJ/mol ²	20 kJ/mol for polaron migration barrier in LFP ⁴

NCA: Lithium nickel cobalt aluminum mixed oxide, LFP: lithium iron phosphate

- 1. Jow, T. R.; Marx, M. B.; Allen, J. L., *J. Electrochem. Soc., 2012*, 159(5), A604.
- 2. Allen, J. L.; Jow, T. R.; Wolfenstine, J., Chem. Mater., 2007, 19, 2108-2111.
- 3. Borodin, O. et al., unpublished.
- 4. Johannes, M. D.; Hoang, K.; Allen, J. L.; Gaskell, K., *Phys. Rev. B*, **2012**, 85, 115106.



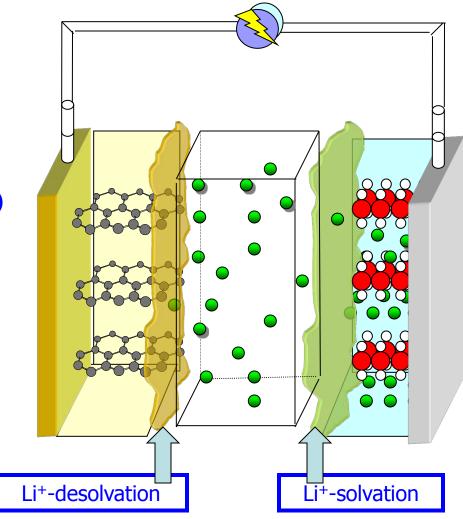
High Voltage **Electrolyte Additives**

A. v. Cresce, J. Ho, J. Read, and K. Xu

Electrochemistry Branch U. S. Army Research Laboratory Adelphi, MD 20783-1197, USA

RDECOM Cathode/Electrolyte Interphases

Different Focuses on Anode- and Cathode-Interphases


Anode:

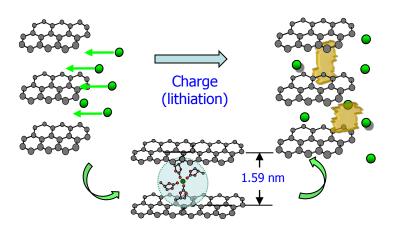
- **Faster Li⁺-transport**
- **Less consumption of Li⁺ (irreversible** capacity)

Cathode:

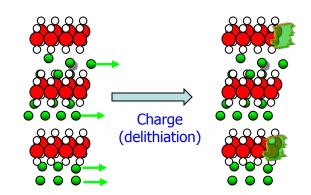
Stabilization at high potential (> 4.5 V)

Li⁺-solvation no longer plays directing role in cathode SEI formation mechanism

Interphases on Anode and Cathode



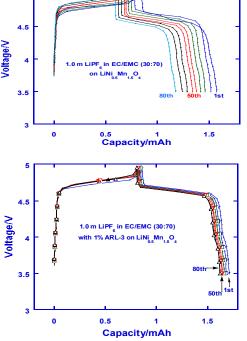
Anode (Graphitic)

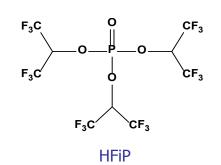

- Both are related to electrode structure
- Both are little understood

<u>Cathode</u> (Metal Oxide)

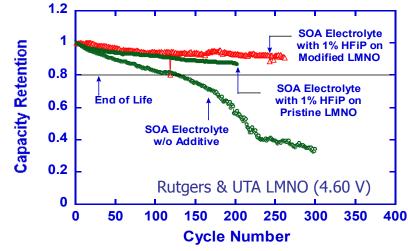
- Reductive decomposition
- Lithiation process
 - Solvent co-intercalation
 - Lattice held together by van de Waals force
- 3D: partially penetrated graphene
- Coverage of Li⁺-exit/entrance sites
 - kinetic control over Li⁺-transport

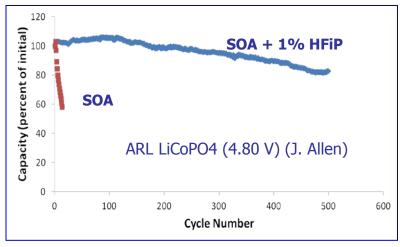
- Doubt still exists about the existence
 - potential < 4.5 V vs. Li (~1.5 V vs. SHE)
- Oxidative decomposition
- Delithiation
 - Solvent co-intercalation impossible
 - Lattice held together by Coulombic/covalent
- "Patchy" instead of "continuous"
- No coverage of Li⁺-exit/entrance sites
 - deactivation of metal cores


In the last two decades >90% effort are on anode SEI

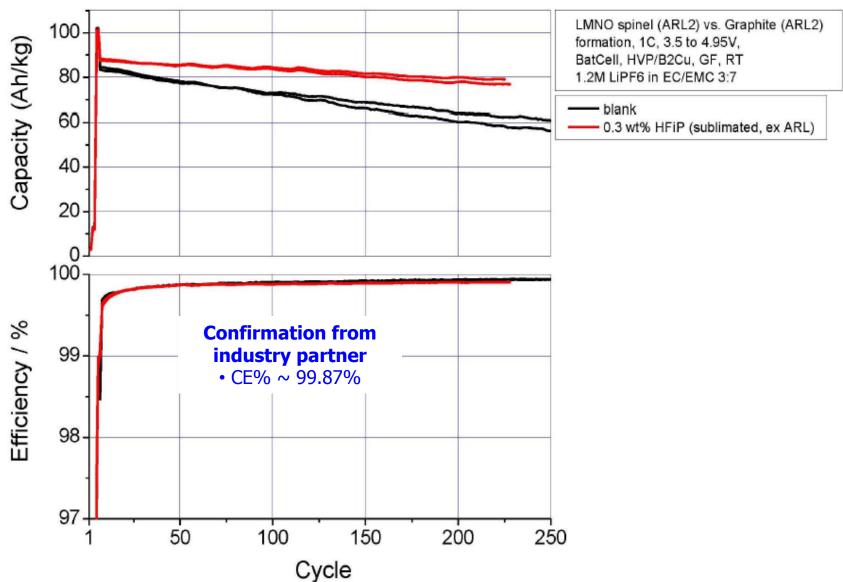


Cathode SEI: on 5.0 V Class Cathodes A. v. Cresce, K. Xu

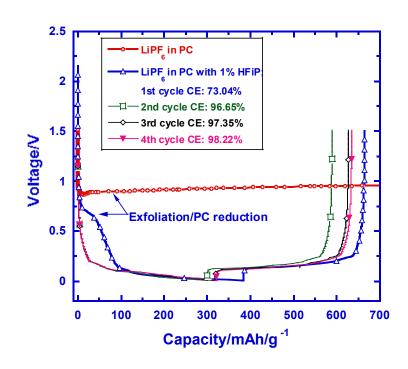

Preliminary Results (A. v. Cresce)


- New electrolyte forms stable interphase on both spinel LiNi0.5Mn1.5O4 and olivine LiCoPO4 surfaces
- Baseline electrolyte: LiPF6/EC/EMC (30:70)
- 1% additive causes significant impact on cell stability
 - Further refinements are on-going

Cresce & Xu, JES, 2011, 158, A337



ANL LMNO: Full Cells

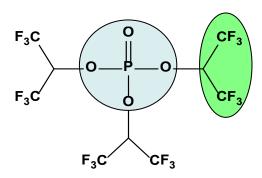

Surface Chemistries of HFiP

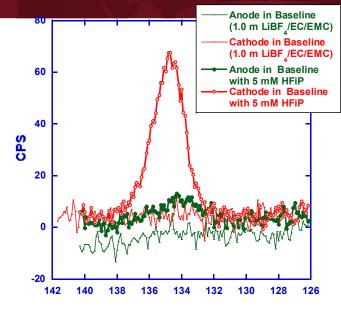
Where did HFiP end up with?

- Chemically phosphate can be reduced at anode
- It was found to even form good SEI on graphite in neat PC

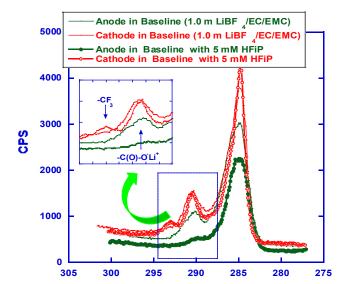
What mechanism did it stabilize electrolyte against cathode surface?

Surface Analysis with HR-XPS




HR-XPS conducted on both cathode and anode cycled in baseline and HFiP-containing electrolytes

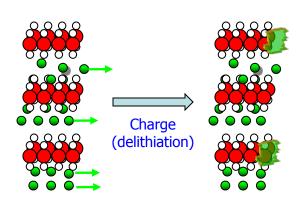
- P 2p absent in control samples
- P2p on test samples
 - 5~10 X more on cathode than anode
- C1s for CF3 only found on cathode

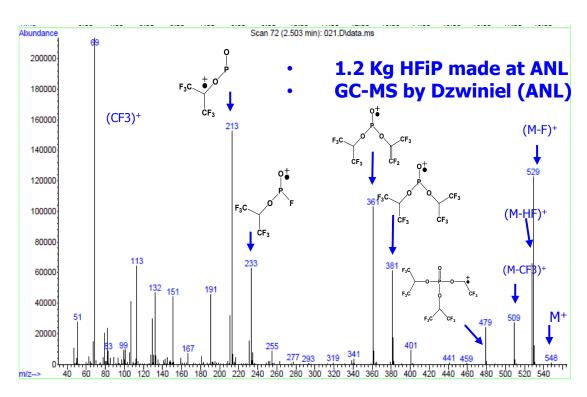

The fate of phosphate in electrolyte

- Phosphate ends up on cathode and anode
- Fluorinated alkyls substructure on cathode

P 2p Binding Energy/eV

Vehicle Technologies Program




HFiP Scaled Up by ANL P. Faguy (DOE)

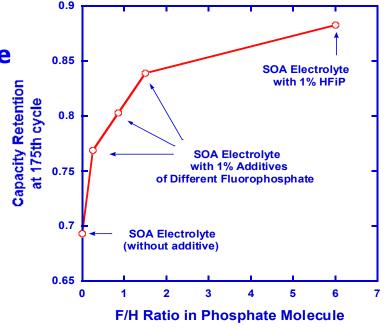
Even HR-XPS cannot pin-point the structure of cathode interphase

- Perhaps inference from MS?
- Possible participation of TM cores (TM reduction)
- New bond-formation between M and O/P/F/C
- Deactivation on cathode surface at TM centers
 - similar to catalyst poisoning
 - spectroscopic evidence

$$TM^{n+} - e \longrightarrow TM^{n+1}$$

$$F_{3}C \longrightarrow CF_{3} \longrightarrow CF_{3} \longrightarrow TM^{n+1} \longrightarrow TM^{n+1} \longrightarrow R$$

$$R = F_{3}C \longrightarrow F_{3}C \longrightarrow$$


Tailoring an Interphase ---- on Cathode Surface

Interphase on Electrolyte/Cathode Unlike Electrolyte/Anode Junction, interphase on cathode is little studied

- Oxidation Chemistry unknown
- Formation mechanism?
- Perfluorination helps
- Phosphazene might help (?)

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

$$F_3C$$
 O
 CF_3
 F_3C
 CF_3
 F_3C
 CF_3
 CF_3

CF₃ O CF₃
CF₃ O CF₃
CF₃ CF₃

F₃C CF₃ F₃C CF₃

F₃C O CF₃

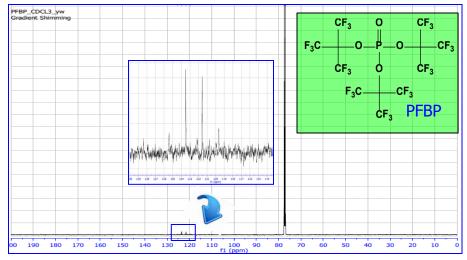
CF₃ P O CF₃

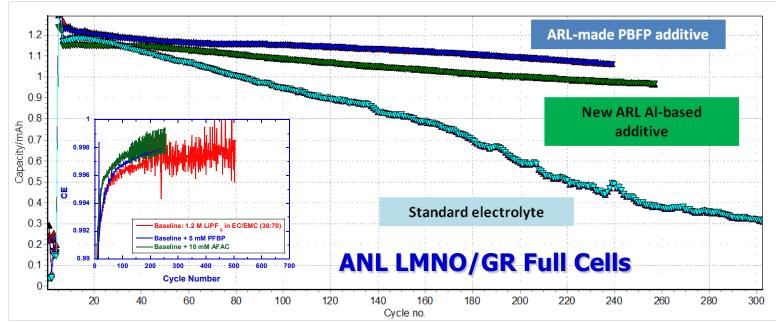
CF₃ C CF₃

F₃C CF₃

CF₃ C CF₃

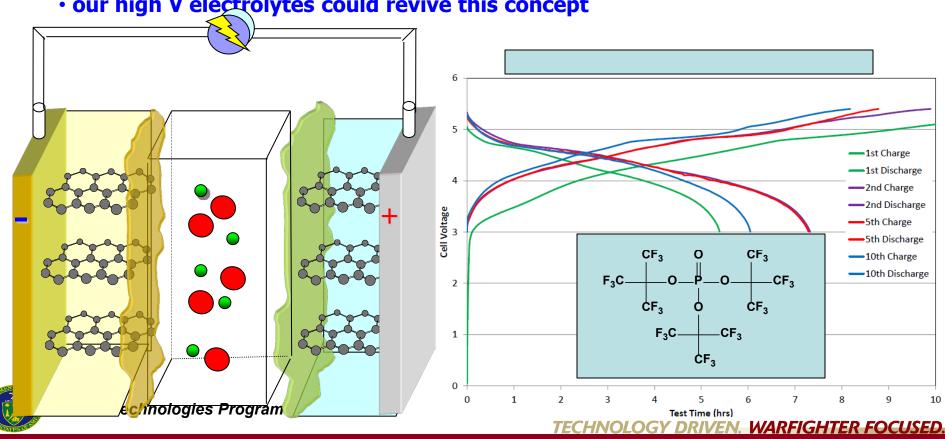
2. PNF-2


3. PFBP



Synthesis of Perfluorinated Additive PFBP (Drs. XQ Yang and HS Lee, BNL)

- Presence of remaining H in HFiP undesired
 - Perfluorinated additives synthesized



A New 5 V Battery Chemistry: Double Intercalation (J. Read, ARL)

- Double-intercalation chemistry
- Symmetric graphite cell
- High voltage (> 5.0 V)
- Concept was proposed in early 1990s (J. Dahn)
 - never realized due to lack of electrolytes:
 - good SEI on anode, high V stability on cathode
 - our high V electrolytes could revive this concept

Future Work

- Collaborate with ANL on LiNi_{0.5}Mn_{1.5}O₄ and xLi₂MnO₃·(1-x)LiMO₂ for the testing of ARL electrolytes.
- Continue the development of stabilized LiCoPO₄.
- Perform computational screening of redox stability and decomposition reactions of the fluorinated alkylphosphate-based additives using DFT calculations. Predict bulk and interfacial properties of electrolytes with fluorinated alkylphosphate-based additives.
- Study decomposition reactions of solvent and additives at cathode surfaces.
- In-situ/Direct characterization of SEI under Li ion chemistry environments
- Synthesis of new solvents/additive based on more understanding about the chemical processes at interphases

Summary

- Stabilized high voltage Li_xCo_{0.8}Fe_{0.2}PO₄ in couple with the high voltage electrolyte has greatly improved the capacity retention and rate capability
 - ➤ Stability of the cathode materials including LiNi_{0.5}Mn_{1.5}O₄ and xLi₂MnO₃·(1-x)LiMO₂ are critical for the success of high voltage Li-ion batteries
- Oxidation potentials and reactive pathway of EC and alkyl phosphate has been successful calculated with respect to the influence of anion, salt, explicit solvent and CoPO₄ computationally.
 - ➤ The conductivity of Li2 EDC was calculated using MD simulation and agrees with experiment.
 - The presence of BF_4^- , PF_6^- , CIO_4^- , or $B(CN)_4^-$ anion lowered the carbonate solvent oxidation potential by H⁻ and F⁻ abstraction and promoted decomposition kinetics;
 - ➤ Fluorine transfer was observed for HFiP/PF₆-complexes.
- Effectiveness of HFiP additive has been successfully demonstrated in a full cell, graphite/LiNi_{0.5}Mn_{1.5}O₄, cycled in electrolyte with HFiP additive achieved 80% capacity retention and 99.87% coulombic efficiency in 200 cycles.
 - > XPS surface analysis revealed the presence of fluorinated alkyl substructure on cathode.
 - > Higher degrees of fluorination of additives resulted in better cycling performance.
 - Elevated temperature tests are on-going

