

High-Temperature Coatings for Valve Alloys* *Subtask 2A3 under the Powertrain Materials Core Program (PMCP)

Pls: Sebastien Dryepondt & Beth Armstrong

Team: R. Pillai

Materials Science and Technology Division Oak Ridge National Laboratory

2020 DOE Vehicle Technologies Office Annual Merit Review, June 4, 2020

ORNL is managed by UT-Battelle, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Context overview: VTO Powertrain Materials Core Program

Timeline

- Lab Call Award: July 2018
- Program Start: Oct 2018
- Program End: Sept 2023
- 30% Complete

Budget

• \$30M/5 years

Barriers to new alloys

- Higher power density, higher efficiency engines; resulting in increasingly extreme materials demands
- Cost of advanced engine materials
- Development time/cost of new materials
- Scaling new materials technologies to commercialization

*	FY20 Program Research Thrusts	FY20 Budget	Partners
	Thrust 1. Cost Effective Lightweight High Temp Engine Alloys	\$1.05M	ORNL
	Thrust 2. Cost Effective Higher Temp Engine Alloys	\$1.525M	ORNL, PNNL
	Thrust 3. Additive Manufacturing of Powertrain Alloys	\$1.075M	ORNL
	Thrust 4A. Advanced Characterization (supporting Thrusts 1-3)	\$1.025M	ORNL, PNNL, ANL
	Thrust 4B. Advanced Computation (supporting Thrusts 1-3)	\$0.6M	ORNL
	Thrust 5. Exploratory Research: Emerging Technologies	\$0.75M	ORNL, PNNL, ANL

Overview of SubTask 2A3: High-Temperature Coatings for Valve Alloys within the PMCP

Timeline

- Project start: Oct 2018
- Project end: Sep 2023
- Percent complete: 30%

Barriers to High Temperature Coatings

- Not used currently in engine
- Very limited data for coated value alloys
- Coating cost
- Heat treatment compatibility with substrate

Partners	FY20 Budget
Subtask. 2A3: High-Temperature Coatings for Valve Alloys	\$175k
Subtask 4B: Advanced Computation	\$22.5k
Stony Brook University	
Flame Spray Inc.	

Relevance: Enable Higher Operating Temperatures For High Strength Valve Alloys

- Low-cost, higher-strength valve alloys have been developed at ORNL
- These alloys have limited oxidation resistance at T>850°C
- Oxidation-resistant coatings on the highest temperature regions of valves could improve significantly component lifetime at T>850°C

CAK RIDGE National Laboratory

Approach: Develop Coatings For High Strength Valve Alloys For Improved Oxidation & Fatigue Resistance

- Deposit coatings on oxidation coupons and fatigue specimens
- Optimize the deposition process/heat treatment using a coupled thermodynamic and kinetic model (Thrust 4B: Adv. Comp.)
- Compare bare and coated specimens:
 - Cyclic oxidation resistance
 - High cycle Fatigue (HCF) Behavior
- Predict coated component lifetimes

Milestones

- Q2. Initiate HCF testing of high strength coated valve alloy Complete
- Q4. Write a paper on on the HCF properties of coated valve alloys On target

Tech. Accom.: Slurry Coatings and Thermal Spray MCrAlY Coatings Were Deposited on ORNL Valve Alloys

- <u>Variation</u> in successful coating deposition on 2687 high strength alloy
- Deposition parameters/heat treatments need to be optimized
- High Ti content makes the alloy sensitive to O₂ during annealing
- First batch of thermal spray coatings had homogeneity issues

)ak **R**idge

Tech. Acc. Thrust 4B: Successful Prediction of Microstructure Using Coupled Thermodynamic and Kinetic Model

 Calculated **phases** are consistent with element and EBSD phase mapping for slurry coating deposited on alloy 31V

CAK RIDGE National Laboratory *EBSD : Electron backscattered diffraction **FCC : Face centered cubic structure

Tech. Accom.: Demonstrate Great Oxidation Resistance at 900°C for Non-optimized ORNL Slurry Coating

- Significant spallation at 950°C for bare 2687 alloy
- Protective oxide layer forms on coupons coated with slurry aluminide
- Ti required for strength but not good for oxidation. Also an issue for coatings due to diffusion from substrate to coating surface

CAK RIDGE National Laboratory

Tech. Accom.: Initial High Cycle Fatigue Tests of Coated Specimens Show Good Behavior

- 6 fatigue specimens were MCrAlY coated and 2 specimens were Slurry coated by Flame Spray
- Initial HCF results are consistent with bare alloy data
- No cracks in the coating

Collaboration

- Stony Brook University: MCrAIY thermal spray coatings
- Flame Spray Inc: Flame slurry coatings
- Thrust 4B, Advanced Computation: Coupled thermodynamic & kinetic simulations

Future Research

- Optimize coating fabrication
- Evaluate strategies to mitigate deleterious effect of Ti on oxidation
- Continue cyclic oxidation and HCF testing at 900-950°C
- Use coupled thermodynamic and kinetic model for lifetime prediction
- Collaboration with Thrust 4a for advanced characterization of microstructure coatings (electron probe micro analyzer)

Project Summary

- Evaluating deposition of Slurry and MCrAlY coatings on higher strength value alloys
- Initial cyclic oxidation and high cycle fatigue data shows good behavior at 900°C with non-optimized coatings
- Applying advanced modeling and characterization tools to optimize coating deposition processes
- Coatings may offer cost-effective solutions for valves operating at T>850°C

Backup Slides

Responses to Previous Year Reviewer's comments

Project was not reviewed last year

