A High-Performance PHEV Battery Pack

PI: Mohamed Alamgir and Geun-Chang Chung

LG Chem Power / LG Chem

Man in

LG Polymer

May 16, 2012

Project ID: ES002

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

LG Group at a Glance

- Established Lucky Chemical Industrial Corp. in 1947
- Changed its name from Lucky Gold Star to LG in 1995

- ✓ Sales (2011) \$124B
- ✓ Employees 210,000

Electronics

LG Electronics

LG Display

LG Innotek

LG Siltron

...

9 Companies

Chemical

LG Chem

LG Hausys

LG Healthcare

LG Life Sciences

. . .

13 Companies

Telecom & Service

LG U+

LG CNS

LG Solar Energy

LG International

...

33 Companies

LG Chem at a glance

R&D Expense

Energy Solution

- Lithium-Ion Batteries for
 - Mobile Phone, Laptop, Power Tool
 - Hybrid & Electric Vehicles

- ESS

Petrochemicals

- ABS/EP
- NCC/Polyolefin
- PVC/Rubber
- Acrylate

IT & Electronics Materials

- LCD Polarizer
- LCD Glass
- OLED Materials
- Color Filter

LGCPI

- Battery Pack Concepts, Design and Prototype Builds
- Battery Management Systems
- Sales and Customer Support

Troy, MI

Sales & Pack R&D

LGCMI

- \$300M+ investment with ARRA funding
- Groundbreaking: Summer 2010
- Production begins in 2012

Holland, MI

Cell Manufacturing

Cell Structure: Unique Stack- and-Fold Design

Proprietary Safety Reinforcing Separator (SRSTM)

SRSTM provides superior abuse-tolerance

- By improved mechanical and thermal stability
- By preventing internal short circuit
- By providing lower shrinkage

Significantly higher puncture strength than conventional separator

LG Chem Power Inc.

Overview of Current Program

Timeline

- Project Start: April 1, 2011
- Project End: March 31, 2013
- Percent complete: 50%

Budget

- Total project funding: \$9.6M
- DOE share: \$4.8M
- Contractor share: \$4.8M
- Funding for FY11: \$3.2M

Barriers

- Specific Energy and Power
- Cycle- and Calendarlife
- Cell Cost goal of <\$200/kWh
- Efficient Refrigerant-to-Air cooling system

Partners

- LG Chem, INL, SNL, NREL
- Project lead: LGCPI

Objectives

- Develop a cell suitable for use in the PHEV-40 Mile program using next generation, high capacity Mnrich cathode materials.
- ➤ A key goal of the program is to lower the pack cost to close to the \$3400 target.
- Optimize the Refrigerant-to-Air cooling system we have developed in our previous program with respect to mass, volume, cost and power demand.
- Deliver cells and battery packs to USABC for testing.

PHEV 40-Mile Battery Pack Goals

Characteristics at EOL	Units	Requirements for 40-Mile Program
Reference Equivalent Electric Range	Miles	40
Peak Pulse Discharge Power, 2 Sec	kW	46
Peak Pulse Discharge Power, 10 Sec	kW	38
Peak Regen Pulse Power, 10 Sec	kW	25
Available Energy, CD ⁴ mode, 10kW rate	kWh	11.6
Available Energy, CS ⁴ mode	kWh	0.3
Minimum round-trip Energy Efficiency⁵	%	90
Cold Cranking Power at -30°C, 2 sec / 3 pulses (2-10-2-	· kW	7
CD Life / Discharge throughput	Cycles;	5000
	MWh	58
CS HEV Cycle Life, 50Wh Profile	Cycles	300,000
Calendar life at 35°C	Years	15
Maximum System Weight	Kg	120
Maximum System Volume	Liters	80
Maximum Operating Voltage	Vdc	400
Minimum Operating Voltage	Vdc	>0.55Vmax
Maximum Self-Discharge	Wh/da y	50
System Recharge Rate at 30°C	kW	1.4
		(120V/15A)
Maximum System Production Price @100k units/year	US\$	\$3,400

Approach/Strategy

- Study high capacity, Mn-rich, layered-layered cathode materials from multiple vendors.
- Characterize and Improve the performance, life and abuse-tolerance of Mn-rich cathode materials.
- Optimize, fabricate and deliver battery packs based on Refrigerant-to-Air cooling system we have developed in our earlier USABC Program.

Technical Accomplishments/Results

- Mn-rich cathode materials from two vendors have been evaluated.
- Built cells with careful control of various cell fabrication parameters/processes such as electrode formulations, formation protocol etc to identify conditions optimum for performance and life.
- Studied the effect of operational voltage ranges on energy, power and life.
- Studied the effect of electrolyte additive on life.

Technical Accomplishments/Results

- Our 1st generation Refrigerant-to-Air pack has been redesigned and is being optimized with respect to
 - Weight,
 - Volume,
 - Power demand.
- Cell- and Module level thermal studies have been carried out to examine the efficacy of this cooling concept.
- First prototype packs have now been built and are being evaluated for cooling efficiency.

- Baseline studies with Mn-rich cathodes show capacities as high as ~ 250 mAh/g at RT.
- Strong dependence on rate.

- Rapid increase in DC resistance at low SOCs.
- This can limit the usable SOC range for PHEV applications.

- High voltage charging to access higher capacity leads to considerable gas evolution.
- This might necessitate considerable adjustment in cell processing conditions such as formation.

Со	Mn	Ni
24 ppm	145 ppm	19 ppm

- High voltage operation results in severe Mn dissolution in regular electrolyte.
- Need to identify suitable electrolyte

Max charge voltage has a strong influence on cycle-life.

Discharge cut-off voltage also has significant effect on cycle-life.

> Electrolyte additives enhance cycle-life.

Results: Refrigerant Cooling System

- Requires refrigerant loop; but:
 - Avoids coolant fill and maintenance, obviates need for complex coolant manifolds and risks of leaking.
- Phase I- Two thermal zones:
 - Refrigerated compartment (cells, evaporator, fan)
 - Ambient compartment (controls, compressor, condenser, fan)

Results: Phase II Cooling System- integrated design

➤ A refrigerant loop is used to cool the cold-plate inside the battery pack which in turn is attached to fins sandwiched between the cells.

Results: Cooling System- Module Level Testing

> Efficient cooling- satisfies target

Results: Cooling System- Module Level Testing

Future Work

- Studies to improve power and life will include, among others
 - Surface-modified cathodes
 - Different electrolyte compositions/additives.
- Delivery of cells to National Labs for evaluation with improved power and life.
- Testing of prototype packs under various heat-loads using different driving profiles and additional optimization of the thermal system.
- Delivery of packs to National Labs.

Overview of Last PHEV Program

Timeline

- Project Start: Jan 1, 2008
- Project End: March 31, 2010
- Percent complete: 100

Budget

Total project funding: \$12.7M

Barriers Addressed

- Cycle-life
- Calendar-life
- Cold-Cranking Power
- Efficient/reliable thermal management system

Partners

- LG Chem, INL, SNL, NREL
- Project lead: LGCPI

Highlights of Past PHEV Program

Timeline

- Project Start: Jan 1, 2008
- Project End: March 31, 2010

Budget

Total project funding: \$12.7M

Barriers addressed

- Cycle-life
- Calendar-life
- Abuse-tolerance

Cell/ Approach

- Oxide-blend cathode/graphite
- Refrigerant-to-air cooling system

Key Results

- Cycle-life improved significantly: 5000 cycles
- Calendar-life needs additional improvement

Highlights of Past HEV Program

Timeline

- Project Start: Sep 1, 2006
- Project End: Feb 29, 2008

Budget

Total project funding: \$6.3M

Barriers addressed

- Cycle-life
- Calendar-life
- Cold-Cranking Power

Cell/ Approach

- Spinel/Hard-Carbon
- Approaches used: coatings, dopants, use of electrolyte additives

Key Results

- Cycle-life improved significantly: > 550k cycles
- Calendar-life: > 10 yrs
- Excellent abusetolerance

Use of LGC's Cells in Production Vehicles

OEM	Vehicle	Cell
GM	Chevy Volt	PHEV
Ford	Focus BEV	PHEV
Hyundai	Sonata Hybrid	HEV

These cells benefitted directly from the development programs LGCPI had with USABC.

Acknowledgements

- LGCPI team (Paul Laurain, Satish Ketkar, Jongmoon Yoon and Kwangho Yoo)
- **▶ LG Chem team (Geun-Chang Chung, Song-Taek Oh, Jaepil Lee)**
- USABC for their financial and technical support in course of these programs.
- Paul Groshek- Program Manager
- INL (Jeff Belt), NREL (Ahmad Pesaran, Kandler Smith), LBNL (Vince Battaglia) and SNL (Chris Orendorff) for invaluable technical support

