High Energy Novel Cathode / Alloy Automotive Cell

Jehwon Choi, Kevin Eberman, Leif Christensen, Zhonghua Lu, Bill Lamanna, Ang Xiao, Jagat Singh

3M Electronics Materials Marketing Division May 14, 2012

Project ID # ES131

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

start: 10/01/2011

• finish: 1/15/2015

15% complete

Budget

- Total project funding
- DOE share: \$4,577,909
- Contractor share: \$1,961,961
- Funding received in FY11: \$ 0
- Funding for FY12 : \$1,700,000

Barriers

Cycle Life, Energy, Cost and Thermal Stability

Targets

- Increase in energy density > 40%
- Reduce Cost > 25 %
- Maintain thermal stability and cycle life

Partners

- Argonne National Laboratory
- Dalhousie University

Project Objectives

To develop a high-performance battery cell for electrical vehicle with high energy density and low cost by integrating advanced chemistries

- at least 40% (1.4X base Wh/l) increase in energy density compared to baseline cell performance (NMC111 and Graphite)
- 35% increase in energy for advanced high voltage cathode
- 70% increase in volumetric capacity for alloy anode
- at least 25% lower cost per unit energy at cell level for a comparative integrated advanced materials cell to a baseline materials one

Milestones

Month/Year	Milestone or Go/No-Go decision					
Apr-12	Milestone : Complete the synthesis of advanced materials in quantities to build cells					
July-12	Milestone : Complete the prototype large cell build with baseline material					
	Go/No-Go Decision : ■ Demonstrate advanced cathode with composite density of 2.57Wh/cc or high and 95% capacity retention after 50 cycles					
	■ Demonstrate advanced anode composite with > 760 mAh/cc (70% increase over graphite) and 95% capacity retention after 50 cycles					
Sep-12	■ Data on one or more > 1.5Ah cell designs capable of supporting baseline and advanced materials testing under test guideline. Data enables down selection cell design for next phase					
	■ Evaluation data of baseline materials in one or more relevant cell designs having > 1.5Ah capacity and less than 20% capacity fade after 500 cycles with a 60% swing in capacity at room temperature					

Approach to Cathode Development

Approach 1: NMC material with high Ni content (Ni $\geq \frac{1}{2}$)

Based on the above phase diagrams, we explored compositions by the following experiment design (without morphology control) Factor 1: Ni/Mn, Factor 2: Co, Factor 3: Li/M, Factor 4: Temperature

Response: Energy between 2.5-4.7V, Cycle life, Crystal density (All at 30°C)

- Explore the compositions in two composition triangles
- Enable the high voltage cycle by engineering the particle

Approach to Anode Development

- Explored trade-off between low irreversible capacity and low thickness per cycle
- Optimizing Composition, Morphology, Surface

Accomplishments - Cathode

Compositional exploratory study shows that low Ni/Mn ratio with low cobalt region is most promising in meeting the project goal

Accomplishments - Cathode

Sample_description	Voltage	C1 (mAh/g)	D(mAh/g)	D_Energy (mWh/g)	Electrode density (g/cc)	Energy density (Wh/cc)	Capacity Retention
OL_based Cathode A	4.8V	272	211	807	3.35	2.70	0.98
3M BC-723K (Coating B)	4.7V	237	205	810	3.45	2.8	0.96
	4.8V	246	215	848	3.45	2.9	
Engineered Cathode 126M	4.8V	287	230	871	3.40	3.0	0.98

- Several potential candidates have been scaled up and meet goal.
- More sintering process optimization and composition exploring are on going.

Accomplishments - Cathode

Floating Test Profile

Capacity Loss Comparison

Sample	Reversible Cap	pacity (mAh/g)	Canacity Logo (9/)	
Sample	Before Floating	After Floating	Capacity Loss (%)	
3M BC-723K (No Coating)	198	0.08	99.9	
3M BC-723K (Coating A)	206	69.7	66.2	
3M BC-723K (Coating B)	199	116.8	41.3	

The surface treatment has a clear benefits for the capacity retention at high voltage and high temperature

Accomplishments - Anode

Composite Vol-Cap calculated for 63:30:2:5 wt%, Alloy:Graphite:SuperP:LiPAA, with 25% porosity at full expansion/lithiation.

	aterial Type	Specific Capacity	1 st Cycle Efficiency	Density	Composite Vol-Cap	PSD D50	SSA
		(mAh/g)	(%)	(g/cc)	(mAh/cc)	(um)	(m^2/g)
=	Α	840	85%	4.1	1230	3	5
2011	В	840	85%	4.1	1230	7	3
	С	860	90%	4.1	1260	8	3
7	D	850	88%	4.0	1230	8	4
2012	E	1250	76%	2.7	1290	8	9
)) (/	F	1000	84%	3.4	1270	10	4
V	G	1100	85%	3.3	1340	14	5

- In previous DOE program developed A and B
- In current DOE program improved efficiency and developed range of lower expansion materials
- All meet performance goals

Accomplishments - Anode

Increased capacity retention with Type D material compared to Type C material in symmetrical cells at high temperature.

Carbon coating improves the performance of Type E materials in composite electrodes with high rate cycling.

- Identified new type of Si material (Type D) with improved cycle life
- Carbon coating improves the cycling performance of Si material (Type E)

Accomplishments - Electrolyte

- 3M new DS3 electrolyte additives improved storage performance of NMC 18650 cells at HT and HV.
- Synergy observed combination of DS3 and VC works best.

Establish Test Protocol

- Testing Protocol, Data Acquisition & Reporting will be performed in conformance to USABC's 'Electric Vehicle Battery Test Procedures Manual'; Rev 2; Published January 1996.
- RPT (Reference Performance Test) Constant Current Capacity (C/3); DST (Dynamic Stress Test) discharge Capacity; Peak Power Capability

Preliminary Cycle Life Testing

Test Protocol established and preliminary testing initiated

Old Mixer

- Single Rectangular Planetary Blade
- Single Disperser Blade

New Mixer

- Double Helical Planetary Blade
- Double Disperser Blade (with bottom scraper)
- Side wall scrapper
- Sanitary fitting in discharge port for easy Filtering

New mixer provides better mixing for superior performance

Key to pouch cell seal

- Sealing Temperature
- Thermo polymer tape

Tab welding to Electrode MFZ

- Method III gives max yield
- Method I gives tears in MFZ
- Method II gives drop in cell OCV during formation

Preliminary data tends to indicate more robust stacked pouch cell design

Cell Design

		Reference cell	Advanced cell A	
	Cathode	NMC 723	C-S 126M	
Cell	Anode	Graphite	65%Alloy/35% graphite	
	Composite density (C)	3.3g/cc	3.3g/cc	
Design	Separator	25□	25□	
	Cycling range	2.8V to 4.25V	2V to 4.45V	
	Capacity	1.97Ah	2.90Ah	
	Energy	7.30Wh	9.89Wh (+35%)	
	Wh/L	445	600	
Test	Wh/kg	184	225	
Results	Capacity fade @30	0%	Slight increase	
	Capacity fade @200	2%	-	

18650 cell capacity and cycling data

> 30% energy improvement from baseline chemistry by integrating 3M HE cathode and alloy anode

Collaborations

- Dalhousie University (Jeff Dahn and Mark Obrovac)
 - Technical discussion for most of lithium ion battery related areas.
- Argonne National Lab (Ira Bloom and David Robertson)
 - Testing procedure (EV protocol) discussion.

Summary

- Demonstrated multiple cathode concepts which can meet the project goal.
- Identified several new Si anode materials with improved efficiency and reduced expansion, which can meet the project goal.
- Identified new electrolyte additive which improved the performance of baseline materials at high voltage and high temperature test condition.
- Optimization of stack pouch cell is still on-going : critical issues of sealing and table welding studied.
- Test protocol (EV) was established and preliminary data were generated using large cell test vehicles.
- Achieved > 30% increase in energy compared with that of baseline chemistry by integrating new high energy cathode and Si alloy materials in 18650 formats

Proposed Future Work

- Continue to optimize the composition and planning to initiate the morphology control.
- Initiate the experiments to find new electrolytes based upon fluorochemical chemistry enabling high voltage cycling.
- The exploration of composition spaces for new Si alloys will be continued in tandem with optimization of coating methods and coating chemistries in next quarter.
- Continue to focus on stack cell process validation and build 18650 & pouch cells using baseline material and generate complete set of data package using established EV test protocol.
- Continue to build and monitor the cycling performance of high capacity large cells using advanced cathode and anode materials

