Heavy Duty Powertrain
System Optimization and
Emissions Test Procedure
Development

David Smith (PI), Paul Chambon

Oak Ridge National Laboratory

2013 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

May 15, 2013

Project ID: VSS108

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start FY12
- Finish FY14
- 60% complete

Budget

- Total project funding
 - DOE share 64%
 - Cost share 36%
- Funding for FY12: \$ 1,750K
- Funding for FY13: \$ 1,300K

Barriers

- Risk aversion
- Cost
- Lack of standardized test protocols
- Constant advances in technology

Partners

- Meritor
- Cummins
- Environmental Protection Agency (EPA)
- International Council on Clean Transportation (ICCT)
- Eaton

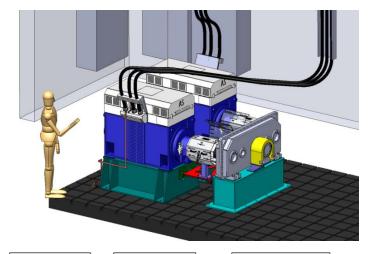
Project Objectives

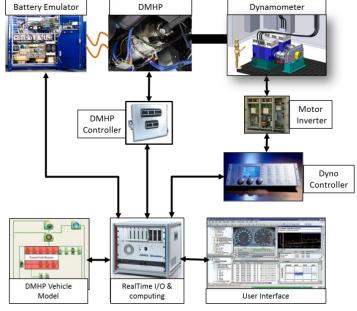
Overall Objective

 Provide expertise and test facilities for heavy duty advanced powertrain systems research, development, and integration

FY13 Objectives

- Establish the ORNL Vehicle Systems Integration (VSI) laboratory to support DOE VT Hybrid Electric Systems suited to characterize component behaviors exposed to real-world operating conditions in a vehicle systems context, or subsystem interactions based on various advanced powertrain architectures.
- Support :
 - Phase 2 of the EPA Green House Gas (GHG) rulemaking
 - SAE J2711 (Medium and Heavy Duty "x"-in-the-loop test procedures)
- Collaborate with industry for advanced Class 8 hybrid powertrain control strategy development and experimental powertrain verification


Milestones

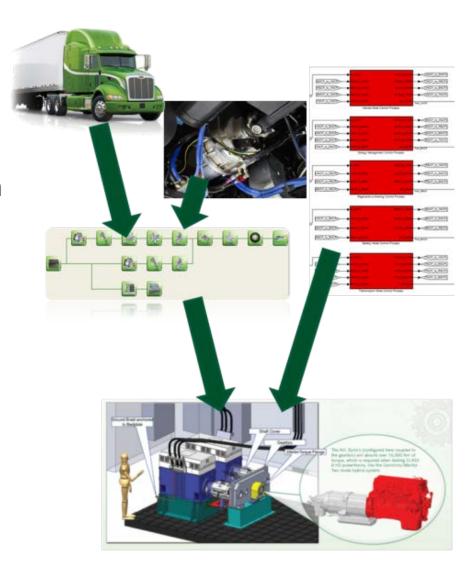

Date	Milestones and Go/No-Go Decisions	Status
Sept- 2012	Milestone: Procure dynamometers for VSI powertrain test cell	Complete
April- 2013	Milestone: Commission VSI powertrain test cell complete with battery emulator	On Track
April 2013	Milestone: Kick-off WFO for EPA phase 2 GHG rule making test procedure development	On Track
Sept 2013	Milestone: Complete evaluation of prototype class 8 heavy hybrid powertrain	On Track

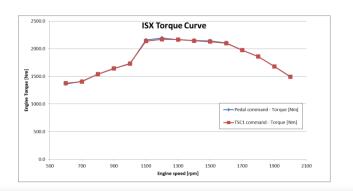
Approach/Strategy

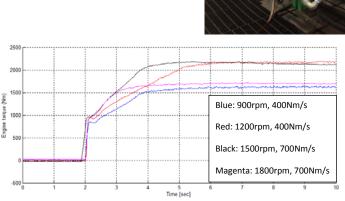
- Establish the ORNL Vehicle Systems Integration (VSI) laboratory
 - Procure and commission powertrain dynamometer test system suitable for class 8 truck hybrid powertrain transient testing
 - Procure and commission high power battery emulator suitable for class 8 truck hybrid powertrain transient testing
 - Integrate dynamometers and battery emulator with hardware-in-the-loop system to emulate virtual vehicle platforms and drive cycles

Approach/Strategy

- Develop test standards/procedures to support Phase 2 of the EPA GHG rulemaking
 - Powertrain systems commissioning
 - Hardware-in-the-loop software development and validation
 - Powertrain configurations testing
 - Correlation with chassis testing results
- Support SAE J2711 (medium and heavy duty "x"-in-the-loop test procedures)




Approach/Strategy


- Develop and validate advanced Class 8 hybrid powertrain control strategies:
 - Commission Meritor hybrid powertrain on VSI powertrain test cell
 - Refine control strategies
 - Benchmark fuel economy and emissions against conventional powertrain over pre-determined drive cycles
- Model validation and enhancement based upon experimental results

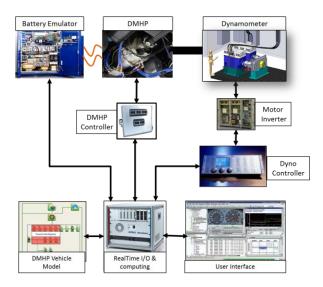
Technical Accomplishments Dyno Procurement and Commissioning

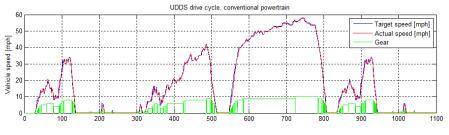
- Procured 2 AVL 500kW dynos
- Completed dyno commissioning
- Commissioned Cummins ISX 450 engine on single-ended dyno:
 - Performed steady-state engine mapping and transient operation characterization
 - Established torque and injection control over J1939 suitable for hybrid operation (stop/start)

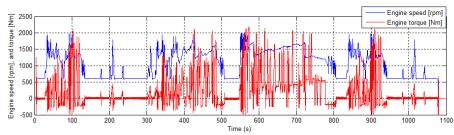
Technical Accomplishments Battery Emulator Procurement

- Procured 400kW battery emulator
- Delivered and installed in VSI lab In March 2013
- To be commissioned in May
- Provides service to both VSI powertrain test cell and component test cell.

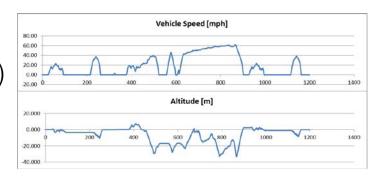
	•	
Input characteristics (mains)		
Power consumption:	444,4kVA	
Input voltage:	480 ± 10% VAC, 3-phase, PE	
Input frequency:	60 ± 5% Hz	
Input current:	max. 620A	
Power factor:	> 0,99 from 10% load	
Inrush current:	< I _{Rated}	


Output characteristics (unit under test)		
Output voltage:	8-800 VDC	
Feedback DC voltage:	10-800 VDC	
	+ / - 600A (note max. capacity output	
Output current:	rating)	

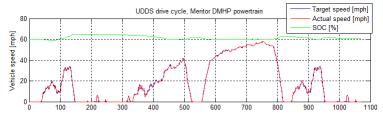

	AVL Battery Simulator™ control unit	included	
-			

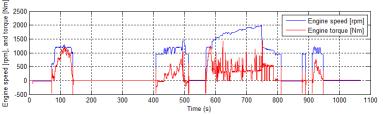

Technical Accomplishments Hardware-In-the-Loop Commissioning

- Interfaced hardware-in-the-loop realtime computer with dyno controller
- Modified Autonomie vehicle models for HIL bypass
- Commissioned engine-in-the-loop configuration:
 - Conventional powertrain
 - Hybrid powertrain



Technical Accomplishments Support of EPA GHG rulemaking


- Defined statement of work to support Phase 2 of the EPA GHG rulemaking in collaboration with:
 - EPA
 - ICCT
 - Cummins
- Procured Eaton UltraShift® automated manual transmission for conventional powertrain-in-the-loop configuration
- Modified HIL system to be suitable for three testing modes:
 - Vehicle Cycle (Vehicle Speed and Road Grade vs. Time)
 - Powertrain Cycle (Normalized Powertrain Speed and Normalized Powertrain Torque vs. Time)
 - Generic Vehicle Cycle (Vehicle Speed and Residual Power vs. Time)



Technical Accomplishments Class 8 Hybrid Powertrain Evaluation

- Tested engine-in-the-loop configuration of Meritor DMHP:
 - Actual ISX engine running in VSI test cell
 - Virtual DMHP and vehicle models computed on real-time platform
- Prepared installation of Meritor DMHP on VSI powertrain test cell:
 - Technology transfer meeting held in **December at Meritor**
 - Weekly web meetings to:
 - Coordinate ORNL and Meritor activities
 - Resolve test cell integration issues

Collaboration and Coordination

Organization	Type of Collaboration/Coordination
Meritor	Supply Dual Mode Hybrid Powertrain (DMHP) transmission CRADA partner
Environmental Protection Agency (EPA)	Sponsor Phase 2 of the GHG rulemaking
International Council on Clean Transportation (ICCT)	Support powertrain-in-the-loop testing
Cummins	Support powertrain-in-the-loop testing Engineering support for ISX450 engine
Eaton	Support Powertrain in the loop testing Supply AMT transmission and engineering support

Proposed Future Work

Remainder of FY13

- Complete commissioning of class 8 hybrid powertrain configuration (dual dyno and battery emulator)
- Commission Meritor hybrid transmission, refine and validate control strategies
- Support Phase 2 of the EPA GHG rulemaking
 - Test specified X-in-the-loop configurations

FY14

Complete X-in-the-loop testing for EPA

Summary

Relevance

- Validate, in a systems context, performance targets for deliverables from the Power Electronics and Energy Storage Technology R&D activities.
- Address codes and standards needed to enable wide-spread adoption of electric-drive transportation technologies

Approach

- Establish the ORNL Vehicle Systems Integration (VSI) laboratory
- Support Phase 2 of the EPA GHG rulemaking
- Develop and validate advanced Class 8 hybrid powertrain control strategies

Technical accomplishments and progress

- Procured dynamometers, battery emulator and HIL platform
- Commissioned engine-in-the-loop configurations (conventional and hybrid virtual powertrain)
- Established working relationships and paperwork to support phase 2 of the EPA GHG rulemaking

Collaborations:

EPA, Cummins, Meritor, ICCT, Eaton

Proposed Future Work

- Commission dual dyno configuration and battery emulator
- Commission conventional and hybrid class 8 powertrain
- Perform testing to support phase 2 of the EPA GHG rulemaking

