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Heavy-duty combustion project overview

Timeline

* Project provides
fundamental research that
supports DOE/ industry
advanced engine
development projects

* Project directions and
continuation are evaluated
annually

Budget

* Project funded by DOE/VT:
FY11-SNL/UW: $700/115K
FY12-SNL/UW: $700/115K

Barriers

Inadequate understanding of
fuel injection, mixing,
thermodynamic combustion
losses, combustion/ emission
formation processes

Inadequate capability to
accurately simulate these
processes.

Partners

University of Wisconsin, Delphi

15 industry partners in the
AEC MOU

Project lead: Sandia (Musculus)
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Heavy-duty in-cylinder combustion objectives

; 4 Long-Term Objective )

| Develop improved understanding of in-cylinder
LTC spray, combustion, and pollutant-formation
processes required by industry to build cleaner,
\_ more efficient, heavy-duty engines )

Current Specific Objectives:

(D SNL - Distill observations spanning years of optical and
computational research into conceptual model for LTC

(@ SNL - Implement and demonstrate new high precision fuel
system for multiple injections in optical engine

@ SNL - Explore close-coupled post injections for mitigating
PM emissions and improving fuel efficiency

@ UW - Compare the multi-mode model predictions to exp. data
and identify directions for improving thermal efficiency

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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Heavy-duty in-cylinder combustion milestones

R

1. (SNL) Demonstrate new common-rail fuel
injection system for controlled multiple injections.

2. (SNL) Evaluate small post injections for mitigating
pollutant emissions and improving fuel efficiency

3. (UW) Compare multi-mode combustion model
predictions to measurements of combustion
propagation from FY 2011

4. (UW) Compare the multi-mode combustion model
predictions to experimental data spanning
conventional diesel to advanced LTC combustion
taken, and identify directions for thermal efficiency
Improvements

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories
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Z».  Approach: optical imaging and CFD modeling of
_ CRE in-cylinder chemical and physical processes

' '« Combine planar laser-imaging diagnostics in an optical
heavy-duty engine with multi-dimensional computer modeling
(KIVA) to understand LTC combustion

« Transfer fundamental understanding to industry through
working group meetings, individual
correspondence, and publications
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Collaborations

« All work has been conducted under the Advanced Engine

Combustion Working Group in cooperation with industrial
partners

— Cummins, Caterpillar, DDC, Mack Trucks, John Deere, GE,
International, Ford, GM, Daimler-Chrysler, ExxonMobil, ConocoPhillips,
Shell, Chevron, BP, SNL, LANL, LLNL, ANL, ORNL, U. Wisconsin

* New research findings are presented at biannual meetings

« Tasks and work priorities are established in close cooperation
with industrial partners

— Both general directions and specific issues (e.g., UHC for LTC,
soot in higher load conditions)

* Industrial partners provide equipment and support for
laboratory activities

— FY2012: Delphi provided new injection system with support

COMBUSTION RESEARCH FACILITY @] Sandia National Laboratories



Accomplishments (14 slides)

« Accomplishments for each of the four current specific
objectives below are described in the following fourteen slides

Current Specific Objectives:

@ SNL - Distill observations spanning years of optical and
computational research into conceptual model for LTC

@ SNL - Implement and demonstrate new high precision fuel
system for multiple injections in optical engine

(® SNL - Explore small post injections for mitigating PM
emissions and improving fuel efficiency

@) UW - Compare multi-mode model predictions to exp. data
and identify directions for improving thermal efficiency

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



Sandia’s conceptual model for conventional

A\
CRE diesel is cornerstone of understanding

.-/

« Sandia’s conceptual model of diesel combustion was developed
based on observations from multiple laser/imaging diagnostics over
many years of optical engine research

Chemiluminescence: Ignition PAH PLIF: Soot Precursors LIll: Soot

o
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With many years of LTC optical engine research under our belt,
can we develop a conceptual model for diesel LTC?

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



A LTC spray penetrates more quickly + longer
CRE liquid; liquid recedes after EOI, before SOC

% * Injection into lower density: faster spray penetration, longer liquid length
 Liquid recedes before SOC as vapor hits piston wall
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collide; ambient fluid is en

1-D model —»

LES model
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2\ First-stage ignition in downstream vapor fuel,

CRE partially burned fuel (UHC, CO) throughout jet

"« LLNL chemical kinetics model: formaldehyde at 1st-stage ignition
« Experiments: Formaldehyde fluorescence at 1st stage, throughout jet
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N Second-stage ignition downstream where ¢~1,
CRE followed by soot in rich pockets at head of jet

/.
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* In lean upstream regions, experiments and
LLNL kinetics simulations show partially
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A\ Late cycle: soot pockets largely oxidize,
CRE formaldehyde, CO, UHC remain upstream

3 . . I First-Stage Ignition Il Second-Stage
- Late in cycle, simultaneous PLIF of OH (H:C0,CO,UHO) g ofer
(green) and formaldehyde/PAH/soot LIl (red) ™ o tug - o e

show soot pockets surrounded OH e oy T Brecursors (PAH)
« Soot pockets are mostly oxidized by 40° ASI ny

 Partially burned fuel (CO, UHC,
formaldehyde) remain late in cycle
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A\ Experiments show over-lean regions near injector,
CRE, where kinetics models predict partial combustion

.-/.

» Experiments: vapor-fuel tracer-PLIF shows lean mixtures near injector
where combustion-PLIF shows late-cycle formaldehyde and CO

« LLNL kinetics models: Lean mixtures
have long dwell between first- and
second-stage ignition, with UHC and
CO persisting to exhaust
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LTC conceptual model review article includes
both heavy- and light-duty perspectives

Team effort with Lyle Pickett and Paul Miles

March 2012: LTC conceptual model in
review (PECS), publication pending

Conventional Model LTC Model

1] 10 20 30 40 50 o 10 20 a0 a0 50 a ’ 10 20 30 40 50
1.0°, 1.0° - u y
sl T AsI T g
3.0° 30° _— >
s ——
ASI as”
a0 H-— 40—
ASI ; Asl® 4
50° 50°] e )
ASI ASI _
:

Mﬁ

: o
60° 60, el
e heavy-duty
fe——
Litt-Off e
65° c! : 7.0° : Asr
ASI H AS| )
H
||
807, 1 8.0°
Asl® o
40.0°
SR S S e S Y-
10, 0’ '|U U
AS|
—_—
— p— — — — — — — —
0 10 20 30 40 50 0 10 20 30 40 50 1] 10 20 30 40 50
Destance from Injector [men]

(Distanca from Injector [men] Distanca from Injector [mm]

B Intermediate Ignition I Second-Stage Ignition of

- Fuol - P Slage grason
[ Pre-igntion Vapor Fuel {HzCO, H;03, CO, UHC) {50, UHC) fusal-sich mixturns
§ Hoadof Entmamont |- Firsl-Stago Chamiluminacence gy Second-Siage lgniicnof N Soot or Sat Procursars (PAH)
Emission Region Intermedate Stoichiometry

or Diffusion Flama (OH)

Early-injection LTC

=)

10

22
)1'-\-.‘

1% ASI

-12.5*
10.5" RSI

T

NG

=
f
/A 1

e-ignition Vapor Fuel

_/

asi? ‘
~

i —

—
h g
75y 1

557 AsI r

20 30 40 mm

.
\

Peak

injection

15t.stage

[ Peak
27-stage
AHRR

HCO ,0 COUH(I

i Head of Entrainment
1 Wave

Peak

AHRR

Late-injection LTC

10 i} 0 40mm

=)

235O
1 ASI

/

// [f

425 q’ — -
3" ASI " 4 Peak
A% rate of
/.' injection
575" @ I
a5 Asl _1“ ; [
675 ASI Peak
. 15t.stage
™S AHRR

0
B75° ASI
\\
Peak
1\25 J\SI
2"d-slage
AHRR
5 N
N As‘gT
w
18.75° ASI
Intenmadiate ignition B Second-Stage ignition of

fuseh-rich mintuees

.................

COMBUSTION RESEARCH FACILITY ACEOQ01 Musculus 15/23

@ Sandia National Laboratories



@ New fuel injector/system implemented for new
effort requiring precise multiple injections

Optical cylinder head modified to accept 7 % | ey Postimjed;on pﬂ
Delphi DFI-1.5 injector 20| F | butmassis2+02mg
New 0.2 liter accumulator (rail) close to §§2 | N I
injector to minimize rail dynamic effects <15 | il I '
Delivers close-coupled post-injections down £ ', \ 141

to ~1-2 mg with IMEP COV <1% i, ik

This injector is first step; may follow S0 05 715 2 25 ts'et,s .
. . s Ime rom start of command ftor first injection |[ms
with other injectors
(e.g., direct piezo,

fast heavy-duty)

(click movie to play)
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PM reduced by close-coupled post injections for
wide range of EGR, + good combustion phasing

'« Previous work with LTC post-
injections showed a benefit only
at late timings
— Soot-free post injection
oxidized main-injection soot,
but only in squish
— Significant efficiency penalty
for late injections

* New injector shows benefit for
close-coupled post injections
— Similar effect realized at 21%,
18%, 15% and 12% intake O,
— Minimum-PM post-injection
(7-15 mg) adds 50-100 kPa
IMEP

— Post-injection is close-coupled,
so combustion phasing is
favorable for efficiency

Paper Blackening

Previous Injector:
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Initial results shows how interaction between main
CRE and post injections needs proper post penetration

' . Small post-injection e 0%
— Luminous soot from
post-jet penetrates only
half of piston-bowl
radius

— Exhaust soot is similar
to main-injection only,
implying little interaction

between injections .

« Larger post-injection Cycle
— Post-jet penetrates

across bowl and
impinges on bowl-wall

— Post injection helps to
oxidize main injection
soot within bowl

Interaction details to be
probed with laser diag.

COMBUSTION RESEARCH FACILITY (C||Ck movies to play) () Sandia National Laboratores









C__

v

|

f

2

@

CFD for RCCI predicts early flame propagation,
but effects on global heat release is small

* FY11 laser-ignition experiments showed potential for flame
propagation in dual-fuel (gasoline+diesel) Reactivity-Controlled

Compression Ignition (RCCI) combustion (e.g., near piston bowl)

« Using a G-equation model with Damkohler number criterion predicts
many cells initially dominated by flame propagation

» Predicted heat release similar to no flame propagation model
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= « Model cylinder pressure agrees
with multi-mode experiments

Global combustion characteristics captured by
single UW-Kiva code across wide mode range

r — Conventional high-temperature
diesel combustion with short

ignition delay (HTC-Short)

— Low-temperature diesel
combustion with long ignition

delay (LTC-Long)

— Dual-fuel RCCI combustion
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A @ Simulations point to heat transfer & combustion
design for further efficiency improvements

* Model energy balance analysis
shows RCCI efficiency

= 40 improvements are primarily due
3 to reductions in heat transfer
o 30 - .
(i * Heat transfer is reduced by
520 - lowering peak temperature
10 | — Highly premixed operation
results in peak equivalence ratio
0 - , near 0.5
Gross Combustion Heat Exhaust o
Erooree  Losses  Transfer  Energy — Additional temperature
RCCI Combustion Conv. Diesel reductions are due to EGR
(gasoline+diesel) Combustion * Further reductions in heat

transfer are achieved by keeping
high-temperature regions away
from surfaces
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) Future Plans: Build multi-injection conceptual
p CRE model, heat transfer diag., and LTC PAH/soot

f  Start building a design-level conceptual-model understanding of
' multiple injection processes

— Explore fuel-injection schedules using multiple pilot, post, and split
Injections that are currently deployed by industry

— ldentify mechanisms and critical requirements (injector rate-shaping,
dwell, duration, etc.) to achieve emissions and efficiency
Improvements across wide parameter space

« Determine how combustion design affects heat transfer and
efficiency

— Measure spatial and temporal evolution of heat transfer across
range of combustion modes; correlate to progression of in-cylinder
combustion processes

 Build understanding of in-cylinder LTC soot and PAH

— Use multiple laser wavelengths and high-temporal-resolution
imaging/spectroscopy to track PAH growth and conversion to soot
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CKE. Heavy-Duty Combustion and Modeling Summary
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( )

Improved understanding of in-cylinder LTC spray,
combustion, and pollutant-formation to help
9 industry build cleaner, more efficient engines )

@ — (SNL) Distilled recent years of optical LTC research
into conceptual model for both heavy- and light-duty

@ ls. (SNL) New injector and delivery system provides
% repeatable, precise close-coupled multiple injections

m (SNL) Close-coupled post-injections reduce soot over
@ "L W range of EGR; images show multi-injection interactions
L

@ r“"' (UW) Model predictions show efficiency is improved by
A . combustion design to reduce heat transfer

50
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