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Timeline 
● Project provides fundamental 

research to support DOE/Industry 
advanced engine projects. 

● Project directions and continuation 
are evaluated annually. 

Budget 
● Project funded by DOE/VT: 

FY12 – $760k 
FY13 – $740k 

Barriers  
● Increase the efficiency of HCCI 

(LTC). 
● Extend HCCI (LTC) operating 

range to higher loads. 
● Improve the understanding of  

in-cylinder processes. 

Partners / Collaborators 
● Project Lead:  Sandia ⇒ John E. Dec 
● Part of Advanced Engine Combustion 

working group – 15 industrial partners 
● General Motors – specific collaboration 
● Cummins – spark-plug cylinder heads 
● LLNL – support kinetic modeling 

 – CFD modeling  
● Univ. of Michigan – thermal stratification 
● Univ. of Calif. Berkeley – CFD modeling 
● Chevron – advanced fuels for HCCI 
● LDRD – advanced biofuels project  

  

Overview 



Objectives - Relevance 

 FY13 Objectives ⇒ Increased Efficiency, High Loads, Improved Understanding 

● Effects of Gasoline Ethanol Content:  Complete investigation of the effects 
of ethanol content of gasoline on HCCI/SCCI efficiency and load.  

● Improve Efficiency of HCCI/SCCI:  Determine the potential of raising the 
compression ratio (CR) to16:1 vs. 14:1 to increase thermal efficiency (T-E) 
for both premixed fueling and with partial fuel stratification (PFS).  

● Thermal Stratification (TS) Imaging: 1) Investigate the effect of piston-top 
temperatures on TS & cold-pocket distribution.  2) Explore the potential for 
obtaining thermal boundary-layer (BL) measurements from T-map images. 

● Facility Upgrade for spark-assisted HCCI & higher GDI injection pressures.  

● Support Modeling of chemical-kinetics at LLNL and TS at the University of 
Michigan (UM) and General Motors. 

Project objective:  to provide the fundamental understanding 
(science-base) required to overcome the technical barriers to the 
development of practical HCCI or SCCI engines by industry. 



Approach 

● Metal engine ⇒ high-quality performance data.  Conduct well-characterized 
experiments to isolate specific aspects of HCCI/SCCI combustion. 
– Fuel Effects:  Systematically investigate performance for premixed and partially 

stratified operation with E0, E10, E20, E100, and a high-AKI E0 fuel.     
– Improved efficiency:  Install CR = 16 piston and seek the highest-efficiencies and 

highest-loads for a range of op. conditions. Compare with previous CR = 14 data. 

● Optical engine ⇒ detailed investigations of in-cylinder processes. 
– Thermal stratification:  Install instrumented aluminum piston top and variable air-

jet cooling. Apply PLIF-based thermal imaging to bulk-gas & boundary layer (BL). 

● Facility upgrade:  Work with Cummins to modify heads for spark plugs, and 
with GM to obtain a high-pressure (300 bar) GDI injector and driver.   

● Computational Modeling:  Collaborate with LLNL, UM & GM, and UC-B.  
⇒ Support by identifying key trends, providing data, discussion & feedback. 

● Combination of techniques provides a more complete understanding. 
● Transfer results to industry: 1) physical understanding, 2) improved models. 

● Use a combination of metal- and optical-engine experiments and modeling 
to build a comprehensive understanding of HCCI/SCCI processes. 



Unless noted: Ringing ≤ 5 MW/m2 & spd = 1200 rpm 
 NOx & soot emiss. > 10x below US-2010 

Sandia HCCI / SCCI Engine Laboratory 

All-Metal 
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● Matching all-metal & optical HCCI research engines. 
– Single-cylinder conversion from Cummins B-series diesel. 

Optical Engine 

All-Metal Engine 

● Bore x Stroke = 102 x 120 mm  
● 0.98 liters, CR=14 & 16 



Accomplishments 
● Completed evaluation of performance affects of increasing ethanol content 

of gasoline, from E0  E10  E20. (Base fuel, E0 ⇒ AKI = 87, regular gas). 
– Evaluated effects on stability, efficiency, high-load limit, and ability to apply PFS.  

♦ Expanded fuels study to include:  1) E100 (pure ethanol), and 2) effects of 
changing the base fuel composition ⇒ high AKI = 93 distillate fuel (CF-E0). 
– Evaluated performance and compared with ethanol addition.  

● Determined the effect of increasing the CR from 14 to 16 on performance for 
both fully premixed and partially fuel stratified (PFS) operation. 
– Study is about 70% complete ⇒ on track to complete this FY. 

● Optical Engine: designed and installed aluminum piston with variable air-jet 
cooling, & evaluated vignetting/camera-position effects for BL measurement. 
– On track to obtain TS and BL data as planned this FY. 

● With Cummins, designed and fabricated spark-plug cylinder heads, and with 
GM, acquired ignition systems & high-pressure GDI injectors.  

♦ Conducted a comparative study of Combustion Noise and Ringing Intensity. 

● Supported chemical-kinetic & CFD modeling at LLNL, and TS modeling at U. 
Michigan & GM.   

 
 Expanded task to include CFD at UC-Berkeley.  



Effects of Gasoline Reactivity and Ethanol 
Content on Boosted HCCI / SCCI Combustion 

● Efforts in HCCI/SCCI are moving toward a greater emphasis on high-load 
capabilities ⇒ potential for a full-time HCCI/SCCI-LTC engine. 

● Important to understand how fuel reactivity can improve boosted HCCI 
performance:  1) stability, 2) efficiency, and 3) high-load capability. 
1. Vary the ethanol content of gasoline:  E0, E10, E20, & E100. 

> E10 and E20 ⇒ add 10 & 20% ethanol to base fuel (E0) ⇒ antiknock index, AKI = 87.   
⇒ Eliminates effect of changes in base-fuel composition, but increases AKI. 

2. Increase the AKI of base fuel with no ethanol. 
> Certification fuel (CF-E0) ⇒ a high-octane distillate fuel, AKI = 93. 

● AKI of E0 base-fuel increases progressively with ethanol content. 

● CF-E0:  AKI nearly the same as E20, RON is between E10 and E20. 

CR = 14 for 
Fuels Study 
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● Naturally Aspirated: 
– E0, E20 & E100 all autoignite with 

nearly identical Tin and TBDC. 
– CF-E0 requires ~ 8°C hotter Tin. 

● The autoignition reactivity of all fuels 
increases with boost. 
– Compensate with reduced Tin & EGR. 
– Select Tin = 60

 
C as min. for premixed. 

● Pin = 2.4 bar, typical boosted behavior 
Intake O2 & CSP show amt. of EGR. 
– Intake-O2:  E0 < E10 < E20 < E100 
– Reactivity enhancement with boost is 

inversely correlated w/ ethanol content.  
– CF-E0 falls between E0 and E10.  
⇒ Despite AKI ≈ AKI of E20. 

HCCI Autoignition Reactivity – Fully Premixed 

 Ethanol content ⇒ no effect nat. aspir. 
⇒Strong effect on reactivity for boosted  

 CF-E0 less reactive than E0, N.A. & boost 
 ON not a good indicator of HCCI reactivity 

Pin = 1 bar, Ringing = 5 
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● Key to high-loads is ability to retard 
CA50 with good stability to ctrl. PRRmax 

● ITHR keeps dT/dθ rising despite 
expansion, giving good stability. 

● Pin = 1 bar: all fuels show low ITHR. 
– Retard limited to CA50 ≈ 373

 
 CA. 

● Boosted, Pin = 2.4 bar (typical): 
– E0 & CF-E0 show large incr. in ITHR  
⇒ good stability to CA50 ≈ 379

 
 CA. 

– E100 no change in ITHR, poor stability. 
– E10 similar ITHR to E0. 
– E20 between E0 and E100. 

● Amount of ITHR also correlates with  
φ-sensitivity & ability to apply PFS. 

Stability – Effect of Fuel Type and Pin on ITHR 

 E0, E10 & CF-E0: expect good stability for 
high-load boosted oper., premixed & PFS. 

 E100: poor stability & E20: in between    
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● Key to high-loads is ability to retard 
CA50 with good stability to ctrl. PRRmax 

● ITHR keeps dT/dθ rising despite 
expansion, giving good stability. 

● Pin = 1 bar: all fuels show low ITHR. 
– Retard limited to CA50 ≈ 373

 
 CA. 

● Boosted, Pin = 2.4 bar (typical): 
– E0 & CF-E0 show large incr. in ITHR  
⇒ good stability to CA50 ≈ 379

 
 CA. 

– E100 no change in ITHR, poor stability. 
– E10 similar ITHR to E0. 
– E20 between E0 and E100. 

● Amount of ITHR also correlates with  
φ-sensitivity & ability to apply PFS. 

Stability – Effect of Fuel Type and Pin on ITHR 

 E0, E10 & CF-E0: expect good stability for 
high-load boosted oper., premixed & PFS. 

 E100: poor stability & E20: in between    
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C, Ringing = 5 MW/m2 

Ethanol, Tin = 95 - 87
 

C 

Max Load 
Ethanol 

 For premixed fueling, Tin & CA50 are 
the main factors affecting T-E.  
⇒ CF-E0 gives a little better T-E. 

● T-E falls with load due to CA50 retard. 
● Indicated Thermal Eff. (T-E) and max. 

load very similar for E0, E10 & E20. 
– Changes in EGR & C-E tend to cancel. 
– No low loads for E20 – need higher Tin. 
– E20 max. load & CA50 retard similar 

despite less ITHR.  

● Ethanol requires Tin = 95 - 87
 

C. 
– Lower T-E ⇒ more heat loss & lower γ.  
– CA50 v. load similar, but max. load  is 

less ⇒ low ITHR limits CA50 retard. 
– Much less stable for loads acquired. 

● CF-E0 similar load range, higher T-E. 
– Higher sensitivity to TS, slows HR. 
– Allows CA50 to be more advanced. 



High-Load Limit – Premixed (PM) 
● Gasoline reactivity increases w/ boost  

⇒ use EGR to control CA50. 

● E0:  O2 limited for Pin ≥ 2.6 bar  
⇒ Load limit = 16.3 bar IMEPg. 

● Blending with ethanol significantly 
reduces EGR requirement with boost. 
– More air in charge ⇒ higher fueling. 

● E10: ⇒ O2 limited for Pin ≥ 2.8 bar  
⇒ Load limit = 18.1 bar IMEPg. 

● E20: ⇒ O2 limited for Pin ≥ 3.6 bar  
⇒ Load limit = 20.0 bar IMEPg. 

● CF-E0: ⇒ O2 limited for Pin ≥ 2.7 bar  
⇒ Load limit = 17.7 bar IMEPg. 

● Higher T-E for CF-E0 mainly due to  
less required CA50 retard for Ring ≤ 5. 

● Ringing ≤ 5, ultra-low NOX & soot. 
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Fueling Strategies – PM, Std. PFS & Early-DI 
Results for E10 & CF-E0 at Pin = 2.4 bar 

● With boost, fuel autoignition becomes  
φ-sensitive, so partial fuel strat. (PFS)  
can reduce HRR.  
– Allows higher loads & more adv. CA50. 
– Std. PFS ⇒ Premix ~90% + late-DI 
– Early-DI ⇒ 100% at 60° CA, & lower Tin. 

> PLIF images show not fully mixed. 

● E10: Std. PFS & Early-DI both increase  
T-E significantly for the same load. 
– Adv. CA50, & early-DI ⇒ lower Tin & Tpeak. 
– Also increase max. load compared to PM 
– E0: similar improvements (not shown). 

● CF-E0:  Like E10, Early-DI increases T-E 
and max. load compared to PM. 
– Tin = 30°C, peak T-E of E-DI < PM & E10. 
– Tin = 40°C, peak T-E of E-DI > PM & E10 

> Maximum T-E = 48.4%, best yet.  

Early DI 
Tin=30°
 

C 

PreMixed 

Increase Fueling 

 Both fuels, Early-DI PFS significantly improves T-E & increases max. load. 

Ringing = 5, Tin = 60°
 

C for PM  
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Fueling Strategies – PM & Early-DI 
Results for E10, E20, & CF-E0 at Pin = 2.8 bar 

 E20: std.-PFS does not work well, & Early-DI has limited load range ⇒ low ITHR 
 Early-DI: increases T-E all fuels, and for CF-E0, gives a large incr. in max. load. 
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E20: requires higher Pin for signif. φ-sensitivity. 
● PM:  load sweep similar to Pin = 2.4 bar. 
● Std. PFS: very unstable ⇒ took only one  

point ⇒ no improvement.  
– Likely due to low φ-sens. with low ITHR. 

● Early-DI: same max. load with higher T-E  
⇒ due to advanced CA50. 
– Load range limited and lower peak T-E. 

E10:  PM - very similar to E20. 
● Early-DI: Higher T-E than E20 ⇒ adv. CA50. 

CF-E0:  PM - slightly higher T-E ⇒ adv. CA50. 
● Early-DI: 

– Tin = 30°C: T-E > PM, but < E10 early-DI 
– Tin = 40°C: higher T-E at low loads  

> Max. T-E = 48.4%, matches Pin = 2.4 bar.  
– Good stability to much higher load than PM. 



● Increase the CR from 14:1 to 16:1. 
– Investigate potential for increasing T-E. 
– Evaluate effects on load range  
⇒ maximum load as a function of Pin. 

– Premixed and Early-DI PFS fueling. 

● Naturally Aspirated: CR 16 has higher T-E. 
– Larger expansion ratio. 
– Lower Tin, Tpeak ⇒ less heat loss, higher γ. 
– C-E lower ⇒ incr. HC (from crevice?) 
– Higher max. load due to lower Tin. 

● Boost up to 1.8 bar: T-E higher for CR 16. 
– Tin reduced to 60°C, but still zero EGR.  

● Pin = 1.8 – 2.4 bar:  efficiency advantage 
for CR 16 diminishes, despite better C-E.     
– Tin = 60°C for both CRs, but more EGR 

required for CR =16. 

Increase CR from 14:1 to 16:1 – PreMixed 

 PreMixed: CR = 16 gives higher T-E, but advantage less w/ boost > 1.8 bar. 
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Increase CR from 14:1 to 16:1 – Early-DI 

 Early-DI:  CR = 16 consistently gives higher T-E, max. = 49.2 vs. 48.4%. 

● Early-DI gives higher T-E than PM. 
● Pin = 2.4 bar, Tin = 40°C: CR = 16 gives ⇒ 

– Higher T-Es at low loads, IMEPg < 12 bar 
– About the same T-E for IMEPg > 12 bar. 
– Load range is similar. 
– Max. T-E = 49.1% vs. 48.4 for CR = 14. 

● Pin = 2.4 bar, Tin = 30°C:  increases T-E 
over the load range, but not incr. max. T-E. 
– More advanced CA50 for same IMEPg. 
– Lower Tin & Tpeak ⇒ less heat loss and 

higher γ. 
– Higher maximum load. 

● CR=16 gives higher T-E for all Pin tested. 
– Max. T-E = 49.2% at Pin = 2.2 & 2.6 bar, 

vs. 48.4% for CR=14. 

● Combustion efficiency is consistently a 
little higher with CR = 16. 

Max. T-E for various Pin, Ringing = 5 
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High-Load Limit – Early DI, CR = 14 & 16 
● Early-DI fueling ⇒ higher loads than PreMixed for same boost. 

– Gives benefits of PFS for reducing HRR & PRRmax, due to incomplete mixing. 
– Allows lower Tin = 30 or 40°C ⇒ less EGR required (> O2), more charge mass. 

● CF-E0, Early-DI ⇒ IMEPg = 19.4 bar @ Pin = 3.0 bar v. 3.45 bar for E20.  

● CR = 16, PreMixed ⇒ Little effect on max. load up to Pin = 2.4 bar. 

● CR = 16, Early-DI ⇒ Gives highest load at Pin = 2.4 bar, IMEPg = 16.0 bar. 

Ringing ≤ 5 

Tin = 60°C for Premixed 



Objectives: 1) Investigate effect of Tpiston-top 
on bulk-gas TS & cold-pocket location.  
2) Potential for thermal BL measurements. 

● T-map, PLIF imaging in optical engine. 
● Installed aluminum top on ext’d. piston. 

– Instrumented with thermocouples. 
– Variable air-jet cooling from bottom side. 

● Imaging BL at piston top is challenging 
because of piston motion and vignetting. 

● Developed vignetting correction 
technique and selected optimal position. 

Imaging of Thermal Strat. & Boundary Layer 
Schematic showing why vignetting 

occurs for side-view imaging near TDC. 
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Piston 

11 mm 

TDC (360° CA), Camera height = 205 mm 
Strong vignetting near piston surface 

TDC (360° CA), Camera height = 215 mm 
Camera position optimized.  Only weak 

vignetting near piston & firedeck surfaces 
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Spark-Ignition System 
● GM has provided ignition systems. 
● Obtained spark plugs, 12 mm threads & 14 mm flats, with dual iridium tips. 
High-Pressure GDI Injectors 
● Discussed injector requirements and performance characteristics with GM. 
● GM will supply new-generation Bosch 300 bar GDI injectors and a driver. 
● New higher-pressure fuel-supply system designed and parts acquired. 

Facility Upgrade for Spark-Assist and  
High-Pressure GDI Injectors 

2.45

4.39.5 

3

33.68

Round 0.5

5

Spark-Plug Head 
● Worked with Cummins on design ⇒ 

Cummins provided heads & machining. 
● Machining and installation of spark-plug 

passage tube are complete. 
– Keep centrally mounted GDI injector. 

● Pressure transducer relocated. 
● New port design gives low swirl without 

anti-swirl plate used in current head. 

PT mounted horizontally through firedeck 
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Combustion Noise vs. Ringing Intensity 
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CA50 Sweeps at Constant Fueling 

Pin = 2.4 bar, PM, std. PFS, & Early -DI ● Adapted Matlab® code for combustion noise 
level (CNL) from UW (SAE 2013-01-1659) 
to read & analyze our cyl.-pressure data. 

● Performed analysis for several datasets. 

● 1st example shows fueling sweeps for PM, 
std-PFS, & Early-DI fueling, with E10. 
– Hold Ringing Intensity ≈ 5 MW/m2 ⇒  

most adv. CA50 w/o knock, highest T-E. 
– CNL and Ringing have very similar trends. 

● Ringing of 5 ≈ CNL of 90 – 91 dB. 

● CA50 sweeps show that CNL is reduced  
by retarding CA50 to reduce Ringing.  
– Only a small reduction in T-E. 

● Note that CNL is approx. 3 dB higher for  
Pin = 2.0 & 2.4 bar vs. Pin = 1.0 bar. 

● Since Ringing > 5 is good indicator of  
knock, this discrepancy indicates that CNL  
is likely not a precise indicator of knock.  



Collaborations 
● Project is conducted in close cooperation with U.S. Industry through the 

Advanced Engine Combustion (AEC) / HCCI Working Group, under a 
memorandum of understanding (MOU). 
– Ten OEMs, Five energy companies, Four national labs, & Several universities. 

● LLNL: 1) Support the development of a chemical-kinetic mechanism for 
gasoline/ethanol blends, Pitz et al., and 2) CFD modeling, Flowers, et al.  

● General Motors:  Frequent internet meetings ⇒ in-depth discussions. 
– Provide data to support GM efforts on boosted HCCI & in modeling TS (with UM). 

● Cummins, Inc.:  Design and fabrication of spark-plug cylinder heads. 

● U. of Michigan:  Collaborate on modeling and analysis of TS (with GM). 

● U. of California - Berkeley:  Support CFD modeling of PFS-HCCI. 

● Chevron:  Funds-In project on advanced petroleum-based fuels for HCCI. 

● SNL-LDRD:  Funds-In project on biofuels produced by fungi ⇒ collab. with 
researchers in basic chemistry (C. Taatjes et al.) & Biofuels. 



Future Work 
Increase Efficiency and Loads of Boosted HCCI/SCCI 
● Complete evaluation of performance with CR = 16 over a wider range of 

operating conditions.  ⇒ Also, evaluate potential of a Miller-cycle cam. 

● Conduct a comprehensive study of Early-DI-PFS to determine the extent to 
which its substantial benefits for T-E and load range can be applied.  
– Determine effects of operating cond. & fuel-injection parameters (Pinj & DI timing). 
– Expand study to include multiple injections for more-effective fuel stratification. 

● Image fuel distributions in optical engine to guide fuel-injection strategies. 

● Install spark-plug cylinder heads:  1) determine effects of new intake-port 
geometry, and 2) initiate studies of spark-assisted CI combustion.  

Thermal Stratification 
● Complete investigation of the effects of piston-top temperature on amount of 

TS and cold-pocket distribution. ⇒ Also, investigate potential over-mixing. 
● Determine the potential for obtaining thermal BL profiles at the piston-top. 
Support of HCCI/SCCI Modeling 
● Continue to provide data, analysis, and discussion to support modeling at 

LLNL, U. of Michigan, and U. of California-Berkeley. 



Summary 
● Conducted an extensive study of the effects of “gasoline-like” fuel 

composition, including:  1) blending ethanol up to 20%, 2) increasing the 
AKI of the base fuel from 87 to 93 without ethanol, and 3) pure Ethanol. 

● Early-DI-PFS fueling provides substantial benefits when ethanol content   
≤ 10%, and for the high-AKI base fuel (CF-E0). 
– Gives higher T-E and higher loads for a given Pin. ⇒ Allowed IMEPg = 19.4 bar 

at Pin = 3.0 bar vs. IMEPg = 16.6 bar for PreMixed. ⇒ Ease turbo design. 

● Explored the potential benefits of increasing the CR from 14:1 to 16:1. 
– Achieved a peak T-E of 49.2% for CR 16, compared to 48.4% for CR 14. 
– No significant penalty in maximum load for Pin up to 2.4 bar (using CF-E0). 

● Thermal-stratification and boundary-layer (BL) measurements:  
– Installed aluminum piston-top with variable air-jet cooling. 
– Worked out vignetting correction for BL measurements. 

● Facility upgrade:  1) worked with Cummins to design and build a “spark-
plug” cyl. head, and 2) worked with GM to obtain high-press. GDI injectors.   

● Combustion Noise Level (CNL) and Ringing Intensity are generally well 
correlated for HCCI/SCCI combustion, but the results indicate that CNL 
may not be a good indicator of knock over the operating range. 



Technical Backup Slides 



Detailed Summary – 1 
● Conducted an extensive study of the effects of “gasoline-like” fuel 

composition, including:  1) blending ethanol up to 20%, 2) increasing the 
AKI of the base fuel from 87 to 93 without ethanol, and 3) pure Ethanol. 

● For Premixed fueling: 
– Ethanol content has almost no effect on autoignition for naturally aspirated 

operation, but a large effect for boosted operation. 
– For boosted operation with Pin ≥ 2.4 bar, blending with ethanol up to 20% has 

little effect on the T-E, but CF-E0 gives a slightly higher T-E. 
– Blending ethanol up to 20% is beneficial for extending the high-load limit.   
⇒ Increased maximum load from IMEPg = 16.3 bar at Pin = 3.25 bar for E0 to  
     IMEPg = 20.0 bar at Pin = 3.6 bar for E20. 

– For the high-AKI E0 fuel (CF-E0), performance was generally similar to E10. 

● Early-DI-PFS fueling provides substantial benefits when ethanol content   
≤ 10%, and for the high-AKI base fuel (CF-E0). 
– Gives higher T-E and higher loads for a given Pin compared to premixed. 
⇒ Allowed IMEPg = 19.4 bar at Pin = 3.0 bar vs. IMEPg = 16.6 bar for premixed. 
⇒ Beneficial for turbocharger design. 

– Early-DI PFS did not work well with E20 due to instabilities. 



Detailed Summary – 2 

● Explored the potential benefits of increasing the CR from 14:1 to 16:1. 
– Typically increased T-E by 0.5 – 0.8 thermal-efficiency percentage units. 
– Achieved a peak T-E of 49.2% for CR 16, compared to 48.4% for CR 14. 
– No significant penalty in maximum load for Pin up to 2.4 bar (using CF-E0). 

● Thermal-stratification and boundary-layer (BL) measurements:  
– Installed aluminum piston-top with variable air-jet cooling. 
– Worked out vignetting correction for BL measurements. 

● Facility upgrade:  1) worked with Cummins to design and build a “spark-
plug” cyl. head, and 2) worked with GM to obtain high-press. GDI injectors.   

● Combustion Noise Level (CNL) and Ringing Intensity are generally well 
correlated for HCCI/SCCI combustion, but the results indicate that CNL 
may not be a good indicator of knock over the operating range. 
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