Graphene-Based Solid Lubricant for Automotive Applications Project ID# mat178

PI: Anirudha V. Sumant

Team Members: Aditya Ayyagari

Argonne National Laboratory

2020 DOE Vehicle Technology Office Annual Merit Review Meeting June 3, 2020, Arlington, VA

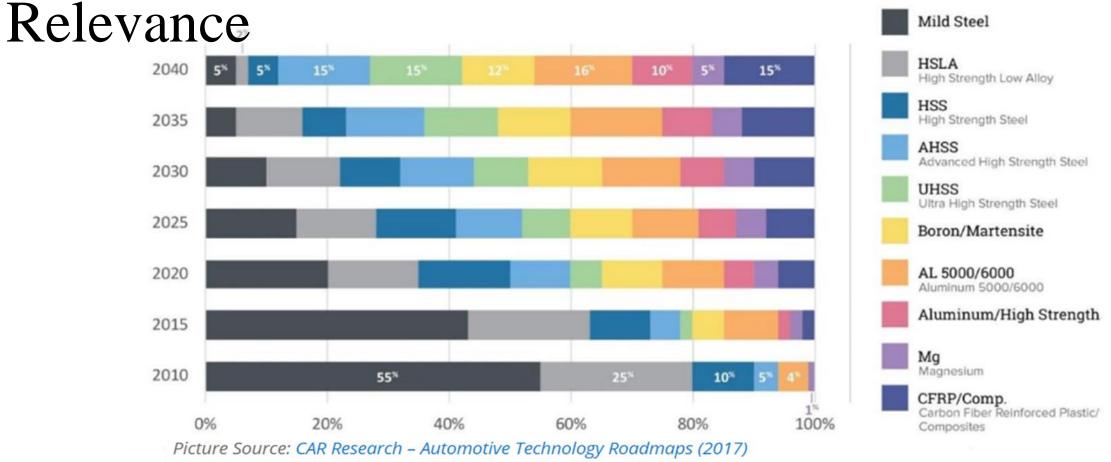
Overview

Timeline

- Project start date: August 2018
- Project end date: August 2020
- Percent complete: 63%

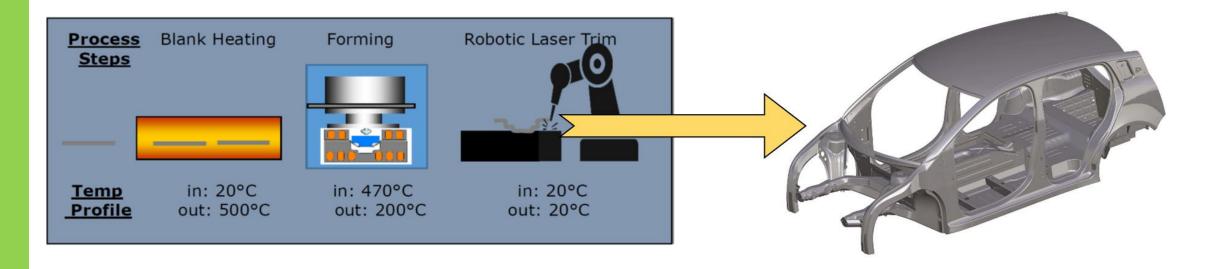
Budget

- Total project funding
 - DOE share: \$640,000
 - Contractor share:\$10,000
- Funding for FY 2018: \$315,340
- Funding for FY 2019: \$267,681
- Funding for FY 2020: \$66,979


Projected costs incurred in 2020 will predominately be incurred as by Magna, as part of the Industry 50% in-kind cost contribution commitment.

Barriers and Technical Targets

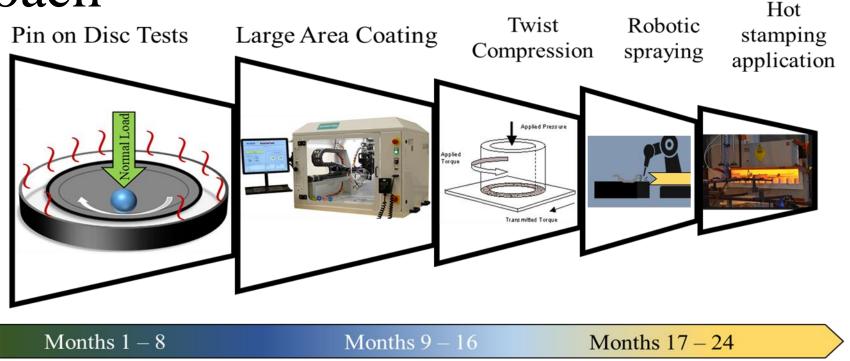
- Performance at elevated temperatures
- Cost of high temperature lubricants
- Compatibility with downstream processes


Partners

- Magna International Inc.
 Tim Skszek
- University of Waterloo
 Prof. Mike Worswick

- Friction between the sheet and die steel results in excessive die wear and inhibits product design freedom due to limited formability
- 2020 Model Year vehicles include 6 to 30 hot stamped components per vehicle
- Traditional solid lubricants are not used due to the cost of material and removal
- Application requirements exceed the functional use temperature of wax- and oil-based lubricants

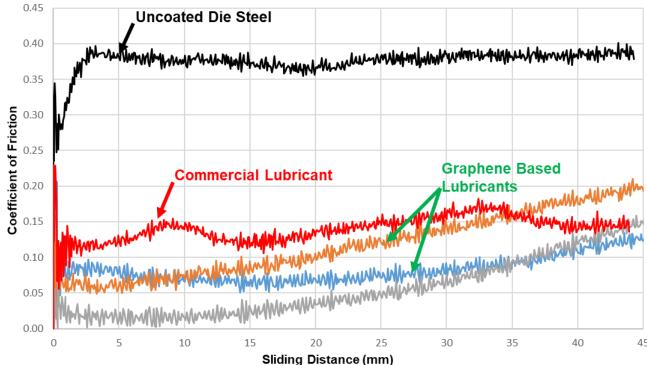
Relevance



- Motivation: Expected market size \$180 billion by 2022.
- Objective: Replacement of existing lubricants based on oil with graphene will significantly reduce emission of hazardous waste, reduction is cost and savings in energy
- Impact: A marginal reduction of friction in stamping process will translate into savings of \$100M in manufacturing cost

Milestones

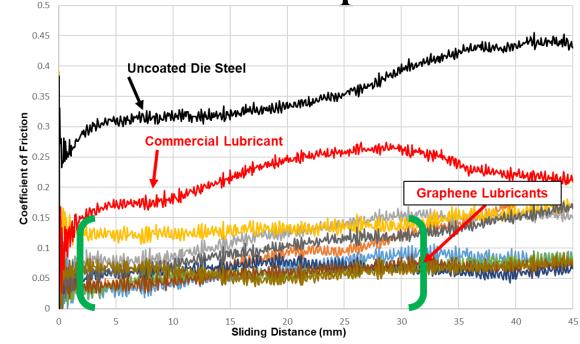
Task	Milestone	Deliverables	Timeframe
Development and characterization of an optimized graphene-based die coating for Al sheet metal forming	Determine best possible graphene based solution that can withstand elevated temperatures and provide low friction and wear	Optimized graphene based lubricant to be used for the next phase Water-based High Temperature Lubricants (WHTL)	Months 1 – 8
Development of graphene coatings for high temperature (790 °C) Steel sheet metal stamping, establish longevity and contamination In Progress	Design, develop and validate lubricants that sustain 790 °C for steel sheet metal forming multiple turns in TCT tests	Optimized graphene based lubricant for steel SL1 and SL2	Months 9 – 16
Process validation and performance testing using production scale forming press and die to manufacture side door intrusion beam	Scale-up of graphene spray coating from prototype testing to real-world testing	Implementation of the graphene as a solid lubricant for metal forming process at industrial scale	Months 17 – 24


Approach

- Establish high temperature base-line friction metrics of steel-vs-steel
- Use Pin-on-disc measurements to identify lubricants producing low friction
- Go/No-Go: Friction values below that of commercially used lubricants
- Large area coating at high temperature covering 1'x1' sheet metal
- Assess the lubricant efficiency under twist compression loading
- Go/No-Go: Longevity of lubricant under twist compression, full removal upon washing

Technical Accomplishments – Warm Form Al

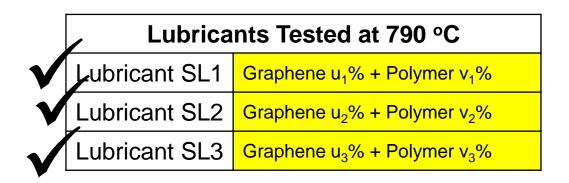
Lubricants Tested at 230 °C		
Lubricant A	Graphene x ₁ % + Polymer y ₁ %	
Lubricant B	Graphene x ₂ % + Polymer y ₂ %	
Lubricant C	Graphene x ₃ % + Polymer y ₃ %	
Lubricant D	Graphene x ₄ % + Polymer y ₄ %	
Lubricant E	Graphene x ₅ % + Polymer y ₅ %	

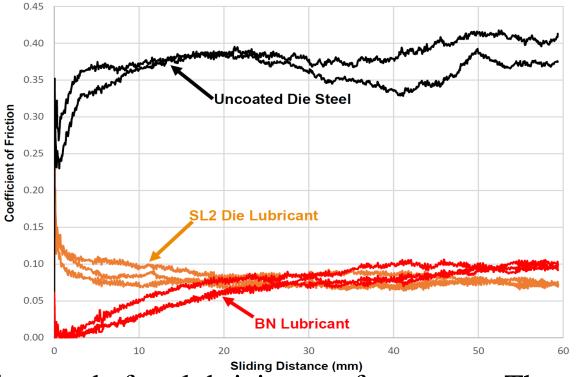


Technical Accomplishments – 1

- Five compositions were developed and tested for lubricity performance. The aluminum sheet was heated to 230°C and evaluated under TCT sliding conditions against a lubricated die steel surface.
- Three compositions were observed to out perform the commercial lubricant
- The friction was significantly lower, with equivalent longevity

Technical Accomplishments – Hot Stamp Al

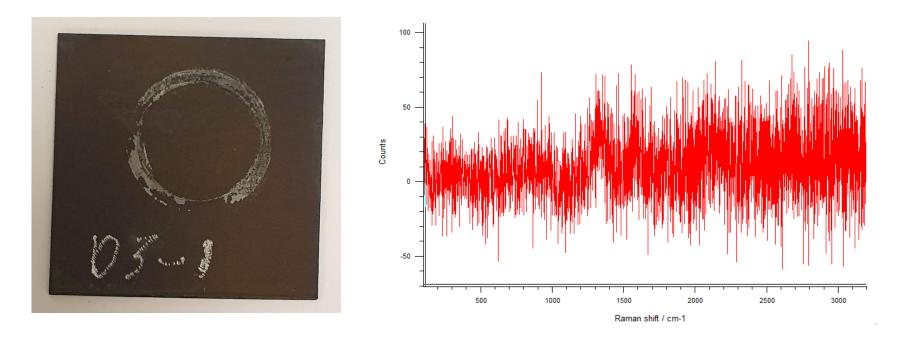

Lubricants Tested at 480 °C		
Lubricant A	Graphene a ₁ % + Polymer b ₁ %	
Lubricant B	Graphene a ₂ % + Polymer b ₂ %	
Lubricant C	Graphene a ₃ % + Polymer b ₃ %	
Lubricant D	Graphene a ₄ % + Polymer b ₄ %	
Lubricant E	Graphene a ₅ % + Polymer b ₅ %	



$Technical\ Accomplishments-2$

- Five compositions were developed and tested for lubricity performance. The aluminum sheet was heated to 480°C and evaluated under TCT sliding conditions against a lubricated die steel surface..
- All five compositions were observed to out-perform the commercial lubricant
- The friction was about 50% lower than the commercial lubricant, as well as the durability better than the commercial lubricant

Technical Accomplishments – Hot Stamp Steel



$Technical\ Accomplishments-3$

- Three compositions were developed and tested for lubricity performance. The aluminized boron steel was heated to 790°C and evaluated under TCT sliding conditions against a lubricated die steel surface.
- All three compositions were observed to perform equally or slightly better than a commercially available BN lubricant, which is prohibitively expensive and requires secondary operations to remove prior to application of structural adhesive, sealant or E-coat/paint.

Technical accomplishments

Technical accomplishments – 4

- Major milestone achieved is the successful performance of graphene-based lubricant for high temperature hot stamping (970°C) application on steel substrate
- Following twist compression testing, the surface was cleaned using high pressure water and evaluated using Raman Spectroscopy(top right spectra) to assess material transfer
- All samples showed no sign of material contamination on the boron steel sheet

Collaboration with other institutions

- Team: Tim Skszek, Frank Gabbianelli and Tim Raeburn
- Relationship: Industrial partner

- Team: Mike Worswick and Kaab Omer
- Relationship: University partner

Remaining challenges

1. Scale-up of the graphene-based coating process and its demonstration for metal forming at industry scale: Implementation of the graphene as a solid lubricant for metal forming process at industrial scale

Summary

1. Successful Lubricant Formulation:

- Graphene + Polymer lowered friction on steel substrates at high temperatures as compared to commercial lubricants
- The contamination from the lubricants on to the steel substrate was negligible

2. High Temperature Stability:

• All solid lubricants were observed to have a high degree of material stability at high temperatures (970°C) and shear stresses

3. Production scale forming:

• Validation of lubrication die-worthiness underway by Magna, in collaboration with University of Waterloo, Promatek Research Centre and a Cosma US-based stamping facility.