Glass Dielectrics for DC Bus Capacitors

P.I. Michael Lanagan

Presenter Michael Lanagan

Penn State University May 15, 2012

APE010

Objectives

- The overall objective is to build glass capacitors with high temperature reliability. Glass capacitors are capable of operating at 140°C and 650V (Power Electronics and Electric Motors - PEEM Goal*).
- The research directly addresses the DOE PEEM requirements for HEV/EV/PHEV power modules that do not need internal cooling.
- Leverage the substantial investment has occurred in flat panel display glass for the development for high-temperature capacitors.
 Addresses the DOE PEEM requirements for low cost.
- Specific March 2011 May 2012 objective is to demonstrate that glass can be wound into a capacitor configuration, similar to polymer film capacitors.

Milestone Slide

Month/Year	Milestone or Go/No-Go Decision	
May-11	Milestone: High temperature dielectric breakdown system. Design and construct a system with 30 kV max voltage and at temperature range of 25°C to 150°C	
Dec-11	Milestone: Construction of a coiled capacitor prototype. Co-wind the glass sheet conducting layer. Test capacitance, loss and high temperature performance of prototype.	
Dec-12	Milestone: Test coiled glass capacitor at high voltage (>1kV) and 140°C.	


Approach and Strategy

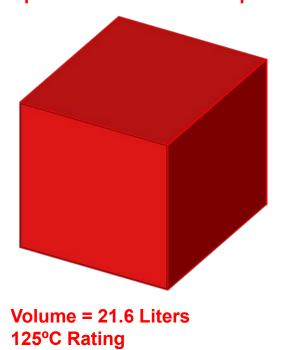
- Approach: Glass is a promising high temperature material that can be incorporated into a capacitor structure.
- FY12 approach is to demonstrate a coiled capacitor from flexible flat panel display glass.

Flexibility demonstration of flat panel display glass

Commercially available thicknesses of 50 µm

Experimental glass available in thicknesses of 5 µm

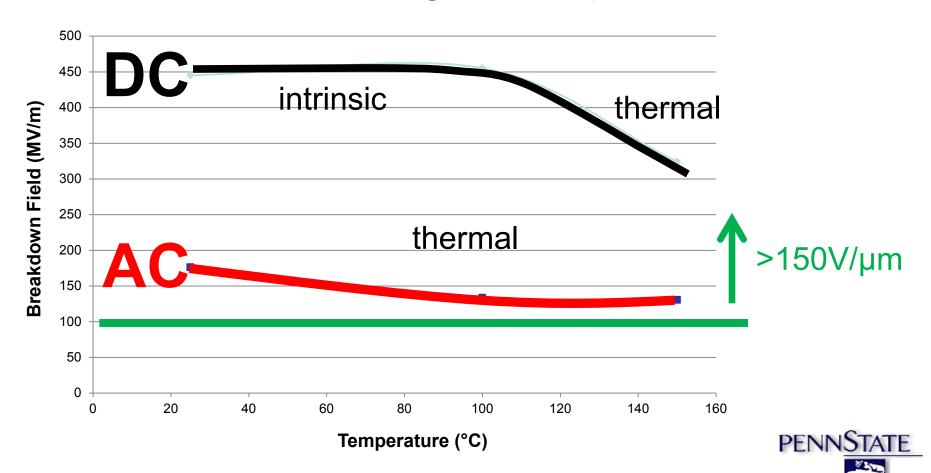



Approach and Strategy

- Use low-cost flat panel display glass in a DC Bus capacitor
- Reduce the total volume of a DC Bus capacitor by incorporating glass materials in the capacitor construction
- Glass has a substantially higher melting point (1400°C) than the melting point of plastics (150°C) that are presently used in capacitors

Volume of 1000 µF 600V capacitors in a Hybrid Electric Power Converter

Present State-of-the-Art High Temperature Commercial Capacitor



Technical Progress: Benchmarking State-of-the-Art Power Capacitors

- Specifications for State-of-the-Art SBE capacitors*
 - Volume of the 600 V 1000 μF component is 1.8 L
 - Ripple current at 105°C is 20% of the 85°C value. Excellent performance for a capacitor made from polypropylene.
- Glass capacitor projected performance
 - Dielectric volume for a 600 V 1000 μF capacitor with 10 μm thick glass film is 1.9 L.
 - No ripple current decrease between 85°C and 140°C. Projection based on dielectric breakdown data and dielectric loss data at high temperature.
- Glass has a substantially higher melting point (1400°C) than the melting point of polymers (150°C) that are presently used in film capacitors
 - * SBE Power Ring Part # 700D10896-348

Dielectric Strength Characterization of Flat Panel Glass Under Conditions Relevant to Electric Vehicles

Breakdown Strength vs Temperature

Glass Coil Capacitor Fabrication

Draw Glass Ribbon

- Thin glass ribbon is manufactured by a down-draw process and redrawn to reduce the ribbon thickness.
- The key challenge is to produce glass ribbon from 50μm to 10 μm.

Deposit Electrode

- Electrodes are placed on top and bottom surfaces of glass ribbon and candidate electrodes include copper foil, aluminum and silver film.
- Equivalent Series Resistance (ESR) and self-healing mechanisms are controlled by the electrode properties.

Wind glass

- Glass ribbon up to a 100 meters in length has been produced by glass manufacturers, which will need to be coiled into a capacitor configuration.
- Coil diameters of 1 cm have been demonstrated for 50µm thick ribbon. Substantially smaller diameters (<1 cm) are possible with thinner glass.

Package

- Packaging includes end termination, lead attachment and encapsulation.
- Thermal, mechanical and electrical performance must be considered in package design.

Test

- The capacitance and loss is characterized as a function of frequency, temperature and AC voltage strength.
- Reliability tests to predict capacitor performance under operating conditions.

Coiled Glass Capacitor

- NEG-OA 10 glass ribbon
- 50 μm thick
- 2.9 m long
- 30 mm wide

Coiled glass capacitor fabricated at Penn State by spraying Ag ink on the glass ribbon and then winding the ribbon around a mullite mandrel. Right side: free standing glass ribbon section Left side: fully packaged coiled glass capacitor

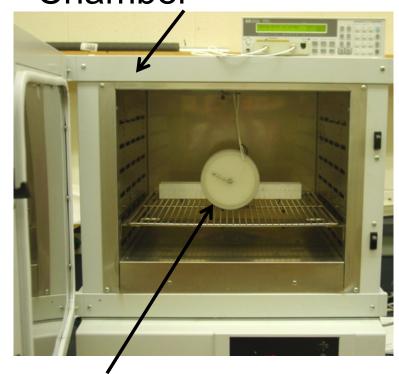
Fabricated in FY12

Coil Characterization at 23°C

Frequency	1 kHz	10 kHz	1 MHz
Capacitance	67.1 nF	67.0 nF	67.1 nF
Loss	0.001	0.002	0.004

Calculated value of 70 nF

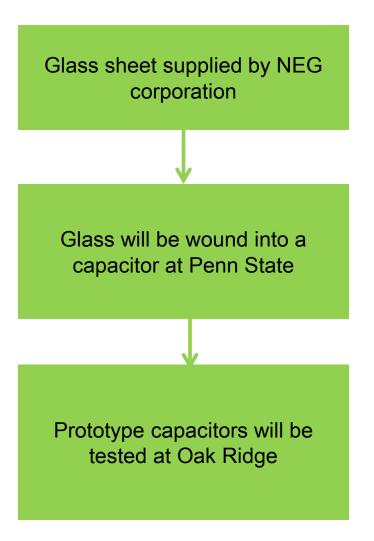
Capacitance
$$=\frac{\varepsilon_o \varepsilon_r A}{t} = \frac{\varepsilon_o 5.3*2.9mx2cm}{50\mu m} = 70nF$$


- Next step is to scale to longer lengths
- Projected ESR for 10 μ F capacitor = 3 m Ω

High Temperature Properties

Temperature	Frequency	Capacitance, nF	Loss
50°C	1 KHz	67.2	0.001
	10 KHz	67.1	0.002
100°C	1 KHz	67.6	0.004
	10 KHz	67.4	0.003
150°C	1 KHz	68.2	0.005
	10 KHz	67.9	0.003

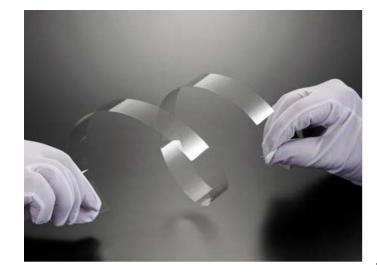
Environmental Chamber


Coiled Capacitor

Data obtained in FY12

Collaborators

- Argonne National Laboratory
 - Prime contractor
 - Penn State characterizes
 Argonne capacitors
- Sandia National Laboratory
 - Collaborate on the defining capacitor specifications for PEEM
- Oak Ridge National Lab
 - Independent validation of capacitor measurements
- Industry
 - SPS (capacitor manufacturer)
 - NEG (glass manufacturer)



Proposed Future Work

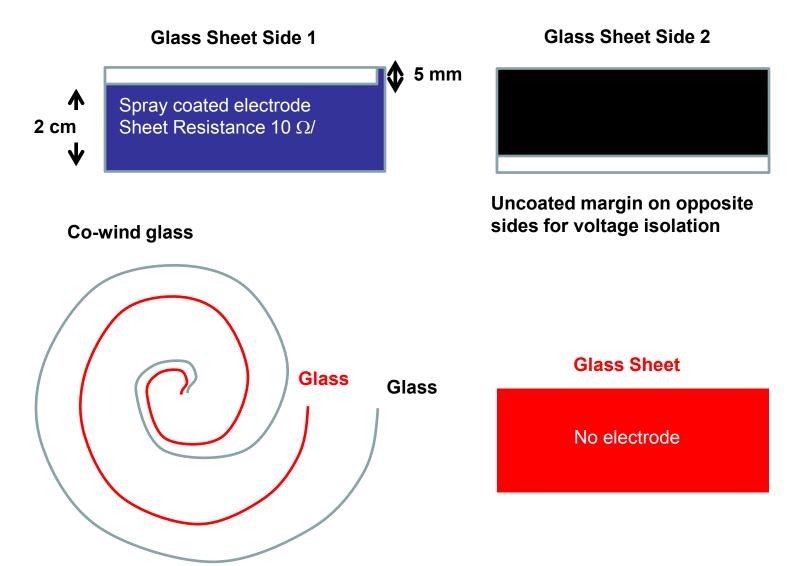
- Highly Accelerated Life Test (HALT) of 10 µm thick glass.
 - Temperatures up to 450 C
 - Voltages up to 5 kV
 - Life predictions for DC bus capacitors in electric vehicles
 - Complementary studies of ppm level sodium migration
- Characterization of coiled glass capacitors at high voltage (>1000 V)and high temperature (140°C)

Bend radius is inversely proportional to the glass sheet thickness.

Photo from collaborator T. Murata, NEG

Summary Slide

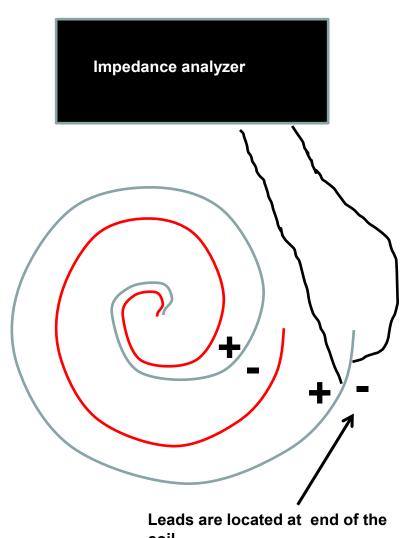
- There has been a substantial world-wide expansion in flat panel display glass in the past decade. This plentiful material has excellent high temperature dielectric properties.
- In FY12, coiled glass capacitors were fabricated and tested
- Future work for the remainder of FY12 will focus on life testing and long-term aging of flat panel display glass. This is important for capacitor performance over the HEV lifetime.
- In FY13, coil capacitors will be tested at high temperature and under high AC voltage.


Technical Back-Up Slides

(Note: please include this "separator" slide if you are including back-up technical slides (maximum of five). These back-up technical slides will be available for your presentation and will be included in the DVD and Web PDF files released to the public.)

Table 1: DOE Vehicle Technologies Program DC Bus Capacitor Targets

Typical Capacitor Bank Requirements				
Capacitance, µF	1000 +10% / -0%			
Operating voltage, VDC	450			
Peak transient voltage, VDC for 50 ms	650			
Leakage current at operating voltage, mA	≤ 1			
Dissipation factor at 10 kHz ¹ , %	< 2			
Equivalent series inductance (ESL), nH	≤ 5			
Ripple current, amps RMS continuous	90			
Temperature range of ambient air, °C	-40 to +140			
Volume requirement, I	≤ 0.6			
Cost	≤ \$30			
Failure mode	Benign			
Life @ operating conditions, hr	>13,000			


Coil Fabrication

Steve Perini and Amanda Baker

Coil Measurement Procedure

- Glass spacer layer is required to separate + and sides of glass layer.
- Connections are made at several points along the length of the glass ribbon
- **Excellent frequency** response expected in this configuration

coil