Selections from the FY 2017 Vehicle Technologies Program Batteries and Electrification to Enable Extreme Fast Charging

Funding Opportunity Announcement (DE-FOA-0001808)

Selectee	Location	Project Title/Description	Federal Share
	(city, state)	eries for Extreme Fast Charging	
	Butt		
The Regents of the University of California, University of California San Diego	San Diego, CA	Research surface-acoustic wave turbulent electrolyte mixing during charging to enable rapid charging.	\$653,641
The Pennsylvania State University	University Park, PA	Research advanced battery cell designs and strategies to operate and improve life and fast charging at higher temperatures.	\$1,000,000
Regents of the University of Michigan	Ann Arbor, MI	Research three-dimensional hierarchical graphite architectures for anodes for fast charging.	\$1,500,000
SLAC National Accelerator Laboratory	Menlo Park, CA	Research of an advanced electrolyte and optimized cell design to enable extreme fast charging.	\$1,500,000
Oak Ridge National Laboratory	Oak Ridge, TN	Novel electrolyte research that increases the transport rate of lithium-ion from cathode to anode.	\$900,000
Microvast, Inc.	Orlando, FL	Develop new electrolyte additives, optimized active materials, and electrode formulations.	\$1,500,000
The Research Foundation for the SUNY Stony Brook University	Stony Brook, NY	Research to control lithium deposition over-potential on metal-coated graphite electrodes.	\$800,000
University of Tennessee	Knoxville, TN	Research on high power, doped titanium-niobium oxide anodes.	\$720,000
Coulometrics, LLC	Chattanooga, TN	Research advanced battery cell designs with lower resistance to enable extreme fast charging.	\$1,000,000
D	evelopment of Extrem	e Fast Charging (XFC) Systems for Electric Vehicles	
Wireless Advanced Vehicle Electrification, Inc.	Salt Lake City, UT	Develop high-power wireless extreme fast charging technology that reduces charging time for electric drayage trucks at the Port of Los Angeles.	\$4,292,137
Delta Products Corporation	Fremont, CA	Design and test a high-efficiency, medium voltage solid- state transformer based 400-kW extreme fast charger for electric vehicles.	\$3,499,962
Oak Ridge National Laboratory (dba UT- Battelle, LLC)	Oak Ridge, TN	Develop a high power inductive extreme fast charging system that is fully automated, modular, and scaleable for electric vehicles.	\$2,207,902