

Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines

Charles J. Mueller

Combustion Research Facility
Sandia National Laboratories

2012 DOE Vehicle Technologies Annual Merit Review Crystal City Marriott, Washington, DC May 15, 2012

Project ID#: FT004

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Timeline

- Project provides fundamental research to support DOE/ industry fuelstechnologies projects
- Project directions and continuation are evaluated annually

Budget

Project funded by DOE/VT: FY11 – \$760K FY12 – \$800K

Overview

Barriers (from DOE/VT MYPP 2011-2015)

- Inadequate data and predictive tools for understanding fuel-property effects on
 - Combustion
 - Engine efficiency optimization
 - Emissions

Partners

- Project lead: Sandia C.J. Mueller (PI);
 C.J. Polonowski and C.E. Dumitrescu (postdocs);
 K.R. Hencken (part-time technologist)
- 15 industry, 6 univ., and 6 nat'l lab partners in Advanced Engine Combustion MOU
- Coordinating Research Council (CRC)
- Caterpillar Inc.

Relevance – Objectives

Develop the science base to enable highefficiency, clean-combustion (HECC) engines using fuels that improve US energy security

- Specific objectives of work since FY11 Annual Merit Review
 - Advance the state of the art of diesel surrogate fuels
 - ➤ As time-invariant reference fuels, to better understand fuel-component effects, and to enable computational engine optimization for evolving fuels
 - Quantify boundaries of Leaner Lifted-Flame Combustion (LLFC)
 - ➤ To achieve in-cylinder combustion that does not form soot
 - Develop a robust, engine-based screening technique for quantifying fuel effects on mixing-controlled combustion
 - ➤ Will be applied to characterize current and future fuels

Approach

Unique and comprehensive diagnostic capabilities

Collaboration with key stakeholders

15 years of fueleffects research

HECC engines using fuels that improve US energy security

Approach – Milestones

å August 2011

Present paper describing 10-factor parametric study of leaner liftedflame combustion (LLFC) with baseline #2 ultra-low-sulfur diesel fuel

å February 2012

Submit to *Energy & Fuels* manuscript describing methodology that was developed and applied to create "Version 1" diesel surrogate fuels

August 2012

Complete mixing-controlled combustion screening experiments on subset of Fuels for Advanced Combustion Engines (FACE) diesel fuels

December 2012

Complete LLFC experiments with one or more oxygenated renewable fuels of interest

May 2013

Complete mixing-controlled combustion screening experiments on one or more target/surrogate fuel pairs

Technical Accomplishments Summary

- 1. Co-led an international team of researchers that significantly advanced the state of the art of diesel surrogate fuels
 - Two surrogate fuels were created using an improved technique
 - Wrote and submitted manuscript summarizing initial results
- 2. Quantified soot-formation regimes for mixing-controlled combustion with baseline #2 diesel certification fuel
 - Equivalence ratio at lift-off length appears to be key parameter
 - Showed important role of soot production near end of injection
- 3. Developing a robust, engine-based screening technique for quantifying fuel effects on mixing-controlled combustion
 - Experiment design is critical
 - Utilizes a comprehensive set of conventional and optical diagnostics

TA#1: Advanced the State-of-the-Art of Diesel Surrogate Fuels

Target fuel

 A "real" fuel with selected properties that are to be matched by a surrogate fuel

Surrogate fuel

 Fuel composed of a small number of pure compounds that is formulated to match selected properties of a target fuel

Design properties

 Selected properties of the target fuel that are to be matched by the surrogate fuel

Surrogate palette

 The set of pure compounds that are blended together to create a surrogate fuel

TA#1: Advanced the State-of-the-Art of Diesel Surrogate Fuels

Used detailed target-fuel characterization data from CanmetENERGY...

 ... to create a palette that contains all major hydrocarbon classes present in the target fuels

TA#1: The New Surrogate-Formulation Technique Works Well

- Good matching of property targets was achieved
 - 5 of 11 carbon-bond types were matched within ± 3 mol%, error in others averaged 7.3 mol%
 - Surrogate DCNs (derived cetane numbers) initially ~10% too high
 - ➤ Improved to 3.9% higher after removal of ignition-accelerating impurities
 - Surrogate advanced distillation curve points averaged 2.1% lower

TA#2: Improved Understanding of Leaner Lifted-Flame Combustion (LLFC)

 LLFC: Equivalence ratio at lift-off length, φ(H), is leaner (closer to stoichiometric) than for conventional diesel combustion

Objective is to prevent in-cylinder soot production

Fuel effects can be important

1st step: establish baseline with #2 diesel fuel

Data acquired with 2-, 6-,
 and 10-hole injector tips

➤ 106 µm diameter

240 MPa injection pressure

Single injection near TDC

TA#2: LLFC Is the Goal, but Smoke Can Be Acceptable Even without LLFC

- Three sooting regimes based on φ(H) at end of injection (EOI)
 - ϕ (H) at EOI < 2 → No soot formed → <u>LLFC</u>
 - 2 < φ(H) at EOI < 5 → Most soot formed is oxidized before exhaust valves open → Acceptable smoke emissions
 - − $\phi(H)$ at EOI > 5 → Unacceptable smoke emissions

TA#3: Quantifying Fuel Effects on Mixing-

Controlled Combustion

- Problem: Currently no robust, general technique exists for determining fuel effects on mixing-controlled combustion and emissions
 - We are developing such a technique
- Involves a comprehensive set of diagnostics
 - Cylinder-pressure based: heat release, T_{bulk}, ...
 - Engine-out emissions: smoke, NOx, HC, CO, ...
 - Efficiency
 - Lift-off length $(H) \rightarrow$ equivalence ratio at H
 - Liquid-phase fuel penetration ("liquid length")
 - Injection rate, soot incandescence
- Using 2-hole tip helps avoid geometrydependent effects such as jet-jet interactions
- 1st application is to FACE diesel fuels

Collaboration and Coordination with Other Institutions

- Mixing-controlled combustion research conducted with guidance from Advanced Engine Combustion Memorandum of Understanding (MOU) working group
 - 10 engine OEMs, 5 energy companies, 6 national labs, 6 universities
 - Semi-annual meetings and presentations
- Surrogate diesel fuel research conducted under auspices of the Coordinating Research Council (CRC); working group includes participants from
 - -4 energy companies, 1 Canadian + 6 US national labs, 1 auto OEM
 - Tri-weekly teleconferences, tri-annual presentations
- Work-for-others contract
 - Funds-in agreement with Caterpillar Inc.
 - Tri-weekly teleconferences, semi-annual meetings

Proposed Future Work (through FY13)

- Apply the robust, engine-based screening technique for quantifying fuel effects on mixing-controlled combustion
 - Comprehensive diagnostics: lift-off length, liquid length, emissions, efficiency, heat release, soot incandescence
 - 1st application will be to a subset of the FACE diesel fuels
 - Other potential fuels: biodiesel esters, heavy ethers
- Engine testing of diesel surrogate/target-fuel pairs
 - Employ new screening technique discussed above to determine whether adequate matching has been achieved
 - Explore effects of new palette compounds and/or new formulation strategies
 - Testing also planned for other experimental facilities in US & Canada
- Conduct research focused on overcoming barriers to LLFC
 - Employ oxygenated biofuel(s)
 - Utilize new fuel-flexible, 3000-bar, common-rail fuel-supply system

Summary

- This research is dedicated to providing an improved understanding of fuel effects on advanced combustion strategies
 - Focused on overcoming DOE MYPP barriers by developing predictive tools and providing data on fuel effects
 - ➤ To achieve HECC with fuels that enhance energy security and environmental quality
 - Includes close collaboration and guidance from engine mfrs., energy companies, national labs, and academia
- Significant technical progress has been made
 - Created improved diesel surrogate fuels to facilitate predictive modeling and computational engine optimization for current and emerging fuels
 - Improved the understanding of LLFC, a HECC strategy that is synergistic with oxygenated domestic renewable fuels
 - Developing a robust, engine-based technique for quantifying fuel effects on mixing-controlled combustion