FY 2018 Vehicle Technologies Program-Wide

Funding Opportunity Announcement Selections

DE-FOA-0001919

Applicant	Location (city, state)	Project Title/Description	Federal Share			
		de Materials for Next-generation Li-ion Batteries	Share			
Low-Cobalt Active Cathode Materials for Next-generation Li-ion Batteries						
The United States Army T	ank Automotive Rese	earch, Development, and Engineering Center (TARDEC) is	partnering with			
DOE and is contributing \$1.8 million towards work in this area.						
Cabot Corporation	Billerica, MA	Aerosol manufacturing technology for production of	\$2,989,057			
		low-cobalt lithium-ion battery cathodes	1 , ,			
NexTech Materials, Ltd.		Cobalt-free lithium manganese nickel titanium oxygenate spinel cathodes for next generation	\$2,466,547			
dba Nexceris, LLC	Lewis Center, OH	lithium-ion batteries	\$2,400,547			
Oak Ridge National		Cobalt-free aluminum iron nickelate cathode	40.400.000			
Laboratory	Knoxville, TN	materials for next generation lithium-ion batteries.	\$2,100,000			
Penn State University	University Park,	High-performance coated low-cobalt cathode	\$1,952,017			
Park	PA	materials for lithium-ion batteries	\$1,952,017			
University of California:	La Jolla, CA	Cobalt free cathode materials and novel architectures	\$2,500,000			
San Diego	,					
University of California: Irvine	Irvine, CA	Enhancing oxygen stability in low-cobalt cathode materials	\$2,500,000			
University of Texas at		High-nickel cathode materials for high-energy, long-				
Austin	Austin, TX	life, low-cost lithium-ion batteries	\$2,400,000			
	lectric Drive Vehicle I	Extreme Fast Charging Program (in support of EISA 131)	1			
Electric Power Research		Modular, interoperable extreme fast charging system				
Institute, Inc.	Knoxville, TN	with direct connection to medium voltage grid	\$3,201,500			
Missouri University of			\$2,915,377			
Science and Technology	Rolla, MO	Enabling Extreme Fast Charging with Energy Storage				
North Carolina State	Raleigh, NC	Intelligent, grid-friendly, modular extreme fast	\$2,675,952			
University	Kaleigii, NC	charging system with solid-state DC protection	\$2,075,952			
	Electric Vehicl	e Charging Infrastructure Cybersecurity				
		Real-time cyber-attack and mitigation system				
ABB Inc.	Raleigh, NC	protecting electric vehicles, charging equipment, and	\$1,676,979			
		the grid				
Electric Power Research Institute, Inc.	Knoxville, TN	Open-source cybersecurity architecture for electric				
		vehicle charging to provide retrofitable and scaleable	\$2,000,000			
		security solutions				
Virginia Polytechnic Institute and State	Blacksburg, VA	Hardware and software based on gaming theory to provide charging security for electric vehicles,	\$2,500,000			
University		extreme fast chargers, and the grid	<i>72,300,000</i>			
		Materials				
		Multiscale modeling of corrosion and oxidation				
Ford Motor Company	Dearborn, MI	performance and impact on high-temperature fatigue	\$1,500,000			
		of automotive exhaust manifold components	Ŷ1,300,000			

Applicant	Location (city, state)	Project Title/Description	Federal Share
Michigan State	East Lansing, MI	Computational model of damage accumulation in	\$967,662
University		adhesives after exposure to water, heat, and sunlight	Ψ.007,002
Oak Ridge National	Knoxville, TN	Machine learning and supercomputing to predict	\$1,500,000
Laboratory		corrosion/oxidation of high-performance valve alloys	
University of Florida	Gainesville, FL	Open source multiscale model for stainless steel	\$1,498,605
oniversity of Florida		alloys in high temperature environments	
		Development of multi-scale computational models to	
University of Michigan	Ann Arbor, MI	predict corrosion in joints between aluminum and	\$1,500,000
		steel	
Worcester Polytechnic	Worcester, MA	Development of predictive models for corrosion	\$1,499,612
Institute	Worcester, MA	behavior in joints between magnesium and aluminum	\$1,499,012
		Technology Integration	
American Center for		Fuel-efficient platooning in mixed traffic highway	60.447.075
Mobility	Ypsilanti, MI	environments	\$2,447,271
		Maximizing mobility energy productivity at Chicago	
Argonne National	Lemont, IL	O'Hare using distributed sensing and high	\$3,184,770
Laboratory		performance computing	+-,-2.,0
		Drones, delivery robots, driverless cars, and	
Carnegie Mellon	Pittsburgh, PA	intelligent curbs for increasing energy productivity of	\$1,502,632
University		first/last mile goods mo vement	
Compania Mallan		Understanding and improving energy efficiency of	
Carnegie Mellon	Pittsburgh, PA	regional mobility systems leveraging system-level	\$1,000,000
University		data	
Center for Sustainable	San Diego, CA	Multi-unit dwelling plug-in electric vehicle charging	\$1,500,000
Energy	Sall Diego, CA	innovation pilots in multiple metropolitan areas	
Chattanooga Area		High dimensional data driven energy entimization for	\$760,868
Regional Transportation	Chattanooga, TN	High-dimensional data-driven energy optimization for multi-modal transit agencies	
Authority		multi-modal transit agencies	
Colorado State		Mobility and energy improvements realized through	
	Fort Collins, CO	prediction-based vehicle powertrain control and	\$828,663
University		traffic management	
Cummins Inc.	Columbus, IN	Advancing platooning with advanced driver assisted	\$2,500,000
		systems control integration and assessment	÷≥,500,000
Ford Motor Company	Dearborn, MI	Micro-transit/public transit for coordinated multi-	\$2,000,000
		modal movement of people	⇒∠,000,000
Metropolitan Energy	Kansas City MO	EVSE Innovations: pairing EV infrastructure with	\$1,215,708
Center	Kansas City, MO	streetlight charging in city right of way	
National Renewable	Golden, CO	Advancing transportation hubs' efficiency using novel	\$5,000,000
Energy Laboratory		analytics at Dallas-Fort Worth airport	
OnTo Technology LLC	Bend, OR	Improved safety and reduce cost in handling and	\$500,000
Child Technology LLC		transporting reclaimed lithium-ion batteries	3300,000
Purdue University	West Layfette, IN	Multi-modal trip scheduling in real-time platform to	\$949,984
i uruue oniversity	west Layrette, IN	optimize energy efficient travel demand	
Jniversity of Maryland:		Transportation energy analytics dashboards to allow	
College Park	College Park, MD	real-time optimization of traffic operations and	\$1,000,000
-		transportation planning to reduce energy	
University of North	Charlotte, NC	Solutions for curbside-charging electric vehicles for	\$942,757
Carolina at Charlotte		planned urban growth	<i>↓J+∠,1J1</i>

Applicant	Location (city, state)	Project Title/Description	Federal Share		
University of Washington	Seattle, WA	Technology integration to demonstrate efficient urban goods delivery system	\$1,500,000		
Co-Optimization of Engines and Fuels					
Auburn University	Auburn, AL	Bio-production and evaluation of renewable butyl acetate as a desirable bio-blendstock for diesel fuel	\$1,999,990		
Hyundai-Kia America Technical Center, Inc.	Superior Township, MI	Co-optimized, mixed-mode gasoline compression ignition/spark-ignition engine system to improve fuel economy	\$2,169,391		
SUNY University at Stony Brook	Stony Brook, NY	Naphthenic biofuel-diesel blend for optimizing mixing controlled compression ignition combustion	\$1,487,112		
University of Massachusetts Lowell	Lowell, MA	Renewable fuel additives from woody biomass	\$1,001,932		
University of Michigan	Ann Arbor, MI	Tailored Bio-blendstocks with Low Environmental Impact to Optimize MCCI Engines	\$2,000,000		
University of Wisconsin- Madison	Madison, WI	Mono-ether and alcohol bio-blendstocks to reduce the fuel penalty of mixing controlled compression ignition engine aftertreatment	\$1,499,894		
Engines/Fuels: Off-road Applications					
Caterpillar Inc.	Mossville, IL	Ultra-efficient diesel engine for off-road vehicles, with integrated mechanical energy storage	\$3,441,005		

Additional Selection from the DE-FOA-0001815: Energy Efficiency R&D for Fluid-Power Systems in Off-Road Vehicles Funding Opportunity Announcement

Applicant	Location (city, state)	Project Title/Description	Federal Share
Regents of the University of Minnesota	Minneapolis, MN	Hydraulic electric architectures for mobile machines.	\$1,504,680