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Disclaimer  
This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States government or any agency thereof. The views and opinions 
of authors expressed herein do not necessarily state or reflect those of the United States government or any 
agency thereof.  
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Executive Summary  
Our transportation system is changing. New, disruptive technologies such as connected and automated vehicles 
are being developed and will soon be introduced to the market. Innovative business models that provide car-
sharing and ride-hailing services give new mobility options to consumers. Freight transport is evolving to meet 
the demands of a retail sector that is increasingly based on e-commerce. This shifting mobility landscape may 
offer opportunities to improve the economic and energy productivity of the U.S. transportation sector, while 
advancing the safety, affordability, and accessibility of transportation for all Americans.  

During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office 
(VTO) created the Energy Efficient Mobility Systems (EEMS) Program to understand the range of mobility 
futures that could result from these disruptive technologies and services, and to create solutions that improve 
mobility energy productivity, or the value derived from the transportation system per unit of energy consumed. 
Increases in mobility energy productivity result from improvements in the quality or output of the 
transportation system, and/or reductions in the energy used for transportation.  

EEMS Program activities during FY 2018 focused on analytical research to understand the impacts that new 
mobility technologies and services will have at the vehicle, traveler, and overall transportation system-level. 
This research included the development of vehicle and transportation system simulation models and tools to 
evaluate the complex interactions among the various actors within the mobility landscape, analysis of 
empirical data to characterize which solutions may provide the largest benefits, and development of new 
control systems and algorithms that use vehicle connectivity and automation to improve the performance and 
efficiency of individual vehicles as well as the overall traffic system.  

This document presents a brief overview of the EEMS Program and documents progress and results for 
projects within four of the five EEMS activity areas: (1) the SMART (Systems and Modeling for Accelerated 
Research in Transportation) Mobility Lab Consortium, (2) High Performance Computing and Big Data 
Solutions for Mobility Data, (3) Advanced R&D Projects conducted by industry and academia, and (4) Core 
Modeling, Simulation, and Evaluation, Similarly, the remaining EEMS activity area –  (5) Living Labs 
(managed under VTO’s Technology Integration Program). Each of the individual progress reports provide a 
project overview and highlights of the technical results. 
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Vehicle Technologies Office Overview  
Vehicles move our national economy. Annually, vehicles transport 11 billion tons of freight1 – more than $32 
billion worth of goods each day2 – and move people more than 3 trillion vehicle-miles.3 Growing our national 
economy requires transportation and transportation requires energy. The transportation sector accounts for 70% 
of U.S. petroleum use. The United States imports 20% of the petroleum consumed – sending more than $15 
billon per month4 overseas for crude oil. The average U.S. household spends nearly one-sixth of its total family 
expenditures on transportation5, making transportation the most expensive spending category after housing. 

To strengthen national security, enable future economic growth, improve energy efficiency, and increase 
transportation energy affordability for Americans, the Vehicle Technologies Office (VTO) funds early-stage, high-
risk research on innovative vehicle and transportation technologies. VTO leverages the unique capabilities of the 
national laboratory system and engages private sector partners to develop innovations in electrification, including 
advanced battery technologies; advanced combustion engines and fuels, including co-optimized systems; advanced 
materials for lighter-weight vehicle structures; more efficient powertrains; and energy efficient mobility systems.  

VTO is uniquely positioned to address early-stage challenges due to strategic public-private research partnerships 
with industry (e.g. U.S. DRIVE, 21st Century Truck Partnership) that leverage relevant expertise. These 
partnerships prevent duplication of effort, focus DOE research on critical R&D barriers, and accelerate progress. 
VTO focuses on research that industry does not have the technical capability to undertake on its own, usually due to 
a high degree of scientific or technical uncertainty or is too far from market realization to merit industry resources. 

Organization Chart  
 

                                                      
1 Bureau of Transportation Statistics, DOT, 2016. Table 3-1 Weight and Value of Shipments by Transportation Mode 
https://www.bts.gov/archive/publications/transportation_statistics_annual_report/2016/tables/ch3/table3_1 
2 Ibid. 
3 Transportation Energy Data Book 37th Edition, ORNL, 2018. Table 3.8 Shares of Highway Vehicle-Miles Traveled by Vehicle Type, 1970-
2016. 
4 EIA Monthly Energy Review https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf 
5 Bureau of Labor Statistics, Consumer Expenditure Survey, 2017. Average annual expenditures and characteristics of all consumer units, 
2013-2017. https://www.bls.gov/cex/2017/standard/multiyr.pdf 

https://www.bts.gov/archive/publications/transportation_statistics_annual_report/2016/tables/ch3/table3_1
https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf
https://www.bls.gov/cex/2017/standard/multiyr.pdf
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Energy Efficient Mobility Systems Program Overview 
Introduction  
On behalf of the Vehicle Technologies Office (VTO) of the U.S. Department of Energy (DOE), the Energy 
Efficient Mobility Systems (EEMS) Program is pleased to submit this Annual Progress Report (APR) for 
Fiscal Year (FY) 2018.  

The introduction of disruptive transportation technologies and services, such as connected and automated 
vehicles, car-sharing, and ride-hailing services, provides new, low-cost mobility options for consumers. 
Additionally, the evolving retail sector, shaped by the convenience of online shopping, has resulted in not only 
a shift in how we transport and deliver goods, but it has also had ripple effects in personal transportation. This 
transforming mobility landscape presents a significant opportunity to improve economic and energy 
productivity and advance safety, affordability, and accessibility in the transportation sector.  

While these changes in the transportation system can provide benefits to the American public, they also present 
risks, challenges, and questions that must be addressed. DOE conducts research to understand how this 
transformation will affect transportation energy consumption and identifies opportunities to create more 
efficient, affordable, reliable, accessible, and secure transportation options that enhance mobility for 
individuals and businesses. Within DOE’s Office of Energy Efficiency and Renewable Energy (EERE), the 
EEMS Program is responsible for this research portfolio.  

This APR describes work that the EEMS Program conducted during FY 2018 in support of the EEMS Program 
goals as described in the following section. 

Mission and Goals 
The EEMS Program supports VTO’s mission to improve transportation energy efficiency through low-cost, 
secure, and clean energy technologies. EEMS conducts early-stage research and development (R&D) at the 
vehicle, traveler, and system levels, creating knowledge, insights, tools, and technology solutions that increase 
mobility energy productivity for individuals and businesses. This multi-level approach is critical to 
understanding the opportunities that exist for optimizing the overall transportation system. The EEMS Program 
uses this approach to develop tools and capabilities to evaluate the energy impacts of new mobility solutions, 
and to create new technologies that provide economic benefits to all Americans through enhanced mobility.  

During FY 2018, the EEMS Program developed a preliminary metric framework known as mobility energy 
productivity. Because EEMS aims not only to reduce the energy consumed in the transportation system, but 
also to reduce the time and cost associated with moving people and goods while improving access to mobility, 
a comprehensive metric that incorporates all four factors (energy, time, cost, and accessibility) is required. 
Mobility energy productivity (MEP) will be used as a lens through which the EEMS program can evaluate the 
mobility impacts that potential technologies and services may have, and by which program success can be 
measured as it develops new mobility solutions. 

The EEMS Program works towards achieving three strategic goals in order to reach the program’s overall goal 
of identifying critical pathways and developing innovative technology solutions to enable significant 
improvements in mobility energy productivity when adopted at scale. Each strategic goal is discrete, but all 
three goals are interrelated such that the success in any one goal furthers the achievement of the other two. 

STRATEGIC GOAL #1: Develop new tools, techniques, and core capabilities to understand and identify the 
most important levers to improve the energy productivity of future integrated mobility systems.  

STRATEGIC GOAL #2: Identify and support early stage R&D to develop innovative technologies that enable 
energy efficient future mobility systems  
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STRATEGIC GOAL #3: Share research insights, and coordinate and collaborate with stakeholders to support 
energy efficient local and regional transportation systems.  

Program Organization  
To achieve its programmatic goals, the EEMS Program implements five coordinated areas of focus, each with 
its own set of projects. As indicated in Table 1, each of these five activity areas directly supports at least one of 
the three EEMS strategic goals, and indirectly supports the others. The five activity areas are:  

• Systems & Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium 

• High-Performance Computing & Big Data 

• Advanced R&D Projects  

• Core Modeling, Simulation, and Evaluation  

• Living Laboratories  

SMART Mobility Consortium 
The SMART Mobility Consortium is a multi-year, multi-laboratory collaborative dedicated to further 
understanding the energy implications and opportunities of advanced mobility solutions. The effort consists of 
five pillars of research:  

1. Connected and Automated Vehicles (CAVs): Understanding the energy, technology, and usage 
implications of connected and autonomous technologies and identifying efficient CAV solutions.  

2. Mobility Decision Science (MDS): Identifying the transportation energy impacts of potential travel and 
lifestyle decisions and understanding the human role in the mobility system.  

3. Multi-Modal Freight (MMF): Reducing modality interface barriers for freight movement and 
understanding the interrelationships between various modes for both long-distance freight transport and 
last-mile goods delivery.  

4. Urban Science (US): Evaluating the intersection of transportation networks and the built environment in 
terms of energy and mobility opportunities,  

5. Advanced Fueling Infrastructure (AFI): Understanding the costs, benefits, and requirements for fueling 
and charging infrastructure to support energy efficient future mobility systems.  

The SMART Mobility Consortium supports EEMS Strategic Goal #1 as the program’s primary effort to create 
tools and generate knowledge about how future mobility systems may evolve and identify ways to reduce their 
energy intensity. The consortium also directly supports Strategic Goal #2 by identifying R&D gaps that the 
EEMS Program may address through its advanced research portfolio. The SMART Mobility Consortium will 
also generate insights that will be shared with mobility stakeholders, indirectly supporting Strategic Goal #3. 

High Performance Computing and Big Data 
The EEMS Program uses the national laboratories’ capabilities in high performance computing (HPC) and big 
data analytics to research the application of artificial intelligence (AI) techniques such as machine/deep 
learning and data science tools. These efforts assist in the design, planning, and operation of future mobility 
systems. HPC helps manage, store, analyze, and visualize conclusions from big data. AI serves to recognize 
patterns and extract actionable information to answer transportation-related questions through predictive data 
analytics applied to both vehicle/infrastructure (physical) data and human decision-making (behavioral) data.  
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The EEMS Program develops and applies the national laboratories’ HPC expertise, machine learning, and big 
data science to find solutions to real-world transportation energy challenges. The program’s efforts in this area 
include:  

The HPC4Mobility initiative establishes small seedling projects that partner national lab capabilities with third 
parties who have access to data. The initiative is aimed at accelerating the discovery, design, and development 
of energy efficient mobility systems by enabling access to computational capabilities and data science 
expertise in the DOE laboratories. Projects selected under HPC4Mobility will reduce the time and cost 
required for mobility infrastructure planning and decision-making, and enable optimized control of intelligent 
transportation systems in real-time. 

Additional projects within the Big Data portfolio support the national laboratories to develop the scalable data 
science and HPC-supported computational framework needed to build next-generation transportation/mobility 
system models and operational analytics.  These projects include multi-lab efforts focused on developing 
city/regional-scale “digital twins” of the transportation system, and applying deep-learning techniques to 
support the development of resilient automated vehicle control systems. 

HPC4Mobility and Big Data initiatives merge exploratory findings of the SMART Mobility Consortium, 
specific data sets from public and private entities, and unparalleled computational and analytical resources. 
These resources will solve specific transportation energy challenges faced by cities, states, and regions across 
the United States, such as how to plan and operate their transportation systems in a way the improves energy 
efficiency, as their populations grow and new mobility options become available. In doing so, it directly 
supports Strategic Goals #1 and #2. This activity indirectly supports Strategic Goal #3, as it involves 
collaboration with stakeholders in the mobility ecosystem to be successful. 

Advanced R&D Projects 
The EEMS Program’s Advanced R&D activities focus on innovative, early-stage, and scalable mobility 
projects and target system-level opportunities to reduce the energy intensity of the movement of people and 
goods. The program partners with industry and academia to research and develop technology solutions that 
lead to mobility improvements through advancements in hardware, software, control systems, advanced 
sensing and computing, and powertrain components. Competitive funding opportunity announcements (FOAs) 
solicit project proposals to develop technology solutions that progress the state of the art towards the EEMS 
Program's targets. Through cost-shared cooperative agreements, FOAs provide technology companies the 
opportunity to develop innovative and disruptive solutions that the private sector would not otherwise consider 
due to their risk or uncertainty of return-on-investment, but which could result in enormous public benefits if 
successful. These solicitations may be broad in scope, calling for a wide variety of proposals for technology 
development efforts across a range of potential concepts, or may specifically target an explicitly defined 
research concept. Additionally, the EEMS Program solicits R&D proposals from the national laboratories 
through periodic lab calls and directly initiate targeted projects with individual labs or lab consortia to leverage 
specific lab capabilities.  

The R&D project portfolio directly supports Strategic Goal #2 by developing innovative technology solutions 
for mobility. This activity indirectly supports Strategic Goals #1 and #3 since the results from these R&D 
efforts feed into the analytical work to understand the impacts of these new technologies, and are disseminated 
to the stakeholder community.  

Core Modeling, Simulation, and Evaluation 
VTO has successfully conducted hardware evaluations of component and vehicle technologies, developed 
vehicle systems models based on the results of these evaluations, and performed simulation and analysis of 
potential vehicle powertrain solutions built upon these models. The EEMS Program develops and maintains 
these critical capabilities within the national lab system in order to test, evaluate, model, and simulate 
advanced components, powertrains, vehicles, and transportation systems. These capabilities include vehicle 



FY 2018 Annual Progress Report 

Energy Efficient Mobility Systems Program Overview    5 

and component test procedure development, highly instrumented hardware evaluation, controls algorithm 
validation, high-fidelity physical simulation, and transportation data management and analysis. These 
capabilities are critical to the EEMS Program in evaluating the energy and mobility outcomes of future 
transportation systems, and other VTO R&D programs in quantifying the performance and efficiency benefits 
of specific powertrain technologies under development.  

The suite of core VTO evaluation and simulation tools is critical to the EEMS Program’s ability to understand 
the impacts of future mobility and directly supports Strategic Goal #1. The tool set is also important in 
identifying research opportunities and producing insights to share with mobility stakeholders and indirectly 
supports Strategic Goals #2 and #3.  

Living Laboratories 
EEMS Living Laboratories, led by VTO’s Technology Integration Program, works with cities and stakeholders 
to demonstrate and evaluate new mobility technologies in the field and collect data. These projects are an 
important feedback mechanism to R&D and provide a source of real-world data to test, validate, and improve 
models, simulations, software, and hardware. The EEMS Program coordinates and collaborates with 
stakeholders to support city and regional efforts to develop energy efficient transportation systems through key 
elements of an implementation strategy: stakeholder engagement, Living Laboratory projects, and technical 
assistance. 

As the primary insight sharing and stakeholder collaboration element of the EEMS Program, Living 
Laboratories directly supports Strategic Goal #3. Additionally, the data collected through the Living Labs 
activity is important to the analytical and R&D efforts and indirectly supports Strategic Goals #1 and #2.  

The table below shows how the EEMS activities align with the EEMS strategic goals. 

 
Table 1 - Alignment of EEMS Activities with Strategic Goals 

EEMS STRATEGIC ALIGNMENT 

LEGEND 

● = Activity Directly 
Supports Goal 

▲ = Activity Indirectly 
Supports Goal 

Goal 1: Tools, 
Techniques, & 
Capabilities to 

Understand & Improve 
Mobility Energy 

Productivity 

Goal 2: Early Stage R&D 
to Develop Innovative 

Technology Solutions for 
Efficient Future Mobility 

Systems 

Goal 3: Insight Sharing, 
Stakeholder Coordination 

and Collaboration on 
Local & Regional 

Transportation Systems 

SMART Mobility ● ● ▲ 

HPC/Big Data Analytics ● ● ▲ 

Advanced R&D ▲ ● ▲ 

Core VTO Tools ● ▲ ▲ 

Living Laboratories ▲ ▲ ● 
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Coordination 
The EEMS program coordinates its activities with the U.S. Department of Transportation (USDOT), industry 
stakeholders, and other members of the mobility research community. 

Coordination between EEMS and the various modal administrations within USDOT is critically important due 
to the linkage between VTO’s research and development activities to create efficient, secure, and sustainable 
transportation technologies, and USDOT’s mission to ensure our nation has the safest, most efficient and 
modern transportation system in the world6. This coordination has allowed both agencies to gain mutual 
benefit from coordination between USDOT’s Smart City Challenge and VTO’s SMART Mobility Lab 
Consortium, and leverages each agency’s technical expertise and previous experience in mobility related 
technologies. For example, through the Technology Integration program, VTO has supported a Technologist-
in-Cities pilot, embedding a mobility energy expert within a USDOT-funded Smart City to facilitate data 
discovery, best practices sharing, and identification of critical transportation research that will directly benefit 
the city. 

In addition to intergovernmental collaboration with DOT, the EEMS Program coordinates with industry 
partners. For example, U.S. DRIVE (“Driving Research and Innovation for Vehicle efficiency and Energy 
sustainability”) is a non-binding and voluntary government-industry partnership focused on advanced 
automotive and related energy infrastructure technology research and development.6 In 2018, U.S. DRIVE 
created a new Vehicle and Mobility Systems Analysis Technical Team (VMSATT), to identify the most 
promising areas of pre-competitive mobility research of interest to the government, automotive industry, 
energy sector, and utility company partners. Additionally, the EEMS Program coordinates with the medium- 
and heavy-duty trucking and freight industry through the 21st Century Truck Partnership (21CTP)i, by 
pursuing collaborative research and development to realize its vision for our nation’s trucks and buses to safely 
and cost-effectively move larger volumes of freight and greater numbers of passengers while emitting little or 
no pollution7. The EEMS Program is directly involved with the Operational Efficiency Technical Team within 
the truck partnership. 

The EEMS Program continually seeks additional high-value opportunities to engage with relevant stakeholders 
in order to share EEMS-funded research results and learn from other mobility-related efforts. For example, the 
EEMS Program is a governmental sponsor and member of the National Academies/Transportation Research 
Board Forum on Preparing for Automated Vehicles and Shared Mobility, which brings together public, private 
and other research organizational partners to share perspectives about how the deployment of automated 
vehicles and shared mobility services may dramatically increase safety, reduce congestion, improve access, 
enhance sustainability, and spur economic development8.  

Project Funding  
VTO selects and funds critical research through a combination of competitive funding opportunity 
announcement (FOA) selections, and direct funding to its national laboratories. Competitive FOA projects are 
fully funded through the duration of the project in the year that the funding is awarded. Funding for direct 
funded and competitive award projects are contingent on annual Congressional budget appropriations.  

The VTO Technology Integration Program funded and has primary management responsibility for Living 
Laboratories projects during FY 2018. Living Laboratories projects are not included in the FY2018 EEMS 
APR.  

                                                      
6 https://www.energy.gov/eere/vehicles/21st-century-truck-partnership 
7 http://www.trb.org/TRBAVSMForum/AVSMForum.aspx 
8 http://www.trb.org/TRBAVSMForum/AVSMForum.aspx 

https://www.energy.gov/eere/vehicles/21st-century-truck-partnership
http://www.trb.org/TRBAVSMForum/AVSMForum.aspx
http://www.trb.org/TRBAVSMForum/AVSMForum.aspx
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Research Highlights 
FY2018 was the second year of the Energy Efficient Mobility Systems Program, and many of the research 
activities conducted were primarily analytical in nature. The SMART Mobility Lab Consortium produced 
many research findings and insights about the energy and mobility impacts of new transportation technologies 
and services in FY2018, and is focused on delivering large-scale results during FY2019.  Several new projects 
were initiated within the High Performance Computing and Big Data research area during FY2018, while the 
projects within EEMS’ Advanced R&D portfolio made significant progress. Meanwhile, advancements were 
made in the modeling, simulation, evaluation, and data management tools that support the EEMS Program and 
VTO more broadly. Results, insights, and progress from these four areas are described in detail through the 
remainder of this Annual Progress Report. Selected highlights and accomplishments from these activities are 
summarized here. 

• Through the SMART Mobility Advanced Fueling Infrastructure pillar, LBNL and INL performed 
modeling that indicates that longer driving range (larger batteries) leads to a smaller commercial AEV 
fleet size, higher investment costs for the AEVs, less daytime charging demand, and lower investment 
costs for charging systems. The 
modeling results find that in terms 
of fleet operating costs (fuel plus 
the cost of PEV chargers), these 
costs are typically lower than the 
operating costs of a comparable 
gasoline ICE fleet across a wide 
range of the number of PEV 
charging points in the network. 
(AFI Pillar Task 2.3, Fuel 
Selection for Fully Automated 
Commercially Owned Taxi Fleet) 

Figure-1 Total Operational Cost Comparison between ICEV and EV fleets 

• A CAVS Pillar task performed by ORNL developed and tested an optimal traffic coordination controller 
on a hypothetical highway corridor with two on-ramps. In a scenario with partial penetration of CAVs, 
preliminary results reveal that 60% penetration of CAVs can aid to mitigate the propagation of traffic 
bottlenecks at the expense of a slight speed reduction on the main road for the hypothetical highway 
corridor under assessment. (CAVS Pillar Task 2.1, Multi-Scale, multi-scenario assessment of system 
optimization opportunities due to vehicle connectivity and automation) 

(a) Scenario 1:  0% Penetration Heavy-Duty CAVs, 0% Penetration Light-Duty CAVs 
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(b) Scenario 2: 100% Penetration Heavy-Duty CAVs, 60% Penetration Light-Duty CAVs 

Figure-2 Spatial-temporal distribution of mean speed plots of main and ramp roads (Black lines indicate the start and end 
of the control and/or merging zones) 

• A CAVS Pillar task performed by ANL compared several proposed eco-approach strategies for vehicles 
with different power trains on a dynamometer. The analysis compared the proposed eco-approach 
strategies to a standard intersection approach strategy. The eco-approach strategies assume more 
information regarding the traffic light state and allow for a smoother, more managed stop than a standard 
intersection strategy. Electrified vehicles show higher relative fuel/energy consumption benefits than 
conventional vehicles when using the eco-approach strategies. The HEV and BEV enjoy fuel and energy 
consumption benefits of 12-20% thanks to the eco-approach strategies, with the higher benefits realized 
by the HEV. The conventional vehicles, on the other hand, see fuel consumption benefits of 7-12%, with 
the higher benefits attained by the vehicle without idle stop-start technology. (CAV Pillar Task 7A.3.4 
Focused Validation of Select SMART Simulation Activities)  

Figure-3 Focused Validation of Select SMART Simulation Activities -Summary of the relative fuel and energy consumption of 
approach strategies 2 and 3 compared to approach 1 for Situation 2 
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• The CAVS Pillar work by LBNL developed a cooperative traffic signal control algorithm that aims to 
maximize the intersection throughput by using the capabilities of the CACC vehicle strings. The 

proposed algorithm outperforms 
the traditional actuated signal 
controllers because it recognizes 
that vehicles in CACC strings 
can utilize the green time 
resource more efficiently than 
the manually driven vehicles, 
and thus would assign longer 
green time to an approach that 
accommodates more CACC 
vehicle strings than other 
approaches (CAV Pillar Task 
7A.1.2, Traffic Microsimulation 
of Energy Impacts of CAV 
Concepts at Various Market 
Penetrations)  

 

 

• Depending on vehicle and automated vehicle (AV) technology characteristics, as well as behavioral 
assumptions, CAV pillar researchers from ANL estimated fuel consumption reduction by 2040 as high 
as 74%, even under up to 64% increase in VMT, when vehicle electrification and efficiency gains are 
combined with pricing strategies to limit unloaded miles. However, energy consumption reduction could 
be as low as 6% when considering low vehicle electrification and other advanced technology 
penetration, while VMT could increase up to 85% when considering high AV penetration and lack of an 
unloaded mileage pricing strategy. (CAV Pillar Task 1.3, Impact of CAVs on Energy, GHG, and Mobility 
in a Metropolitan Area) 

 

Figure-5 - Best and worst case performance metrics over time under privately owned, Level 4/5 CAV scenarios 

Figure-4 - Simulated intersection and actuated control parameters 
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• Within the Mobility Decision Science pillar, LBNL investigated the medium-term impact of behavioral 
sensitivity to mode through sensitivity analysis of San Francisco area travelers. Using a calibrated model 
with heterogeneous values of 
time, they assessed the 
sensitivity of the travelers to 
changes in cost of each mode. 
Changes to the cost of gasoline 
(+/- 50%), the cost of ride 
hailing (+/-25%), and the cost of 
transit (+/-50%) can yield 
substantial shifts in modal share 
and substantial changes in 
system energy consumption, as 
much as 18%.(MDS Task 
3.1:Mobility Behavior and 
System Energy Efficiency: Plug-
in Electric Vehicle Benefits 
Analysis ) 

 

• Under the Multi-Modal 
Transportation pillar, ORNL, NREL, 
and INL coordinated with UPS to 
evaluate innovative opportunities to 
improve the cost and efficiency of 
last-mile freight delivery. The 
analysis concluded that that fully-
electric delivery trucks will 
significantly reduce energy 
consumption. The use of parcel 
lockers for package delivery may 
also reduce energy usage in 
suburban locations where there are 
fewer through-streets and more cul-
de-sacs due to their ability to 
significantly reduce miles traveled 
for delivery. (MM Pillar Task 3.1, 
Optimization of Intra-City Freight 
Movement with New Delivery Methods) 

 

Figure-7 – Energy consumption rate for baseline and 
alternative freight delivery scenarios 

Figure-6 - Modal shares for the Base San Francisco Bay Area 
scenario and three sets of variations with cost of modes shifted 

+/-50% (for gasoline and transit) or +/-25% (for ride hail). 
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• The Multi-Modal 
Transportation pillar team of 
ANL, NREL, and INL has also 
investigated long-haul, inter-
city freight, quantifying the 
national-level energy impacts of 
opportunities to optimize 
freight movement through new 
technologies and mode-shifting. 
National impact 
analysis found that electrified 
Class 7&8 electric truck with 
500-mi electric range could 
potentially reduce the 
petroleum consumption by 1.61 
quads in 2050, while the 
electricity consumption increases 
by 0.99 quad, compared to EIA’s AEO2017 reference case. (MM Pillar Task 2.1, Energy Analysis and 
Optimization of Multi-Modal Inter-City Freight Movement) 

 

• The Urban Science pillar, through efforts led by 
NREL, has developed, tested, and refined a 
comprehensive metric that reflects energy 
consumption, affordability and accessibility of 
current and future mobility services - to quantify 
the quality of mobility. The refined Mobility 
Energy Productivity metric (MEP 2.0) is being 
utilized to quantify the impact of various 
potential future scenarios that are then simulated 
in the integration of a number of different 
transportation models  carried out as a part of the 
DOE SMART Mobility Consortium research (US 
Pillar Task 2.1.2  Mobility Energy Productivity 
Metric)  

 

• The High Performance Computing and Big Data work by 
ORNL developed algorithms that teach GRIDSMART 
cameras to estimate fuel consumption of vehicles in their 
visual field and use this capability to improve energy 
efficiency by changing timing and phasing of traffic lights, 
while minimizing penalties to throughput and mobility. 
ORNL developed and deployed computer vision algorithms 
to segment vehicles from the background, thus capturing a 
view of the identified vehicle type from multiple ranges 
from the camera. ( HPC& BD Pillar Task - 
Reinforcement Learning-based Traffic Control to 
Optimize Energy Usage and Throughput ) 

Figure-8 - Energy Impact of Electrified Class 7&8 Electric Truck in the United 
States (500-mi electric range) 

Figure-9 - MEP 2.0 methodology applied to: a) Austin, TX; b) 
Columbus, OH; c) Denver, CO 

Figure-10 - . GRIDSMART capture labeled the ground 
imager data as a “Ford Transit Connect,” which has 

an estimated fuel efficiency of 28 MPG.  
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• The Big Data Solutions for Mobility project by LBNL, PNNL, and ANL is applying high performance 
computing to address challenges in large transportation systems that were otherwise not possible. In 
particular, the team developed a proof-of-concept, scalable transportation system simulator that 
implements parallel discrete event simulation on high-performance computers. Using real data, the 

system is able to represent millions of nodes, links, 
and agents to simulate the movement of the population 
through the San Francisco Bay Area road network and 
provide estimates of the associated congestion, energy 
usage, and productivity loss. Preliminary results show 
excellent scalability on multiple compute nodes for 
statically-routed agents, simulating 9.5 million trip 
legs over a road network with 1.1 million nodes and 
2.2 million links, processing 2.4 billion events in less 
than 30 seconds. The capability to run simulations that 
process billions of events within minutes or seconds 
will enable mobility researchers, industry, and 
transportation entities to better understand and predict 

future behavior, and potentially even be able to 
dynamically re-route travelers to reduce congestion, 
reduce travel time, and energy consumed. 

 

 

• The Core Modeling and 
Simulation work by ANL 
demonstrated the accuracy 
of Autonomie energy 
consumption prediction 
for more than 200 specific 
vehicle models (143 
conventional vehicles, 52 
HEVs, 13 PHEVs and 2 
EVs) using on-road data 
collected by the 
University of Michigan. A 
pre-release version of a 
new workflow manager 
(AMBER) was 
successfully developed 
and tested by several OEMs. 
The tool will enable VTO and 
the research community to 
develop and manage complex workflows across multiple tools including for Smart Mobility. (Core MSE 
Task - Maintenance; Tools; Real World Energy Impact Estimation; and Toyota Prius Prime Validation 
(ANL)).  

 

Figure-11 – Flow Impact due to Different 
Optimization Solutions:  Time-Based User 

Equilibrium (UET); Time-Based System Optimal 
(SET); Fuel-Based User Equilibrium (UEF); Fuel-

Based System Optimal (SEF) 

Figure-12 – Real-world Energy Impact Estimation Approach Overview 
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I SMART Mobility- Advanced Fueling Infrastructure 
(AFI) 

I.1 National Energy Impact of Electrified Ride-hailing Vehicles with 
Varying Infrastructure Support (ANL, NREL, ORNL) 
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Argonne National Laboratory 
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National Renewable Energy Laboratory 
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E-mail: David.Anderson@ee.doe.gov 
 
Start Date: October 1, 2017 End Date: September 30, 2018  
Project Funding (FY18): $235,000
  

DOE share: $235,000 Non-DOE share: $0 
 

Project Introduction  
Infrastructure has long been a major barrier to battery electric vehicles (BEVs) adoption [1]. Cost-effective 
charging infrastructure is crucial to support the future energy efficient transportation systems. The rapid 
development and deployment of advanced public charging technologies (e.g., direct current fast charging 
(DCFC)), coupled with other smart mobility solutions such as vehicle connectivity and shared mobility, will 
affect future vehicle ownership and use, electricity generation, and alternative fuel energy market. This will 
further result in major changes in the utilization of alternative transportation modes, energy consumption, and 
economic activity. Understanding the magnitude and sensitivity of these impacts is key to identifying barriers 
and achieving mainstream adoption of BEVs.  

Objectives  
Within this scope, our objective is to quantify the national energy impact of ride-hailing PEVs as compared 
with privately owned PEVs and ride-hailing ICEVs with varying infrastructure support (e.g. Level 2, DCFC, 

mailto:yzhou@anl.gov
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high power FC). This task helps DOE to understand changes in petroleum and electricity consumption while 
providing mobility of service (e.g. ride-hailing) using infrastructure supported electrification. This task 
quantifies the petroleum reduction potential of using charging infrastructure to support electrified ride-hailing. 

Approach  
This study utilizes national labs’ sophisticated tools (VISION, EVI-Pro, MA3T, etc.), database 
(Transportation Secure Data Center, EV Project), and expertise to identify solutions that overcome 
barriers to future sustainable transportation. VISION is a model developed by Argonne National 
Laboratory to provide estimates of the potential energy use, oil use and carbon emission impacts of 
advanced light- and heavy-duty vehicle technologies and alternative fuels through the year 2100 [2]. 
EVI-Pro, Electric Vehicle Infrastructure Projection Tool (EVI-Pro), is a model developed by National 
Renewable National Laboratory to estimate future requirements for charging infrastructure [3]. MA3T 
is a Market Acceptance of Advanced Automotive Technologies model developed by the Oak Ridge 
National Laboratory [4].  

Market Share and Stock 
Expand on AFI Task 2 regional charging infrastructure deployment findings in Columbus, Ohio and Austin, 
Texas, this task first analyzed the impact of public charging infrastructure on the BEV adoption, both ride-
hailing vehicle and private-used vehicles, show in Figure I.1.1. The major outputs from AFI Task 2 that would 
affect the BEV adoption include charging coverage and charging power.  

Then, we estimated the number of ride-hailing and private vehicles on the road at given year using 
projected market shares, % of shared vehicles and vehicle survival pattern. Theoretically, with known 
historical vehicle sales and survival function of vehicle type i, the vehicle stock in year m (Stock i, m) 
can be determined as 

∑
=

− ⋅=
σ

0
,, ])([

j
ijmimi jrSaleStock  

where j and 𝜎𝜎 represent the vehicle age and the potential longest vehicle service years, respectively; Sale i,m-j 
represents the new vehicle sales of type i vehicles in model year m-j; and r(j) i is the survival function. Vehicle 
type i here refers to BEVs and replaced conventional vehicles. 

Figure I.1.1 Approach for quantifying the national energy impact of ride-hailing PEVs 
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Percent Shared Vehicles 
Although there are several types of shared mobility in the market, this study only considers ride-hailing 
vehicles as the type of shared vehicles to align with the scope of AFI task 2. For Columbus, Ohio, AFI 
Task 2 emulated a high ride-hailing demand scenario. Over 95% trips could be served by ride-hailing 
vehicles in this scenario. For Austin, TX, because the data AFI Task 2 used is from RideAustin, in which 
all vehicles are also ride-hailing vehicles. Therefore we assumed 100% ride-hailing vehicles in this 
study. However, because ride-hailing vehicles have different usage pattern and survival function, it 
would affect the energy impact in the end if different percentages of shared vehicles are assumed. 
Currently there are very limited literature making projections of market share of ride-hailing vehicles 
in the future.  

Survival Rate and Annual Mileage 
Ride-hailing vehicles and private vehicles have very different usage pattern (e.g. daily mileage and 
annual mileage) and thus different survival pattern (e.g. lifetime). In average, the lifetime of private 
light duty vehicle (LDV) is about 14 years with about 170,000 lifetime vehicle miles traveled (VMT). 
Recent data from Populus shows that a full-time ride-hailing driver in average could drive about 
27,000 miles/yr [5]. Assuming similar lifetime miles of private vehicles, the average life time of ride-
hailing vehicles would be around 7 years which means ride-hailing vehicle would be scrappaged 
faster than private vehicles.  

Increased infrastructure deployment would also increase the mileage on electricity for Plug-in electric 
vehicles (PHEV). Percentage of miles on electricity, eVMT%, also comes from AFI Task 2 regional 
modeling results. For example, Columbus simulation results show that with increased infrastructure 
support, eVMT% of PHEV20 could increase from 23% to 64%.  

Charging Availability 
Alternative fuel data center (AFDC) provides the locations of existing charging stations and their 
charging level [6]. EVI-Pro estimates number of chargers by charging level needed for a given region 
based on given travel demand and PEV stock. Such output is converted to charging availability, which 
represents the percentage of the area that has charging stations. We estimated this ratio by dividing 
an urban area into small square grid cells, about 1*1 mile in this case. A cell is covered if charging 
stations are present inside the cell; otherwise the cell is not covered, shown in lower left of Figure I.1.2 
(Wailuku HI). For example, California has the largest urban area in the U.S., about 16,724 total cells. 
The state also has a wide coverage with urban public charging stations, about 12,355 stations 
covering 1,739 cells (5). Therefore, the charging availability in California urban area is about 10.3% 
(i.e., 1,739/16,724=10.3%) in 2017. 
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Figure I.1.2 Converting Charging Coverage from Regional Simulation Results to Charging Opportunity 

  
The analysis horizon of this study is from 2017 to 2030, capturing the near-term impact. This study 
focus only on the urban areas with population over 50,000 according to U.S. Census (xXX). We have 
tried three different infrastructure scenarios through working with AFI Task 2 team. “Existing” means 
that infrastructure availability remain the same as 2017 level until 2030. “50 kW” stands for the 
scenario that most of public chargers remain low level DCFC, and the national average charging power 
is about 55.9 kW. “150 kW” stands for the scenario that all public charger will be DCFC with 150 kW 
charging power, shown in Table I.1.1. Higher charging power reduces the charging time which 
ultimately promotes the market adoption of BEVs. Also shown in Table I.1.1, the charging availability 
in 2017 are summarized from AFDC, while 2030 level are simulated results from AFI Task 2. The 
results reported in this report are based on regional simulation from Columbus, Ohio.  

Table I.1.1 Existing (2017) and Simulated (2030) Charging Power and Charging Availability 
Scenarios 2017 2030 

Charging Availability Ave. Power (KW) Charging Availability Ave. Power (KW) 
Existing 5.3% 11.4 5.3% 11.4 
50kW   15.2% 55.9 

150kW   15.2% 150 
 
Charging Opportunity: 
We then translated charging availability to charging opportunity in each state, urban areas only. 
Charging opportunity is defined as the probability of finding a nearby charger at a stop. Such 
probability is developed using the GPS survey data in Seattle, Los Angeles, and Atlanta, and 
considered the geographical overlap between the charging network and travel activities. The 
charging opportunity and power are inputs to the MA3T model to evaluate impacts of public charging 
infrastructure on the PEV adoption by state. We conducted several iterations between EVI-Pro and 
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MA3T. EVI-Pro starts with certain assumption of PEV adoption to give charging availability. Such 
charging availability might stimulate more PEV adoption. In the end, we reach a balance that both 
market penetration and charging availability would not further increased (i.e. Δ %PEV< 1%). Although 
currently we only have charging opportunity curves for these three cities, we found out the 
opportunity is highly related to the average trip distance, daily distance, average dwelling time at 
public locations of that given region, etc. We are currently using NHTS 2017 to develop some 
understanding that for a given city, what possible charging opportunity it might have comparing to 
the other three cities with a given charging coverage [8]. In FY18, we also develop charging 
opportunity curves for Columbus and Austin using available travel data.  

Results  
Market Shares 
Figure I.1.3 shows the projections of BEV market shares by year under three scenarios. In “Existing” scenario, 
BEV market share could reach 32.4% by 2030 mainly due to technology improvement and price drop. 
Increased charging infrastructure availability and charging power could further increase the BEV market 
penetrations to 41% (50 kW scenario) and 50% (150 kW scenario) in urban areas. Figure I.1.3 also indicates 
that investment in public charging infrastructure has continuous impacts on the BEV adoption. Though not 
shown in Figure I.1.3, the PHEV has much less sales and smaller population than BEV in 2030. The impacts 
of public charging infrastructure on PHEV market is not significant. 

Figure I.1.3 BEV Market penetrations with different levels of infrastructure support 

 

National Energy Impact of Ride-hailing Electrified Ride-hailing Vehicles  
Based on BEV market shares by year, survival function and annual mileage per vintage, we first estimated 
total numbers of electrified ride-hailing vehicles on the road by year and their miles traveled. Then, with 
%eVMT and vehicle efficiency (MPGGE), we quantified the national petroleum and electricity consumption 
under different scenarios. In order to compare with privately owned PEVs and ride-hailing conventional 
vehicles, we separated the impact of faster vehicle turn-over rate due to ride-hailing and increased 
infrastructure support, shown in Figure I.1.4. In Figure I.1.4, “-Infrastructure” stands for “Existing” 
infrastructure availability, while “+infrastructure” stands for future improved infrastructure availability and 
charging power. Figure I.1.4 shows the results for 150 kW scenario. “+Ride Hailing” means 100% vehicles are 
used as ride-hailing vehicles, which stands for an extremely high ride hailing demand. In next step, we will try 



FY 2018 Annual Progress Report 

I  SMART Mobility- Advanced Fueling Infrastructure (AFI)    19 

scenarios with different ride-hailing demand. “-Ride Hailing” means 100% vehicles are private used vehicles. 
Comparing to the left side of Figure I.1.4, right side shows the energy impact of improved infrastructure when 
controlling the impact due to ride-hailing. For example, compared to “-Infrastructure/-Ride Hailing” in 2017, 
improved infrastructure supporting private PEVs could reduce gasoline consumption from 15.44 quad to 9.77 
quad in 2030, but could increase electricity consumption from almost 0 to 1.39 quad mainly due to 
significantly increased PEV market penetration, 50% by 2030. Moreover, compared to “-Infrastructure/-Ride 
Hailing” in 2017, “+Infrastructure/+Ride Hailing” could further reduced the gasoline consumption to 7.58 
quad in 2030 mainly due to increased PEV market penetration, increased eVMT, and shorter vehicle lifetime. 
It’s interesting to note that shorter vehicle lifetime due to high annual mileage also reduce gasoline 
consumption because faster fleet turn-over rate brings newer and more efficient vehicles on the road. However, 
in this analysis we assumed no induced VMT demand and no changes in total number of vehicles adopted in 
the future due to convenience of ride-hailing. We used EIA’s 2017 projections of total light-duty vehicle sales 
reported in their annual energy outlook to estimate vehicle sales by year by 2030.  

 

 

 

  
 
 
 
 
 

Figure I.1.4 National Energy Impact of Electrified Ride-hailing LDVs in 2030 

Conclusions  
National impact analysis found that using public charging infrastructure to support electrified ride-hailing 
vehicle could potentially reducing petroleum consumption by 7.68 quadrillion BTUs and 2.79 quadrillion 
BTUs compared to 2017 and 2030 level, respectively, due to induced PEV adoption, increased eVMT and 
faster vehicle turnover rate. Induced PEV adoption is attributed to significantly increased average charging 
power and charging availability. 

Key Publications  
 F. Xie, Z. Lin, Y. Zhou, C. Rames, E. Wood and E. Konton, Will Advanced Public Charging 

Infrastructure Speed Up Electrification of Future Transportation? Proceedings of IEEE ITSC Annual 
Meeting, Maui, Hawaii, November 3-7, 2018. 



Energy Efficient Mobility Systems 

20     I  SMART Mobility- Advanced Fueling Infrastructure (AFI) 

References  
 Transportation Research Board and National Research Council. 2015. Overcoming Barriers to 

Deployment of Plug-in Electric Vehicles. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/21725. 

 Argonne National Laboratory, VISION Model, https://www.anl.gov/es/vision-model 

 National Renewable Energy Laboratory, EVI-Pro, https://www.nrel.gov/news/program/2018/nrels-evi-
pro-lite-tool-paves-the-way-for-future-electric-vehicle-infrastructure-planning.html 

 Oak Ridge National Laboratory, MA3T, https://www.ornl.gov/content/ma3t-model 

 National Renewable Energy Laboratory, Preliminary findings from Populus TNC driver survey, 
Aug.2018.  

 Alternative Fuel Data Center, Electric Vehicle Charging Stations, 
https://www.afdc.energy.gov/fuels/electricity_stations.html 

 U.S. Census, 2010 Census Urban and Rural Classification and Urban Area Criteria, 
https://www.census.gov/geo/reference/ua/urban-rural-2010.html 

 U.S. DOT Federal Highway Administration, National Household Travel Survey 2017, 
https://nhts.ornl.gov/ 

Acknowledgements 
This work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy 
(EERE), Vehicle Technologies Office (VTO). We thank David Anderson, program manager of Energy 
Efficient Mobility Systems, for his generous support. We also thank John Smart, the pillar lead of Advanced 
Fueling Infrastructure for his support and guidance on this task. We acknowledge Clement Rames and 
Eleftheria Kontou from NREL for their effort and time spent on this task. 
 

https://doi.org/10.17226/21725
https://www.anl.gov/es/vision-model
https://www.nrel.gov/news/program/2018/nrels-evi-pro-lite-tool-paves-the-way-for-future-electric-vehicle-infrastructure-planning.html
https://www.nrel.gov/news/program/2018/nrels-evi-pro-lite-tool-paves-the-way-for-future-electric-vehicle-infrastructure-planning.html
https://www.ornl.gov/content/ma3t-model
https://www.afdc.energy.gov/fuels/electricity_stations.html
https://www.census.gov/geo/reference/ua/urban-rural-2010.html
https://nhts.ornl.gov/


FY 2018 Annual Progress Report 

I  SMART Mobility- Advanced Fueling Infrastructure (AFI)    21 

I.2 Fuel Selection of Human-Driven Ride-Hailing Vehicles (INL) 
[Task 2.1] 

Shawn Salisbury, Principal Investigator 
Idaho National Laboratory 
P.O. Box 1625, MS 3632 
Idaho Falls, ID, 83415 
E-mail: shawn.salisbury@inl.gov 
 

David Anderson, DOE Program Manager  
U.S. Department of Energy 
E-mail: David.Anderson@ee.doe.gov 
 

Start Date: October 1, 2016 End Date: September 30, 2019  
Project Funding (FY18): $1,070,000
  

DOE share: $1,070,000 Non-DOE share: $0 
 

Project Introduction 
Over the past several years, ride-hailing has emerged as a major form of transportation. Ride-hailing services 
are performed by drivers who own their vehicles and use them for personal and shared driving. These new 
services are causing the operating patterns of many personally owned vehicles used for personal and shared 
driving to be very different from those used only for personal use. Electric vehicles (EVs) have been widely 
reported as desirable ride-hailing vehicles due to low per-mile operating costs, but the overall cost to own and 
operate ride-hailing vehicles of different architectures is not well understood. The impacts that changing 
operating patterns and varying fuel types will have on drivers and infrastructure needed further analysis.  

Objectives  
Using gasoline and electricity as fuels for ride-hailing vehicles have different implications on energy 
consumption, infrastructure needs, and costs to drivers. The Advanced Fueling Infrastructure (AFI) Task 2.1 
team used simulation to study estimated potential DC fast charging (DCFC) needs by EV ride-hailing services 
in Columbus, OH, and Austin, TX. This task then compared the relative advantages of EVs to other vehicle 
types for ride-hailing drivers in different scenarios. 

Approach  
In order to meet the objectives, this task sought to: 

• Understand travel patterns and quantify operations of real-world ride-hailing vehicles from multiple 
sources, including data from INRIX personal travel data in Columbus, OH; RideAustin; ReachNow; 
Columbus Yellow Cab; Populus; and RIES. 

• Determine infrastructure needs of ride-hailing vehicles by simulating real-world data in EVI-Pro. 

• Evaluate economics of plug-in EVs and gasoline-fueled vehicles for several ride-hailing scenarios. 

Due to the unavailability of ride-hailing vehicle data at the start of this task, a heuristic algorithm was 
developed to emulate TNC vehicle data from personal trip data collected by INRIX in Columbus, OH. This 
travel was simulated in EVI-Pro to determine TNC charging needs if the drivers were using EVs, and the costs 
were calculated to install and operate the simulated chargers. Costs varied widely among the 12 DC fast 
charging sites that were recommended by EVI-Pro simulations, with costs ranging from $4 to $40 per charging 
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session. Analysis of the station costs showed that while installation costs can be high and vary from site to site, 
the most important factor in achieving low costs is high station utilization. 

As real-world TNC vehicle data became available to the group from RideAustin, EVI-Pro simulations were 
used to determine what the charging needs would be for actual ride-hailing drivers. Up until this point, it was 
assumed that ride-hailing drivers would want to use a battery EV (BEV), but there had been no basis for that 
assumption. To understand whether it would make sense for those drivers to use BEVs, the costs to own and 
operate different vehicle types were calculated using the RideAustin data and EVI-Pro simulations.  

With this approach, this task has developed an understanding of real-world ride-hailing operation and 
evaluated the costs of charging infrastructure and vehicle use. This has provided insights into the suitability of 
EVs as ride-hailing vehicles and provided context necessary for accurate assessment. 

Results  
Real-world ride-hailing data from RideAustin, a non-profit ride-hailing company in Austin, TX, was analyzed 
to understand the typical travel patterns of ride-hailing drivers. The breakdown of driver segments is shown in 
Table I.2.1.  

Table I.2.1 RideAustin driver segmentation statistics 
 Part-time Driver Half-time Driver Full-time Driver 

Hours per Week <10 10-35 >35 

Percent of Drivers 49% 40% 11% 

Percent of Rides Provided 14% 57% 29% 

Average Annualized Vehicles Miles Traveled 7,000 13,000 29,000 

 

Nearly half of all drivers work less than 10 hours a week and drive 7,000 miles per year. Full-time drivers 
make up 11% of all drivers and average around 29,000 miles per year. Since full-time drivers would likely 
have the largest need for charging infrastructure, EVI-Pro analysis was focused on full-time drivers. Data from 
these drivers was simulated in EVI-Pro to determine the charging and infrastructure needs of ride-hailing 
drivers with EVs. Results of these simulations show that with 250 miles of driving range and home charging, 
EV drivers would need to charge during only 2% of their driving shifts, and only 10 DC fast chargers would be 
needed to support every 1,000 ride-hailing EVs. Without home charging, public infrastructure needs increase 
significantly. Since ride-hailing drivers use their own vehicles, they may only use a BEV if it costs less than 
other vehicle types. A total cost of ownership model was developed to assess the costs of owning and 
operating ride-hailing vehicles, including costs for vehicle depreciation, maintenance, fueling or charging, and 
fueling time during shifts, as downtime during shifts is a major opportunity cost for a driver. Applicable costs 
are aligned with those of other Department of Energy (DOE) studies. A comparison of costs was made for a 
full-time driver with access to home charging over a period of five years. The comparison showed that the total 
cost of a BEV250 would be slightly less than that of an internal combustion engine vehicle (ICEV) and more 
than a hybrid electric vehicle (HEV). These results can be affected significantly by the cost assumptions made 
and will not necessarily be the same for all driver use cases. The range of costs for different vehicle types is 
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shown in Figure I.2.1, where each bar shows how the cost can vary by changing one input value from the 
baseline cost to low and high cost scenarios that encompass a reasonable cost range for that input.  

Different vehicle types can become significantly more, or less, desirable depending upon cost factors in a 
specific scenario. Geographic differences in electricity prices and changes in gas prices through time can have 
a major effect on the costs of owning a vehicle, as can personal preferences like driving style and vehicle size.  

Conclusions   
The results of this analysis show that, in many cases, BEVs can be the lowest cost vehicles for ride-hailing 
drivers, but not for every situation or every driver. The portion of drivers for which a BEV is the lowest cost 
may increase significantly if electricity costs are low in a certain area or if gas prices increase. In future 
analysis, these findings suggest that care needs to be taken when selecting the BEV mix for a given scenario. 
Analysis is often performed under the assumption that all vehicles will be BEVs, but that may only be valid for 
a certain portion of drivers to own BEVs. The effects that this might have on infrastructure requirements and 
usage is often overlooked and needs to be considered.  

Interesting implications arise when these findings are combined with the previous conclusions of this task that 
DCFC costs are much less in highly utilized locations. DCFC deployment needs to be carefully balanced with 
the needs of BEV drivers such that there are enough opportunities for drivers to charge, but not so many 
chargers that low utilization drives high charging costs. This balance and its tradeoffs require further analysis.  

Key Publications  
 Wood, E., Rames, C., Kontou, E., Motoaki, Y., Smart, J., and Zhou, Z., “Analysis of Fast Charging 
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doi:10.4271/2018-01-0667. 
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Figure I.2.1 Five-year cost of ownership for a full-time ride-hailing driver by cost component for each 
vehicle type, assuming driver has access to home charging 
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Project Introduction  
Connected and automated systems are on path to dominate the future of vehicles, buildings, and the power grid 
due to the potential for significant improvements in energy efficiency, sustainability, security, congestion 
mitigation, and convenience. This transition will include the emergence of connected and automated vehicles 
(CAVs) for the transportation of people and goods.  

Some of the areas are partially worked on in the field of CAVs, such as sensors, connectivity, and 
communications. However, refueling (charging) methods and the charging infrastructure requirements remain 
unaddressed. While having the self-driving and self-parking functionalities, not having self-charging capability 
would be a failure for the CAVs. Moreover, a fleet of a CAVs for ride-shared vehicle applications would be a 
high cost-intensive investment which requires very high-utilization; therefore, it would not be practical to stop 
and charge these vehicles in the middle of the day for several hours. With dynamic wireless charging systems, 
these vehicles can be recharged while they are in operation which eliminates the down time for these vehicles.  

Not only for the CAVs but in general for all the EVs, range anxiety and the cost of battery packs are among the 
most important barriers against future adoption. As one means of increasing the adoption rate of E-CAVs 
(electrified connected and automated vehicles), wireless charging can gain considerable momentum due to 
ease of charging with no wired connection. Wireless charging is a safe, convenient, flexible, and efficient 
method for charging the electric vehicles [1]. Substantial reductions in petroleum consumption and greenhouse 
gas emissions are possible with electrified vehicles and roadways. In fact, WPT is a key enabling technology 
for the future of the CAVs but there is no specific research reported so far on WPT integrations of CAVs.  

With dynamic wireless charging capability, CAVs can self-charge and also have ideally unlimited all-electric 
range and their battery packs can be reduced which would result in overall weight and cost reduction while 
improving the fuel economy. According to a study [2], the market share of plug-in EVs could increase up to 
65% among the total light duty vehicle sales if 1% of the roadways were electrified with 60kW dynamic 
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wireless charging systems. As one means of increasing the adoption rate of EVs and electric CAVs, wireless 
charging has gained considerable momentum due to ease of charging with no wired connection. With dynamic 
(in-motion) wireless charging, the range of the electric vehicles can be extended, and the size and cost of their 
battery packs can be reduced. Furthermore, dynamic wireless charging is a key enabling technology for the 
connected and automated vehicles by automating their charging process, increasing their range, wirelessly 
connecting them to the power grid, and reducing their battery pack size and weight with improved fuel 
economy (reduced energy consumption). The dynamic wireless charging technology is based on the 
electromagnetic coupling between a roadway electrified with coils or long wire loops under the road surface 
and a receiver coupler mounted underneath the electric vehicle. Power ratings, track (electrified roadway 
section) length, electric and electromagnetic field emissions and confinement, efficiency, lateral misalignment 
tolerance, power transfer continuity, geometric layout and design of the tracks, and resonant tuning 
configurations are the areas with research needs for the field of dynamic wireless charging systems. This 
project aims at analyzing vehicle energy consumption levels and accordingly determine the needs of an 
optimally designed dynamic wireless charging system to be deployed in automated mobility districts for 
refueling the connected and automated vehicles. 

Objectives 
The overall project objectives can be summarized as follows: 

• Identify vehicle energy consumption levels (including auxiliary energy consumption, i.e., air 
conditioning, thermal management, etc.) for given vehicle specifications, drive cycles, constant speed 
operations, and traffic conditions (speed variations). 

• Based on the vehicle energy consumption levels, identify the dynamic wireless power transfer (DWPT) 
requirements and size and design of the DWPT system specifications for a given automated mobility 
district for connected and automated vehicles. 

• Develop an optimization framework for optimal design of the power rating, track length, and placement 
of DWPT systems by minimizing the power rating, track length, and battery impact while maximizing 
the range extension or energy delivery to the vehicles for providing charge sustaining operation.  

• Analyze the grid requirements and system impact on the grid.     

Approach  
In a DWPT system, the system components include the electromagnetic couplers, electrical infrastructure 
(grid), grid-side power electronics including the front-end rectifier and the high-frequency power inverter, 
vehicle-side power electronics including the rectifier and filter stage, and the resonant tuning components. The 
power rating and sizing of all these components depend on the vehicle energy consumption levels since the 
DWPT systems must be sized and designed in order to accomplish charge sustaining mode of operation or 
considerable range extension. Therefore, energy consumptions of vehicles are evaluated on known duty cycles 
and constant speed operations. For the vehicle energy consumption levels, models and databases created by 
other national laboratories have been utilized. Team analyzed the point A-to-B constant speed modeling for 
light, medium, and heavy-duty vehicle classes considering the cases with and without auxiliary power. 
Constant speed modeling energy consumption models can be especially useful where the automated driving 
infrastructure can potentially eliminate the stops. Using the vehicle average power consumption levels and the 
route distance, the DWPT system can be sized in terms of the power level of the electrified roadway track and 
the section length of it under the assumption of rectangular and continuous power transfer profile to the 
vehicle.  

In order to analyze the power transfer characteristics of long-track based DWPT deployments, team completed 
the finite element analysis (FEA) model of a DWPT road section. This FEA model validates and details all of 
the early assumptions in the power transfer continuity along the track. While the smaller coils approach has 
very high peak efficiency, since the coil length is limited, there are power pulsations as the vehicle passes over 
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one coil to another. Moreover, the energy delivered to the vehicle is limited in this approach since the energy 
delivery is a function of the time integration of the power transfer curve. With the long track approach, the 
power starts from zero and gradually increases to the peak value as the vehicle starts getting aligned with the 
transmit track; then, power transfer stays constant along the track, and it gradually falls as the vehicle clears 
the track. Since the track is relatively longer, the power transfer stays almost constant along the track. The FAE 
model developed in this quarter validates these power transfer characteristics while identifying the DWPT 
track parameters, track to vehicle power transfer efficiency as a function of the track length, and the mutual 
inductance variation with respect to the vehicle position. The DWPT track-to-vehicle mutual inductance has 
also been modeled which is an indication of the power transfer profile to the vehicle. The block diagram of the 
system analyzed is shown in Figure I.3.2. 

Figure I.3.1 Block diagram of a typical track-based DWPT system.  

Once the power transfer characteristics are analyzed, team studied the optimal sizing of a dynamic wireless 
power transfer (DWPT) systems for highway applications. The system parameters must be selected carefully to 
reduce the overall cost per mile of DWPT. Among these parameters, system length is important due to its 
impact on the system coupling coefficient, overall efficiency, and the cost of construction and installation. The 
impact of this effect will increase if the quality factor of the system is low. Because high-efficiency operation 
is paramount for DWPT to be practical from both a capital and operational cost standpoint and the quality 
factors of systems may be limited, transmitter sizes will be constrained by the dimensions of smaller vehicles. 
In this case, it is advantageous to consider utilizing the longer lengths of heavier vehicles to have multiple 
paralleled receivers. This will both decrease the initial capital cost and ensure the maximum utilization of the 
DWPT system which will drive down the cost of using the system for all. If these costs are low enough, 
DWPT could revolutionize future transportation by eliminating range-anxiety and enabling long distance, 
charge-sustaining trips in CAVs. 

DWPT would increase the mobility of both freight and passengers and ultimately help remove the barrier of 
long-distance travel from transportation electrification. The analysis included an interoperable DWPT system 
that can be used to charge all classes of CAVs including light-duty vehicles (LDV) and heavy-duty vehicles 
(HDV). For example, a DWPT system may be designed to have transmitter lengths shorter than the length of a 
HDV to maximize efficiency for an LDV. Due to this, it may rely on having multiple receivers on an HDV to 
scale the power transfer relative to an LDV. A block diagram of such a system with 100 kW transmitters is 
illustrated in Figure I.3.2. With 42% roadway coverage, the system could enable charge-sustaining operation 
for both LDVs and HDVs at 70 mph.  
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Figure I.3.2 An example of a DWPT system using paralleled short sectional 100 kW primary couplers and arrays of pickup 
couplers. As displayed, the light-duty vehicle is receiving 200 kW and the heavy-duty vehicle is receiving 600 kW. 

For the system depicted in Figure I.3.2, a multi-objective optimization system based on the models is 
developed. The multi-objective optimization developed uses the following equations: 

The upper bound chosen for the system power rating Psys is based on the limits of the current state-of-art high-
power wireless power transfer systems. Three objective functions are used: Cinv(x,p) represents the cost of 
power electronics, Croad(x,p) is the cost of road construction, and Ccoupler(x,p) approximates the cost of the 
coupler material. The constraints of the optimization in equation (2) are charge- sustaining operation for the 
light and heavy-duty vehicles at a constant speed of 70 mph. Cinv(x,p) is calculated by considering the number 
of power electronic converters needed when each inverter is connected to one transmitter. Croad(x,p) is modeled 
as the road construction costs for trenching and resurfacing roadways to install the system. Ccoupler(x,p) is 
calculated as proportional to the amount of wire in air-core transmitters, given that the needed section of Litz 
wire is proportional to 𝑃𝑃sys for a fixed output voltage. All these functions are scaled by appropriate economic 
values and then multiplied by varying weighting factors 𝑊𝑊i to produce the objective function. This, with the 
inclusion of 𝜂𝜂coupler(ℓT) in the constraints is used to generate the Pareto fronts of solutions by using a weighted 
sum method. 

This project also evaluated the impact of the DWPT systems on the power system/grid in order to assess the 
grid infrastructure requirements that provides power to the DWPT systems. Team performed electromagnetic 
transient (EMT) studies to quantify the impact of DWPT systems on the grid. These studies are used to 
understand the grid infrastructure requirements to reduce the voltage variations in the grid. The reduced 

min   f(𝐱𝐱,𝐩𝐩) = W1W2Cinv(𝐱𝐱,𝐩𝐩) + (1 − W1)W2𝐱𝐱 (1) 
∙ Croad(𝐱𝐱,𝐩𝐩)  + (1 − W2)Ccoupler(𝐱𝐱,𝐩𝐩)
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voltage variations can improve the stability of grids and avoid inadvertent protection triggers. For the DWPT 
models, the DWPT system requirements were quantified based on the charge-sustaining mode of operation for 
the vehicles. 

Results 
The power consumption levels of an average passenger vehicle at different speeds are given in Figure I.3.3. 
According to this figure, for a vehicle travelling at 55 MPH, about 15kW dynamic wireless charging systems 
should be used continuously in order to achieve charge sustaining mode. Based on the energy consumption 
models, the DWPT kW-mile/100 miles coverage assessment for 100 miles for sustained constant speed are 
given in Figure I.3.4. According to this figure, it is seen that the energy requirements are very large at high 
speeds. This can be seen as the worst-case scenario for what power levels that the couplers should operate. 

For the FEA, team analyzed the embedded ferrite track efficiency and characteristics. When ferrites are 
embedded in the roadway, they reduce the efficiency of the track per unit length as their magnetic core losses 
are significant. This effect can be remedy by increasing the thickness of the ferrites (to reduce the peak flux 
density) but very thick ferrites may pose undue infrastructure costs. In this case, 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑡𝑡(2𝑁𝑁𝑡𝑡𝑡𝑡𝐼𝐼𝑡𝑡𝜌𝜌𝜌𝜌 + 𝑝𝑝𝑓𝑓) 
where 𝑝𝑝𝑓𝑓 is the ferrite loss per unit length. Figure I.3.5 shows the track-to-vehicle power transfer efficiency as 
a function of track length for various assumed ferrite thicknesses. With 1/16” thick embedded ferrites, the 
efficiency of a 100m track is about 84%. The efficiency increases to 92% and 95% for 2/16” and 3/16”, 
respectively. The dotted line depicts the loose upper bound on efficiency assuming lossless ferrites.  

 
 

Figure I.3.3 Vehicle energy consumption levels at different 
constant travel speeds.  

Figure I.3.4 DWPT coverage assessment for 100 miles of 
sustained constant speed traveling (drivetrain power only). 

Table I.3.1 gives the parameters of a redesigned secondary coil assuming roadway embedded ferrites. With the 
use of ferrites, coupling factor between the track and the vehicle assembly increases which allows a smaller 
number of turns on the secondary to achieve the required mutual inductance. Figure I.3.6 shows the airgap 
field distribution which is much more directed than seen in ferrite-less configuration. The inductance per unit 
length and voltage per unit length of the track were 3.09uH/m and 0.380kV/m, respectively. For a 100m track, 
the total capacitor compensation voltage will need to be on the order of 38kV, which is about a 50% increase 
from the ferrite free track. 
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Figure I.3.5 Block diagram of a typical track-based DWPT system. 

Table I.3.1 Example 100kW dynamic WPT 
secondary coil parameters for a roadway 

embedded ferrite track. 

Parameter Value 

Ls 63.3 µH 

M 4.81 µH 

Vs 5.75 kV 

Dx, Dy 48” 

Ip 3.09 µH/m 

Vp 0.380 kV/m 
 

 
Figure I.3.6 Airgap field distribution for the 100kW DWPT system deployment.  

Figure I.3.7 shows a normalized plot of track-to-vehicle coil mutual inductance as the vehicle moves over the 
track. Far away from the track, the mutual inductance is zero. As the vehicle begins to approach the track, the 
mutual inductance becomes negative (indicating reversed polarity coupling). Starting from a distance of about 
1.5 coil diameters, the mutual inductance beings to ramp up. The peak value of about 1.1 times the nominal 
value is obtained when the vehicle coil is aligned with the end-turn of the track. The mutual inductance reaches 
the nominal steady-state value after the coil is overlapping the track by about 2 diameters. This mutual 
inductance variation demonstrates that the power transfer is continuous and has a trapezoidal profile as the 
vehicle moves over the track. As seen from the results in Figure I.3.8, it is important to limit the coverage of 
DWPT systems due to the large expense of roadway construction. However, there are practical tradeoffs 
between the power rating and coverage of the system. With low coverages, the onboard energy storage and 
electronics of EVs must facilitate high charge rates. However, the power ratings in this case may still be lower 
than what would be required with high-power static charging because the DWPT system can transfer energy 
over a longer period of time than static charging systems while the EV is on the move. There is also an upper 
limit to the area-related power density that can be achieved by wireless-charging systems. 

 
 

Figure I.3.7 Variation of track-to-vehicle mutual 
inductance with respect to vehicle position.  

Figure I.3.8 Pareto solutions from the optimization model for 
two different cases (LDC only and LDV and HDV together) 



FY 2018 Annual Progress Report 

I  SMART Mobility- Advanced Fueling Infrastructure (AFI)    31 

Conclusions 
This project analyzed the vehicle energy consumption levels and provided an optimization framework for the 
optimal size and design of the DWPT systems. The optimization framework was developed to analyze the 
relationship between the range extension through DWPT, power rating of the DWPT tracks, and the vehicle 
speeds. A finite element analysis model was created to analyze the power transfer characteristics, efficiency, 
and mutual inductance variations between the electrified roadway tracks and the vehicles. The optimization 
model has established the relationship between the system coverage and the system power rating both for light 
and heavy-duty vehicle classes. Finally, team also looked into the impact of the DWPT technology on the 
power grid in order to determine the grid infrastructure requirements supporting the DWPT technology 
deployment.  
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Project Introduction  
With recent advances in vehicle technology and expected future developments on transportation electrification 
and autonomous driving, it is now possible for ride-sharing or “transportation network companies” (TNCs), 
e.g., Uber and Lyft, to operate a fleet of autonomous plug-in electric vehicles (PEVs). On one hand, compared 
with traditional internal combustion vehicles (ICVs), PEVs generally have much higher fuel efficiency, thus 
will significantly reduce a company’s fuel costs. However, the company may also need to investment in 
sufficient charging infrastructure to eliminate the so-called “range anxiety” concerns for PEVs [1]. On the 
other hand, vehicle automation allows companies to hire less human drivers to save labor costs. However, 
autonomous vehicles could be every expensive especially in the early stage of commercialization. The above-
mentioned factors will jointly alter the key economic considerations of a future ride-sharing or TNC Given a 
transportation network and historical data of trip demands, a TNC operator could then seek to find the optimal 
sizing (number of chargers) and placement (location) of PEV charging stations, as well as the PEV fleet size 
by minimizing the total cost. 

Objectives  
The objectives of this task are to: 1) further develop and implement a PEV charging system planning algorithm 
for support of automated PEV taxi systems; 2) use a nodal-based concept for identifying the locations of DC 
fast charging (DCFC) stations and defining the number of charge points at each station in a representative 
geographic area of the San Francisco (SF) Bay Area; 3) operating the BEAM model with the FCSPlan 
algorithm outputs for specific cases; 4) conducting model runs that vary the driving range of the vehicles (e.g., 
75 and 150 miles driving range) and the power level of the DCFC network (50-500 kW per charge point); and 
5) analyzing and summarizing task findings. The study applies previously developed automated plug-in 
electric vehicle (PEV) charging system design and fleet modeling algorithms to a real-world urban setting in 
the SF Bay Area, using the Behavior, Energy, Autonomy, and Mobility (BEAM) framework. It also considers 
PEV routing and rebalancing across the transportation network. We develop a column generation algorithm to 
approximately and efficiently solve the constructed problem. Based on the proposed framework, we calculate 

mailto:David.Anderson@ee.doe.gov


FY 2018 Annual Progress Report 

I  SMART Mobility- Advanced Fueling Infrastructure (AFI)    33 

the economics of electrifying a fully automated commercial ridesharing fleet and investigate various PEV and 
charging system parameters, e.g., PEV battery capacity and charging power of chargers, on the ridesharing 
systems’ overall costs. 

Approach  
First, we have further developed and applied a joint fleet size and PEV charging station planning model 
(developed in AFI Task 4 FY17) called FCSPlan to provide a charging system plan for use in BEAM 
framework simulations for the SF Bay Area. The model adopts Beam simulation to identify nodal charging 
demands of an automated electric vehicle (AEV) fleet [2], and utilizes the K-means algorithm to determine the 
locations of charging stations [3]. Then, a service level model is design to size each charging station subject to 
given quality of service constraints [4]. We have further expanded the proposed model to consider 
heterogeneous PEV driving range (battery capacities) and charger power. Our work now encompasses PEVs 
with different size batteries (driving range per charge) and charging networks with higher and lower power 
levels (charge rate per time). Finally, we have now integrated the use of the planning model with the BEAM 
framework to conduct analysis in a realistic metro region. This then provides insights on infrastructure 
planning for autonomous shared-use PEVs for policy makers, researchers and practitioners. Figure I.4.1 below 
shows the overall approach to the project. 

 

Results  
We evaluated the charging stations requirement for different cases with different fleet size (5K, 10K, and 15K 
vehicles in fleet), different vehicle driving ranges (75 miles and 150 miles), and different rated charging power 
(50 kW and 250 kW). We calculated the level of charging demands, the number of required chargers, and the 
number of charging station locations for all the above cases. The results are illustrated in Figure I.4.2 through 
Figure I.4.5. 

The number of charging demands is generally inversely proportional to fleet size. With more PEVs on road, a 
PEV will only be required to satisfy fewer ride-hailing requests. As a result, the average vehicle mileage will 
decrease, so that fewer PEVs may need to get charged. Number of charging demands is quite sensitive to PEV 
driving range. The daily charging demands decrease significantly when PEVs’ driving range increase from 75 
miles to 150 miles. Besides, the rated charging power can also impact number of charging demands. With 
higher charger power, PEVs will have less “down time” for charging and then more time for driving. Hence, 
higher charger power tends to encourage PEVs to charge more 

Figure I.4.1 Charging Station Planning Based on Nodal Demands 
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.The required number of chargers in Figure I.4.3 in the studied AF Bay Area is proportional to the number of 
charging demands as shown in Figure I.4.2, an intuitive result. Along with the number of charging demands, 
the number of chargers is also quite sensitive to charger power. A charger with a 250 kW capacity can satisfy 
more PEV charging demands than one with a 50 kW capacity, with a correspondingly higher turnover rate.  

 

Figure I.4.3 Number of chargers in different cases 

Along with the number of chargers, the number of charging stations is also an important metric to evaluate 
charging infrastructure demands. There is a trade-off between building large centralized charging stations with 
building smaller and more distributed charging stations, with fewer charging points per station. The former 
enhances the utilization level of the chargers but also increases PEV “down time” for accessing chargers. On 
the other hand, the latter are more convenient, being closer to the PEV demands, but may have a lower 
utilization level and requirement for more overall chargers. In our simulations, we assume that we need to 
locate enough charging stations so that 95% of demands can reach a charging station within 5 miles and the 
average driving distance between a demand to its nearest charger is 1 mile.  

As shown in Figure I.4.4, the number of charging stations in different cases are all around 130, which is not 
significantly affected by fleet size, driving range, and charger power. This is because, in order to guarantee the 
charger accessibility described above, we need to make sure that we will install enough charging stations that 
cover the studied areas properly. We note here that the number of charging station locations is mainly 
determined by the coverage area. The location of charging demands and charging station locations for two 
different cases is given in Figure I.4.5. The colored dots represent locations of charging demands, the black 

Figure I.4.2 Number of charging demands in different cases 
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squares denote locations of charging stations. We can see that though the right-hand case has lower charging 
demands, the number of charging stations is approximately equal to that of the left-hand case.  

 

Figure I.4.4 Number of charging stations in different cases 

 

Figure I.4.5 Illustrative examples of charging station locations 

 

In electric taxi fleet operation, the downtime from charging the vehicle can be a significant cost to the TNC 
due to the lost revenue that it can potentially earn for that time. This cost can be further exacerbated by 
prolonged charging duration due to low temperatures. A statistical method was allied on on-road data from 
electric taxicabs to quantify the magnitude of the effect of temperature on charging duration. The results 
indicated: 

• The performance deterioration of a 30-minute-long DCFC charging from warm temperature (25°C) to 
cold temperature (0°C) can be as large as a 36% decrease in the end state of charge (SOC); 
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• More frequent charging is needed due to higher energy consumption from vehicle heating, ventilating 
and air-conditioning (HVAC) usage in cold climate; 

• Either faster (higher power) chargers, more chargers, or both are needed for electric taxi operations in 
cold regions to maintain the level of service; and 

• The performance of DCFC can vary across the United States due to the variation in regional climate. 

 

The above results indicate the charging infrastructure needs for taxi operation would vary depending on the 
climate of the region in which taxies are operated. Future charging stations will likely be able to charge PEVs 
faster and may mitigate the temperature effects, but with corresponding grid impacts. 

With regard to overall project results, the detailed simulation results for two cases that both have 10 k AEVs 
and 50 kW rated charging power but with different vehicle driving range, i.e., 75 miles and 150 miles, are 
given in Table I.4.1. In both cases, we assume that the planner shall install enough number of charging stations 
to ensure that 80% of the EVs do not need to wait in a queue when they visit a charging station.   

Figure I.4.6 Relationships of SOC, charge duration, and temperature  
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 Table I.4.1 BEAM Output Metrics for San Francisco Bay Area Cases – PEV Taxis With 80% Service Level 

METRIC 
Case 1: 50 kW Charging 
Power and PEV Driving 

Range 75 Miles 

Case 1: 50 kW Charging 
Power and PEV Driving 

Range 150 Miles 

   Passenger trips 368,847 395,679 

   Unique passengers 166,619 173,857 

   Total VMT 1,700,179 1,743,538 

   VMT per vehicle 174 178 

   Avg. Speed 30.4 30.3 

   Avg. Speed (VMT weighted) 33.0 33.1 

   Avg trip length with passenger 3.1 3.1 

   Avg deadhead trip length 1.3 1.3 

   Avg reposition trip length 2.7 2.8 

   Empty VMT fraction 32.9% 29.4% 

   Charger Number 2,159 1,936 

   DCFC electricity (kWh/day) 407,148 284,405 

   TOTAL FUEL COST ($/YEAR) 32,726,660 27,730,364 

   CHARGER INVEST ($/YEAR) 4,331,094 3,883,741 

   FUEL COST PER PASSENGER TRIP ($) 0.24 0.19 

   CHARGER COST PER PASSENGER TRIP ($) 0.03 0.03 

From the above table, we can observe that PEVs will consume much more DC fast charging electricity with 75 
miles driving range than that with 150 miles driving range. As a result, the company operating the fleet with 
the shorter-range vehicles has to pay a somewhat higher electricity bill per passenger trip, but in the bigger 
picture these are offset somewhat by lower per-vehicle costs.  

With regard to overall costs of operation (fuel plus charger costs), Figure I.4.6 below shows a comparison with 
a gasoline internal combustion engine (ICE fleet) with gasoline at an example cost of $3 per gallon. As shown 
the operation costs for an AEV fleet is considerably lower than that of an ICE-based vehicle fleet, even with a 
relatively high level for the estimate of needed chargers. 

Figure I.4.6 Total operation cost comparison between ICEV and EV fleets 
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Conclusions 
Initial findings indicate that longer driving range (larger batteries) leads to a smaller AEV fleet size, higher 
investment costs for the AEVs, less daytime charging demand, and lower investment costs for charging 
systems. Higher charging power leads to less investment in charging stations, but higher investments in grid 
upgrades. In addition, adopting higher power chargers will also reduce the downtime of the AEVs due to 
charging and enhanced PEV utilization, reducing the required vehicle fleet size to provide a given service 
level. Cold weather can increase the demands for PEV charging due to vehicle heating requirements and 
potential impacts on charging time with colder battery packs, depending on pack temperatures at the start of 
charging relative to ambient temperatures. Overall, we find that in terms of operating costs (fuel plus the cost 
of PEV chargers), these costs are typically lower than the operating costs of a comparable gasoline ICE fleet 
across a wide range of the number of PEV charging points in the network.  
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Project Introduction  
Connected and automated vehicles (CAVs) may significantly change mobility, utility of travel, and result in 
large changes in transportation energy use. Under SMART Mobility and related research efforts, these 
potential changes are being studied using models and simulations, largely at a regional or local scale. The 
purpose of this task is to synthesize such research to a national level, to deliver estimated impacts of CAVs and 
better understand the factors on which these impacts depend. This is key to the SMART/EEMS goal to 
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understand overall mobility and energy efficiency opportunities at system level, accounting for 
behavior/economic responses. 
 

Objectives  
The objective of this task is to estimate likely levels of adoption of CAVs and impacts on mobility, energy, and 
costs at a national level. This is being done for scenarios of interest as identified by the SMART consortium 
including both low automation, modeled by adaptive cruise control (ACC) and cooperative adaptive cruise 
control (CACC), and highly automated vehicles (both privately-owned and shared). In this study, technological 
penetration ranges from low levels representative of gradual evolution of CAV technology into the market to 
bounding analyses of ubiquitous CAV technologies.  
 
Deliverables for FY 2018 were: 
• A report on transferring vehicle miles traveled (VMT) simulated in regional CACC cases to the national 

level, 

• A preliminary design of a heavy-duty vehicle component and initial implementation of a shared mobility 
component (for light-duty vehicles) of the CAVESIM national-level model, 

• A report on CAV market penetration scenario analysis, 

• Report on fuel consumption aggregation for a CACC case, and 

• Initial scoping of the update of the 2016 CAVs bounding analysis. 

In FY19, the task plans to deliver: 

• National-level estimates of energy, mobility, and cost impacts for highly automated vehicle cases, 

• A national level impacts analysis of connectivity and automation in HD/freight, and 

• An update of the earlier CAV impacts bounding analysis. 

Approach  
Data and quantitative relationships associated with CAV adoption, travel behavior, and vehicle energy use, and 
their interactions, are transferred and expanded from the results of regional CAV scenario simulations. 
National-level models, with some regional disaggregation, are used along with methods to estimate CAVs 
adoption and methods for aggregating detailed regional results to give vehicle energy consumption and use at a 
national level. In addition, results from SMART Mobility tasks and related work outside of SMART Mobility 
are being reviewed to refine and extend an earlier study on the upper and lower bounds on possible impacts of 
CAVs on energy and mobility (Stephens et al., 2016). 

The five major subtasks are: 

• Estimate potential adoption of CAVs, both privately owned and shared, under different future conditions 
at a national level considering the heterogeneity of CAVs adopters with the MA3T-MC model. MA3T-
MC model can estimate adoption of highly automated vehicles (privately owned) and shared mobility 
services (such as Uber and Lyft). 

• Analyze changes in mobility, including metrics such as VMT and passenger-miles-traveled (PMT), and 
in energy use in CAVs scenarios at a national level using functional relationships developed from 
economic and market models that are informed by literature and by results of the SMART Mobility 
tasks, using the CAVESIM model. The national-level modeling framework CAVESIM was developed to 
produce estimates of national or regional changes in VMT and fuel use. While CAVESIM is much more 
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aggregated than regional meso-scale agent-based models such as BEAM or POLARIS, it is more nimble 
and can be used to quickly analyze a range of inputs.  

• Estimate changes in travel behavior in CAVs scenarios by transferring or expanding results from 
regional simulations of CAVs scenarios, such as those produced from the POLARIS platform. ANL is 
working with the University of Illinois at Chicago to expand results of detailed POLARIS simulations of 
CAVs in the Chicago metropolitan area to the national level, specifically travel behavior metrics 
including trips per day, travel time per day, VMT, and traffic flows. 

• Estimate changes in vehicle energy use in CAVs scenarios at a national level by aggregating effects of 
CAVs on vehicle-level energy use with VMT or traffic flow estimates. NREL is developing and 
validating methods to aggregate vehicle-level energy use from other SMART Mobility tasks with travel 
behavior estimates from ANL to give national-level changes in energy use under CAVs scenarios. 

• Review SMART Mobility results and literature on the mobility and energy implications of CAVs to 
explore potential upper and lower bounds. ANL, working with NREL and ORNL, will review and utilize 
results from SMART Mobility tasks and relevant literature to refine and update the bounds on energy 
and mobility impacts of CAVs.  

Together, these five subtasks will provide national-level estimates of changes in mobility, energy use and costs 
and enable better understanding of the large-scale implications of CAVs. These analyses will be performed for 
a range of CAVs scenarios that are being developed under SMART Mobility.  

Results   
In FY18 progress was made on all five subtasks.  

Key results from MA3T-MC include: 1) significant consumer benefits of reduced travel time cost, reduced 
driving stress and reduced insurance premium (an approximate but likely underestimate of safety value), 2) 
reduced range anxiety of short-range BEVs due to efficient automated driving, 3) disruptive increase of 
personal vehicle sales due to significant consumer benefits of automated vehicles, and 4) decrease of personal 
vehicle sales when automated shared mobility becomes more affordable. Figure (a) and (b) show components 
of consumer disutility (generalized costs) of human-driven vehicles (HV) versus highly automated vehicles 
(AVs) of different powertrains: spark-ignition (SI) vehicle, battery electric vehicle (BEV), and plug-in hybrid 
electric vehicle (PHEV) in 2035 and 2050, respectively. The yellow bars in these plots show the magnitude of 
the generalized cost of range anxiety in short-range BEVs, which is projected to decrease due in 2050 to 
efficient automated driving, as in Figure b. Projected personal vehicle sales, shown in Figure I.1.2 a show 
disruptive increase in sales due to significant consumer benefits of automated vehicles. In contrast, the model 
projects decrease of personal vehicle sales when automated shared mobility becomes more affordable. With a 
rapid large-scale adoption of shared, highly automated vehicles, the primary mode of personal or household 
travel is projected to shift significantly away from other modes to shared AVs, as in Figure I.1.2 b. These 
results are being shared with other SMART Mobility tasks to coordinate on assumptions in different scenarios. 
It is anticipated that updated results will be needed as scenarios are defined, but the model is ready and can 
quickly provide updated estimates. 

National-level analysis of a range of CAVs scenarios of highly automated vehicles using the CAVESIM model 
showed that national VMT and fuel use by CAVs can be expected to change significantly (tens of %) 
compared with manual vehicles under a range of assumptions about future CAV technology and mileage-base 
costs (Leiby and Rubin, 2018). The model accounts for major components of generalized costs and their 
interdependencies, showing how different components of generalized cost change under different conditions. 
This analysis considers the influence of per mile cost and per gallon fuel costs on VMT and other components 
of private and social costs, such as travel congestion and accident costs, fuel use externality costs, and tax 
interactions. Preliminary results indicate that cost incentives can be designed to allow the market development 
of CAVs to take advantage of their private benefits while balancing other costs and benefits. 
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The CAVESIM model was extended to include shared mobility, in particular sharing of rides (ride pooling). 
Ride pooling may be an important strategy for the improvement of Mobility Energy Productivity by limiting 
growth in unproductive VMT or energy use from vehicle repositioning and empty or low-occupancy vehicle 
travel. The purpose is to explore and represent key outcomes and tradeoffs from ride-pooling at the aggregate 
level. 

 

 

In order to expand travel behavior results from detailed POLARIS simulations of vehicles with cooperative 
adaptive cruise control in the Chicago metropolitan area to the national level, transferability modeling was 
used. Transferability modeling successfully yielded distributions of the number of trips taken per day and the 
time spent traveling per day at a national level by bins or clusters of households based on the results of 
baseline and CACC scenario simulations in POLARIS. The method is described in (Shabanpour et al., 2018), 
along with results and validity checks of the baseline scenario. Multiple variations of this method were tried in 
order to transfer VMT results from the POLARIS simulations to the national level. However the resulting 
VMT projections were not yet sufficiently unreliable. Attempts were made by aggregating households to 
different geospatial scales, using different explanatory variables, including household or regional average 
demographics, land use variables, and accessibility variables, but the explanatory power of the VMT models 
and resulting distributions of VMT have not achieved desired accuracy. However, two alternative approaches 
are being developed to provide the desired changes in travel behavior from POLARIS simulations. Instead of 
modeling and transferring VMT for individual scenarios the change in VMT or the change in traffic flows on 
different links in the road network between a CAVs scenario and the baseline scenario will be modeled. If 
successfully validated, these models will then be applied at a national level and will supply the information 

Figure II.1.1 Components of consumer utility modeled in MA3T-MC in years 2035 (a) and 2050 (b) 

(a) (b) 

Figure II.1.2 Projected personal vehicle sales (a), and projected passenger-miles traveled by the primary mode of 
household (HH) travel (b) 

(a) (b) 
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needed to combine with vehicle-level energy use analysis to give national-level energy use. Data are being 
prepared to apply these methods.  

A national aggregation framework has been established and can accept various adoption rate inputs with 
respect to both alternative powertrain and CAV technology market penetration. The energy modeling approach 
for rolling up estimates of fuel consumption in CAVs scenarios to the national level was validated. NREL 
demonstrated the national aggregation framework for three cases: a baseline case (no CACC penetration), and 
two CACC cases in which the penetration level varied in response to different assumed technology costs and 
value of travel time. Vehicle-level fuel consumption and road type were available at the link level. CACC 
penetration levels were based on the 2017 concept paper by Shladover and Greenblatt (Connected and 
Automated Vehicle Concept Dimensions and Examples). This showed that the approach is tractable, flexible, 
and customizable, and takes into account technology penetration impacts on vehicle stock and CACC impacts 
on VMT distribution and fuel consumption rate matrices. The pipeline is established for running CACC 
impacts, and is transferable to other CAVs technologies. 

For updating the CAVs energy and mobility impacts bounding study, the factors to be considered have been 
identified. In the last few years, SMART Mobility and external research has yielded many updated analytical 
results that can refine the previous bounding analysis. This year’s update of the bounding study will revisit and 
update those factors while looking at new factors impacting energy consumption and vehicle travel. Also, the 
original analysis did not look at interactions between the twelve factors identified (e.g., how vehicle rightsizing 
and ride-sharing may interact). The CAVESIM model may provide the framework to analyze combined effects 
and estimate potential bounds. 

Conclusions   
National level modeling and aggregation methods are being enhanced and applied to estimate potential future 
CAV adoption levels and changes in mobility and energy use for a range of scenarios.  

ORNL extended the MA3T-MC vehicle and mode adoption/use modeling to shared mobility. The model was 
used to produce projections of CAV penetrations. The preliminary results show that highly automated vehicles 
(HAVs), if perceived as safe and reliable, could disrupt personal vehicle ownership in two ways. They could 
increase personal vehicle ownership due to their significant consumer value from travel time cost recovery, 
driving stress reduction, and safety benefit. However, if HAVs enter the shared mobility sector with attractive 
pricing, they could lead to a decrease in personal vehicle ownership. 

The CAVESIM model was used to compare potential changes in travel and energy use by automated and 
manually (human-driven) LDVs and to analyze influences of decentralized incentives on VMT and energy use 
by CAVs versus manual vehicles (Leiby and Rubin, 2018), ORNL developed and implemented a new 
component in the CAVESIM model to represent ride pooling (with vehicle automation) to explore implications 
for passenger and vehicle miles traveled, and has begun extending the CAVESIM model to a simplified 
representation of HDVs.  

Transferability modeling was used to provide national-level distributions of trips per day and travel time under 
baseline conditions and for a CACC scenario, using results from POLARIS simulations. Methods to estimate 
changes in other mobility metrics such as VMT or traffic flows are under development. 

Approaches for national-level fuel use aggregation of regional simulation results were assessed and validated : 
a baseline case (no CACC penetration), and two CACC cases in which the penetration level varied in response 
to different assumed technology costs and value of travel time. 

For the planned update of the CAVs impacts bounding study, factors that will be considered in updating the 
CAVs energy and mobility impacts study were identified. The updated study will be broadened somewhat in 
scope from the previous bounds study to include not only updated bounds of effects previously considered, but 
also interactions between factors.  
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Project Introduction  
This project will develop traffic microsimulation tools to predict the impacts of connected and automated vehicle 
(CAV) on traffic and energy consumption. The CAV systems only exist today in very limited numbers in the 
form of prototype vehicles with limited capabilities. The status of these systems makes it impossible to do 
realistic field tests that can directly measure traffic or energy consumption impacts. Consequently, it is necessary 
to develop large-scale simulations to predict what would happen for high market penetration of CAVs. Producing 
meaningful and reasonable estimates of the impacts is rather challenging because it requires high-fidelity 
microscopic traffic models which are sensitive to the changes in vehicle behaviors, particularly the dynamic 
interactions CAVs with other traffic. 

This report covers the simulation of CAV impact on traffic mobility and energy consumption in three aspects: 
(A) Traffic impact of CAVs on mixed traffic with manually driven vehicles with different market penetration 
and variety of scenarios; (B) Fuel Consumption Model Improvement based on MOVES (Motor Vehicle 
Emission Simulator); and (C) Improve Traffic Mobility for Low CAV Market Penetration Using V2I (vehicle-
to-infrastructure communication) type of VSL (Variable Speed Limit). Therefore, each section of the report will 
contain three parts accordingly. 

A. Traffic Impact of CAVs on Mixed Traffic for Intersection 
Vehicle energy savings and traffic mobility improvement in real world mainly affected by many factors in 
three levels: 

• Meso/macroscopic traffic patterns:  
o Progressive market penetration of CAVs and ATM strategy will change meso/macroscopic traffic 

pattern significantly 
• Local vehicle following behavior:  

o Aerodynamic drag reduction 
o Speed variation reduction 

• Vehicle level:  
o Smoothing vehicle dynamics control 
o Incorporating lower level powertrain/drivetrain characteristics, or actively controlling them 

mailto:xiaoyunlu@lbl.gov
mailto:David.Anderson@ee.doe.gov
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The simulation using traffic network with correct models for human driven and CAVs can be used for the 
evaluation of mobility and potential fuel saving benefit due to traffic pattern which is the highest level as listed 
above. 

B. Fuel Consumption Model Improvement 
For the evaluation of fuel consumption in microscopic traffic simulation with mixed traffic of manually driven 
vehicles and CAVs, it is necessary to have a reasonable fuel consumption model with certain input parameters 
which are available in simulation. Since the fuel consumption estimation in simulation can be in aggregated 
level like other performance parameters such as Total Travel Time, we have decided to look into a reasonable 
aggregated fuel consumption model for this purpose. The Motor Vehicle Emission Simulator (MOVES) model 
was the initial selection for this purpose. Since we have CACC truck field test data, particularly the extensive 
fuel consumption test data at Transport Canada Test Track with accurate fuel consumption measurement, we 
have used the data for validation of the MOVES model. After some level of analysis, the project team found 
out that the MOVES model under estimated the fuel consumption for some maneuvers and speed range, and 
over-estimated in others. Therefore, the project team decided to put some effort for improvement the fuel 
consumption model. This was the motivation of this part of work. 

C. Improve Traffic Mobility for Low CAV Market Penetration Using V2I (vehicle-to-infrastructure 
communication) Type of VSL (Variable Speed Limit) 
Simulation showed initially that when the market penetration of CACC vehicle is less than 40% (Figure II.2.1), 
the energy consumption increasing instead of decreasing. The reason was that, for such low market penetration, 
there were not many chances for CACC vehicles to get together to form platoons or CACC strings. Instead, most 
CACC vehicles had to operate in ACC mode. It is well-known through theory, simulation, and experiment that 
ACC vehicles will make traffic worse due to cumulative delays. However, the market penetration of CAV will 
be a lengthy and progressive process due to the large population of the status quo manually driven vehicles. 
Therefore, it is necessary to develop a feasible strategy which can be used in the period of low market penetration 
of CAVs for improving the mobility and energy saving. This is the motivation for this part of work. 

Figure II.2.1 Simulation showed that low market penetration (< 40%) of CACC vehicles caused fuel consumption increase 
than the status quo traffic (without CACC vehicles) 
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Objectives  
A. Traffic Impact of CAVs on Mixed Traffic for Intersection 
The objectives for this part of work include: 

• Refining traffic microsimulation models that were developed under previous research projects supported 
by the U.S. DOT so that they can be used for wider range of CAV simulation scenarios 

• Extending previous traffic microsimulation models from freeway applications to urban signalized arterial 
intersections, including the vehicle interactions with the traffic signal control systems 

• Integrating the traffic microsimulations with post-processing to produce estimates of the energy 
consumption derived from the vehicle motion trajectories 

• Applying the traffic microsimulations to diverse transportation networks, including rural and urban 
freeway environments, high-density and low-density signalized arterial corridors, and environments with 
both high and low percentages of truck traffic, so that the differences in energy impacts can be better 
understood and used to support subsequent national impact projections 

• Producing estimates of the energy that can be saved for different levels of market penetration of CAVs 
operating at different levels of automation, both with and without connectivity, in specific scenarios that 
can be extrapolated to represent national impacts.  

B. Fuel Consumption Model Improvement 
The objective for this part of work was to work out a reasonable fuel consumption model which could be 
applied in microscopic traffic simulation to evaluate the fuel saving benefit for different scenarios and with 
different market penetration of CAVs in mixed traffic.  

C. Improve Traffic Mobility for Low CAV Market Penetration Using V2I Type of VSL 
As we mentioned before, low market penetration of V2V type of CAV could potentially make the traffic 
worse. The objective for this part of work is to develop a strategy with connectivity with V2I for improving 
traffic mobility and energy saving when the market penetration of CAVs are low, e.g. below 40%.  

 

Approaches 
A. Traffic Impact of CAVs on Mixed Traffic for Intersection 

This part of work builds upon a set of traffic microsimulation models that were previously developed at the 
University of California’s PATH Program, based on the NGSIM Oversaturated Flow Model implemented on the 
Aimsun microsimulation platform. These models already include many enhancements to produce more realistic 
representations of normal drivers’ car following and lane changing behavior, plus car-following models for 
cooperative and uncooperative (autonomous) adaptive cruise control systems for cars and heavy trucks that were 
calibrated directly from PATH experiments on full-scale cars and trucks. The truck response and fuel 
consumption data were derived from current research in SMART Mobility Task 7A3.1. The fuel consumption 
is being estimated using MOVES, and those estimates are being calibrated against the real vehicle test data and 
potentially other energy consumption modeling tools.  

In addition to the PATH car-following and lane-changing models, this project develops a cooperative signal 
control algorithm that aims to maximize the intersection throughput by leveraging the CAV capabilities. The 
major advantage of the algorithm is that it perceives the real-time traffic condition based on the inputs from both 
the CAVs and fixed traffic sensors (e.g., loop detectors and radar sensors). Such an advanced traffic status 
perception allows it to predict the future movements of the CAVs and manually driven vehicles. The predicted 
information is the basis for the algorithm to compute the optimal traffic signal phasing and time (SPaT) plans 
that enables the intersection throughput maximization. Because the traditional traffic data sources are used to 
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supplement the datasets provided by the CAVs, the algorithm can be implemented at low CAV market 
penetration scenarios in case the intersection controller cannot gather sufficient traffic information from CAVs. 
In addition, the algorithm recognizes that CAVs can discharge from the queue more efficiently than the manually 
driven vehicles. It thus avoids assigning an equal green time to the CAVs and the manually driven vehicle. This 
leads to a further improved utilization of the green time resource. Moreover, the algorithm is designed to be 
implemented in the National Electrical Manufacturers Association (NEMA) 8-phase controllers. This makes the 
algorithm readily applicable at numerous real-world intersections. 

B. Fuel Consumption Model Improvement 
The general approach adopted for this part of work was to use field test data to validate and to improve the fuel 
consumption model to the level that it could reasonably reflect the actual fuel consumption for CACC truck 
operation. The test data was from two types of tests of 3 CACC trucks: in real-world traffic on freeway 
corridor and on the Transport Canada Test Track. The latter test was extensive and therefore generated 
significant amount of data which could be used. Besides, the test data included accurate measure of actual fuel 
consumption which was unique for this part of work. 

In general, the key parameter to estimate energy consumption rate for a truck is Scaled Tractive Power (STP), 
which is considered as the required tractive power to move a truck, normalized by a constant coefficient. 
Scaled Tractive Power at time t (𝑆𝑆𝑆𝑆𝑃𝑃𝑡𝑡) is computed as following in [1], [2], [3]:   

 𝑆𝑆𝑆𝑆𝑃𝑃𝑡𝑡 = 𝐴𝐴𝑣𝑣𝑡𝑡+𝐵𝐵𝑣𝑣𝑡𝑡2+𝐶𝐶𝑣𝑣𝑡𝑡
3+𝑀𝑀𝑣𝑣𝑡𝑡(𝑎𝑎𝑡𝑡+𝑔𝑔 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠)
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

   

where 

𝑣𝑣𝑡𝑡: Velocity [m/s] at time t, 

𝑎𝑎𝑡𝑡: Acceleration [m/s2] at time t, 

𝑔𝑔: Gravitational acceleration [m/s2] which is equal to 9.8 [m/s2] 

𝜃𝜃: Road grade, 

𝑀𝑀: Mass of the vehicle [metric ton], and  

𝑓𝑓𝑙𝑙𝑠𝑠𝑎𝑎𝑙𝑙𝑠𝑠: is the scale factor equal to 17.1 [metric ton] 

𝐴𝐴,𝐵𝐵, and 𝐶𝐶: Road-load coefficients for which calculation details are illustrated in the next section.  

Once 𝑆𝑆𝑆𝑆𝑃𝑃𝑡𝑡 is computed, one needs to determine the vehicle operating mode. MOVES defined 23 running 
operating modes. The operating mode 0 represents stopped vehicles (speed < 0.45 [m/s] = 1 [mph] ) and the 
operating mode 1 represents deceleration greater than 0.4  [m/s2]). If a vehicle does not have an operating 
mode of 0 or 1, its operating mode is determined based on its 𝑣𝑣𝑡𝑡 and 𝑆𝑆𝑆𝑆𝑃𝑃𝑡𝑡 as demonstrated in Table  II.2.1. 
Each cell of the figure returns an operating mode corresponding to a given speed class and a STP class. For 
each operating mode, an energy consumption rate can be read from Figure II.2.2.     
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Table  II.2.1 Speed Bin Definition for MOVES Model: Determination of operating modes 

  Speed class ( or bin) ranges  
[mph] 

  1-25 
(bin 1) 

25-50 
(bin 2) 

50+ 
(bin 3) 

VSP Class 
[kW/metric tons] 

30+ 

16 

30 40 

27-30 
29 39 

24-27 

21-24 
28 38 

18-21 

15-18 
27 37 

12-15 

9-12 15 25 
35 

6-9 14 24 

3-6 13 23 

33 0-3 12 22 

<0 11 21 
 

 

Figure II.2.2 energy consumption rates for heavy duty trucks  

 

The fuel rate estimated by MOVES should be converted to [g/s] to compare with J-1939 bus data. 
The conversion is performed using the following equation.  

Fuel = Energy
(EnergyContent)

  
 

 

where, units of Fuel and Energy are in [g/s] and [𝐾𝐾𝜌𝜌/s], respectively; and the value of Energy Content 
is equal to 43.488 [𝐾𝐾𝜌𝜌/𝑔𝑔] (MOVES technical Report-b, 2015).  
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In particular, real fuel consumption data are used to evaluate discrepancies in fuel consumption estimated by 
MOVES and propose a calibration model to achieve better accuracy. The study focuses on heavy duty trucks 
with total gross weights of 13.5, 29.5 and 50.6 metric tons during acceleration, deceleration and constant 
speed. 

C. Improve Traffic Mobility for Low CAV Market Penetration Using V2I Type of VSL 
The approach for this topic is as follows: An Active Traffic Management (ATM) strategy, particularly, Variable 
Speed Limit (VSL) was adopted to optimize the most downstream bottleneck flow. It is assumed that all the 
automated or partially automated vehicles have vehicle-to-infrastructure connection (V2I). This assumption is 
easy to implement since this connection can be implemented with a simple API (Application Program Interface) 
of cellular phones. The cellular phone can connect with vehicle with Bluetooth as most vehicles are currently 
doing. With those connections, the VSL determined by the Traffic Management Center (TMC) can be passed to 
the vehicle and used as the set-speed of the ACC vehicle. It can also be displayed to the driver and the driver can 
follow this set speed based on the actual traffic situation in the front. The determination of the VSL for each 
section is achieved by Model Predictive Control based on the speed dynamics of the second order METANET 
model [6]. The model can be reduced in practice in field implementation. For validation of the algorithm, a well-
calibrated Aimsun microscopic traffic simulation model of I-66 East Bound inside the Beltway was used as the 
case study.  

The design procedure can be divided into the following steps: 

Step 1: Divide the freeway network into cells based on section length, number of lanes, onramp locations and 
traffic detector locations; 

Step 2: Determine the desired speed near the most downstream bottlenecks using a simple regulator feedback 
control; 

Step 3: Determine the VSL in other cells using Model Predictive Control approach which is discussed as 
follows. 

Technical details are referred to [6]. 

 

Results  
A. Traffic Impact of CAVs on Mixed Traffic for Intersection 

The effects of the proposed signal control algorithm on traffic flow mobility and vehicle fuel consumption 
have been tested in a simulated arterial network where the manually driven vehicles and CAVs are modeled by 
the PATH car-following and lane-changing models. In the study, we focused on the evaluation of adaptive 
cruise control (ACC) and cooperative adaptive cruise control (CACC) systems for passenger cars. Although 
the ACC and CACC systems represent Level 1 automation, their car following behavior is essentially the same 
as the car following behavior expected from vehicles that use higher levels of automation, so these results can 
be generalized for the most part to those higher automation levels. The important distinction is between the 
autonomous automation systems (those that do not do active coordination) and the cooperative automation 
systems (which use V2V communication to actively coordinate their behaviors). 

The test intersection is a four-way intersection as illustrated by Figure II.2.3. The southbound and northbound 
approaches are major approaches with two through lanes and a dedicated left turn lane. The westbound and 
eastbound approaches are minor approaches with one through and right turn lane and one left turn lane. The 
major approach has a traffic demand of 95% through movement and 5% left turn movement. The traffic 
volume of the minor approach contains 45% left turn demand, 45% right turn demand, and 10% through 
demand. The baseline simulation has been performed under 0% CACC case. The baseline signal adopts the 
actuated signal controller. The parameters of the actuated controller, including the minimum green, max green, 
green extension, and yellow and all red time, are shown in Figure II.2.3. Those parameters are determined 
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based on the method described in the Highway Capacity Manual (TRB, 2010). In addition to the baseline 
simulation, we also conducted analyses for scenarios of 20%, 40%, 60%, 80% and 100% CACC market 
penetrations with and without the cooperative signal control algorithm. We had 5 simulation runs for each 
scenario. Each run covered 10 minutes warm-up period and 1-hour simulation time.  

 

Figure II.2.3 Simulated intersection and actuated control parameters. 

 
We aim to determine the impacts of the proposed signal control algorithm under various CACC market 
penetrations. In the simulation runs, the traffic demand input for the major approach was 1800 vehicles per hour 
and the demand for the minor approach was 350 vehicles per hour. Those inputs were the intersection capacity 
measured in the 0% CACC case. The average vehicle speed and average vehicle mile travelled per gallon fuel 
consumed (MPG) were used to depict the effects of the algorithm on both the traffic flow and vehicle fuel 
consumption. The vehicle speed and MPG with CACC market penetration are shown in Figure II.2.4 and Figure 
Figure II.2.5. The percentages in the figures depict the improvement of the speed or MPG due to the application 
of the signal algorithm. Without the signal cooperation, the curve can be divided into two sections. In the first 
section where the CACC market penetration rises from 0% to 40%, we observe a significant increase of speed 
and vehicle fuel economy. This is because in the 20% or lower CACC cases, the intersection traffic is very 
congested under the input traffic demand. Many vehicles need to wait for more than one cycles to pass the 
intersection, resulting in great delay and extra vehicle fuel consumption. When the market penetration reaches 
40%, the increase of the CACC strings in the traffic stream substantially increases the efficiency of the traffic 
flow. As a result, most of the queued vehicles can pass the intersection in one cycle, thus leading to a boost of 
the traffic mobility and vehicle fuel efficiency. The second section covers the cases with the CACC market 
penetration ranging from 40% to 100%. Within this section, the intersection performance is also improved 
because the number of vehicles operating in CACC strings becomes larger. But the rate of the improvement is 
not as high as that of the first section. 
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.Figure II.2.4 Average vehicle speed under various CACC market penetrations 
 

Figure II.2.5 Average vehicle mpg under various CACC market penetrations. 
 

We have also attempted to test the performance of the algorithm under various traffic demand inputs. This 
analysis has been performed in the 40% and 100% CACC market penetration cases. The results can reveal the 
performance sensitivity under both medium and high CACC market penetration scenarios. In the tests, we have 
investigated the effectiveness of the cooperative signal control when the demand varies from 60% to 100% of 
the intersection capacity measured under the baseline actuated control case. The speed and MPG under various 
demands are displayed in Figure II.2.6 and Figure II.2.7.  

The results show that the effects of the algorithm increase with the traffic demand input. The algorithm creates 
the most significant improvement when the demand in at the intersection capacity. Since such a high demand 
condition is often observed during peak hours, it indicates that the algorithm can be applied by the traffic agencies 
to relieve the congestion problems that chronically challenge the arterial traffic operation. An interesting 
observation is that in the 40% CACC case, the effect of the algorithm differs greatly between the 80% and 90% 
capacity scenario. As the traffic input rises from 80% to 90% of the capacity, the intersection traffic degrades 
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substantially because the default actuated controller fails to serve all queued vehicles in one signal cycle. It 
further leads to the rapid growth of the queue upstream from the intersection. The queued vehicles that stay 
idling for more than one cycles significantly reduce the overall intersection speed and vehicle fuel efficiency. 
On the other hand, the proposed signal control algorithm can help avoid the upstream queue propagation of the 
queue, thus bringing about a large improvement of the intersection performance. 

 

Figure II.2.6 Performance of the signal control algorithm in the 40% CACC case. 
 

Figure II.2.7 Performance of the signal control algorithm in the 100% CACC case. 

 
B. Fuel Consumption Model Improvement 

Results showed that overall, MOVES overestimates fuel consumption during deceleration and 
constant speed. During acceleration, both underestimation and overestimation have been observed. 
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Based on the observed trends, the study develops a calibration method to reduce the discrepancy in 
MOVES estimates with overall R-squared of 96%. To overcome those difficulties, the following 
revised energy consumption model is used for the improvement of energy consumption estimation 
which a second order polynomial of the MOVES fuel rate: 

𝑓𝑓𝑙𝑙𝑜𝑜𝑠𝑠  = 𝑎𝑎0𝑜𝑜 + 𝑎𝑎1𝑜𝑜𝑓𝑓𝑂𝑂𝑜𝑜 + 𝑎𝑎2𝑜𝑜𝑓𝑓𝑂𝑂𝑜𝑜2 + 𝑎𝑎3𝑜𝑜𝑀𝑀 
 

 

where  

𝑓𝑓𝑂𝑂𝑜𝑜𝑠𝑠 : Calibrated fuel rate in [g/s] for operating mode O and speed bin b ∈ {1, 2, 3} 

𝑓𝑓𝑂𝑂𝑜𝑜: MOVES fuel rate [g/s] for operating mode O and speed bin b 

𝑀𝑀: Truck weight [metric ton] 

𝑎𝑎0𝑜𝑜, 𝑎𝑎1𝑜𝑜, 𝑎𝑎2𝑜𝑜, and 𝑎𝑎3𝑜𝑜: Coefficients of the regression model varying based on speed bin b  

 

This model was further revised to avoid unreasonable negative value as follows: 

𝑓𝑓𝑙𝑙𝑜𝑜𝑠𝑠 = 𝑀𝑀𝑎𝑎𝑀𝑀(𝑓𝑓_𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀,𝑜𝑜 ,𝑎𝑎0𝑜𝑜 + 𝑎𝑎1𝑜𝑜𝑓𝑓𝑂𝑂𝑜𝑜 + 𝑎𝑎2𝑜𝑜𝑓𝑓𝑂𝑂𝑜𝑜2 + 𝑎𝑎3𝑜𝑜𝑀𝑀) 

Then this model is used with the Least Square Fitting with the test data. The following table shows the results 
for the coefficients obtained for the three speed bins. The coefficients for the speed bins have been summarized 
in Table II.2.2. 

Table II.2.2 Regression Coefficients in the Calibrated Model 

Speed Bin 𝒃𝒃 𝒂𝒂𝟎𝟎𝒃𝒃 𝒂𝒂𝟏𝟏𝒃𝒃 𝒂𝒂𝟐𝟐𝒃𝒃 𝒂𝒂𝟑𝟑𝒃𝒃 

1 -4.66 3.20 -0.10 0.065 

2 -7.53 1.66 -0.029 0.20 

3 -0.077 0.49 0.0041 0.05 

 

C. Improve Traffic Mobility for Low CAV Market Penetration Using V2I Type of VSL 
The VSL strategy have been applied to the previously calibrated microscopic traffic simulation model for I-66 
East Bound (EB) inside the Beltway in Washington D. C. [4], [5]. The road geometry is depicted in Figure II.2.8. 
The designed MPC approach for the determination of VSL was implemented for this network in Aimsun. It was 
assumed that all the ACC vehicles had V2I capability in the sense that the VSL determined in TMC (or roadside) 
was passed to ACC vehicles and used as the set speed. The driver behavior of ACC vehicles was excluded. The 
simulation was run for different market penetration of ACC vehicles: 0%, 10%, 30%, and 50%. Each scenario 
was run for 10 replications (random seeds). All the performance parameters obtained were averaged over the 10 
replications. The following parameters are used for the evaluation of the performance of VSL strategy: 

TTT – Total Travel Time (wish to reduce) 
TTD – Total Travel Distance (wish to increase) 
TD – Total Delay (wish to reduce) 
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Spd Var – Speed Variation (wish to reduce) 
Ave # of Stops – Average number of stops (wish to reduce) 
Flow@Syc – Flow at onramp merging bottleneck from Sycamore (wish to reduce) 
Flow@ Merge – Flow at the bottleneck of freeway merge of I-66 EB and VA 267 (Figure II.2.8) 

 

 

Figure II.2.8 Road Geometry for microscopic traffic simulation: I-66 EB inside the Beltway; with two bottlenecks marked with 
Red Spots 

The following table shows the simulation results: improvement (Green) or worse (Red) with respect to the 
status quo traffic for market penetration of 10%, 30% and 50% respectively.  

 
Table II.2.3 Averaged performance parameters for each market penetration level of ACC vehicles over 10 replications 

(random seeds) 

market 
penetration TTT [%] TTD[%] TD [%] Spd Var [%] Ave # of  

Stops [%] 
Flow@Syc. 

[%] 
Flow@ 

Merge [%] 

10% -6.0 0.84 -9.41 -8.41 -3.48 1.80 -0.19 

30% -6.95 1.25 -11.0 -8.3 -4.21 2.37 0.07 

50% -8.94 1.4 -13.72 -9.28 -4.90 2.24 -0.06 

Mean -7.30 1.16 -11.38 -8.66 -4.20 2.14 -0.06 

 

It can be observed from Table II.2.3 that improvement has achieved in all aspects even with 10% market 
penetration of ACC vehicles. As for the two bottlenecks (marked as Red Spots) in the network, the most 
downstream bottleneck at Sycamore onramp is critical. The changes at the merge bottleneck were marginal. It 
is also note that CACC operation was not assumed here. Therefore, the potential benefit is due to V2I type of 
VSL only.  
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Conclusions  
A. Traffic Impact of CAVs on Mixed Traffic for Intersection 

We have developed a cooperative traffic signal control algorithm that aims to maximize the intersection 
throughput by using the capabilities of the CACC vehicle strings. The proposed algorithm outperforms the 
traditional actuated signal controllers because it recognizes that vehicles in CACC strings can utilize the green 
time resource more efficiently than the manually driven vehicles, and thus would assign longer green time to 
an approach that accommodates more CACC vehicle strings than other approaches. Due to this consideration, 
the CACC strings can drive through the intersection with reduced delay and increased speed. The enhancement 
of the CACC operation can also smooth the overall traffic flow, leading to the performance improvement of 
the manually driven vehicles as well.  

The performance of the cooperative signal control algorithm has been tested against an actuated signal 
controller in a simulated four-way intersection. The test results show that the algorithm can improve the 
intersection speed by 1.7% to 13.6% and the average vehicle MPG by 2.2% to 15.3% when the intersection 
demand equals to the capacity measured in the manual vehicle only case. The most significant impact is 
observed in the lower CACC market penetration cases. Under those cases, the algorithm can substantially 
improve the traffic mobility and vehicle fuel economy by reducing or eliminating vehicles that need to wait for 
multiple cycles before passing the intersection. In the medium or high CACC market penetration case, the 
algorithm performs the best when the traffic demand is close to the intersection capacity measured under the 
actuated signal control. Particularly, the average speed (MPG) is increased by 13% (11%) in the 100% CACC 
case, and 36% (34%) in the 40% CACC case, when the demand is at the intersection capacity. The algorithm 
also performs well in the 0% CACC case where it completely relies on the traffic information monitored by the 
fixed traffic sensors. The speed and MPG can be raised by 12.5% and 12.2% in this case. This demonstrates 
the robustness of the proposed algorithm.  

B. Fuel Consumption Model Improvement 
MOVES fuel rates were compared with real fuel rate data from the J-1939 data bus for heavy duty trucks with 
masses of 13.5, 29.5 and 50.6 [metric tons], and then a calibration model was developed to achieve more 
accurate fuel rate estimates.  

Comparison showed when trucks had a constant speed of 55 mph or faster, MOVES overestimated fuel rate by 
26% to 88%. Similarly, MOVES overestimated fuel rate during deceleration. The relative percentage 
discrepancy during deceleration is more noticeable as it was as large as 206%, but in terms of absolute 
magnitude it was less than 1 [g/s] which may be considered as a small discrepancy. During acceleration 
MOVES overestimated fuel rate by 75% for mass of 13.5 [metric tons] and underestimated fuel rate by 12% 
and 45% for the masses of 29.5 and 50.6 [metric tons], respectively.  

The calibration models were developed based on the data for class-8 diesel trucks covering a fairly wide range 
of truck masses between 13.5 [metric tons] to 50.6 [metric tons]. The effect of truck mass was incorporated as 
a parameter in the models. Each model represents one of these speed bins: 1) speed < 25 mph, 2) 25 mph ≤ 
speed < 50 mph, and 3) 50 mph ≤ speed. The calibrated models sufficiently reflected the trend in the real data 
and reduced discrepancy in fuel rate estimates with R-square of 96%. For trucks that are not comparable with 
class-8 diesel trucks (e.g. light duty trucks) one may use a similar approach to calibrate MOVES.  

C. Improve Traffic Mobility for Low CAV Market Penetration Using V2I Type of VSL 
We have found a way to improve the traffic through V2I Variable Speed Limit (VSL) for low market 
penetration of CACC vehicles. This approach uses currently available road traffic detector and ACC vehicle 
(with V2I capability) information to calculate a VSL for each small section of the freeway corridor. Such VSL 
is then passed back to the ACC vehicle through V2I and used as the set-speed. Simulation showed that Total 
Travel Time (TTT) could be reduced by 6~7% and speed variation could be reduced by 8% when the market 
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penetration of ACC was about 10~30%. This initial study has not evaluated fuel saving benefit yet, which 
could be conducted in future research.  
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Project Introduction  
In this task, we sought to estimate the impact of connected and autonomous vehicles (CAVs) on energy and 
mobility in the transportation sector in a region for different vehicle technologies. In the absence of any data 
related to CAVs, the approach of relying on rational assumptions, behavioral models, and scenario analysis is 
the best option for understanding the impacts. As part of this task, we identified three key components that 
needed to be developed (or advanced) and then integrated with POLARIS, our transportation system 
simulation software. We then used the updated POLARIS tool to evaluate the energy and mobility outcomes of 
the new mobility technologies in the context of the Bloomington, Illinois, region. Key highlights of the 
research have shown that depending on vehicle and AV technology characteristics and behavioral assumptions, 
estimated fuel consumption reduction by 2040 as high as 74% can be achieved. This occurs even under a 64% 
increase in vehicle miles traveled (VMT), when vehicle electrification and efficiency gains are accounted for. 
However, energy consumption reductions could be as low as 6% in scenarios where low vehicle electrification 
and other advanced technology penetration is coupled with high AV penetration and no unloaded mileage 
pricing, in which case VMT could increase up to 85%. 

Objectives  
The objective of this task is to quantify the energy impact of CAVs technologies at the transportation system 
level.  

• The first component to be developed models households’ travel behaviors in the context of a privately 
owned autonomous vehicles (AVs) environment, where the households are trying to minimize their costs 
and be flexible in terms of start and duration of their activities. 

• The second component is a model that coordinates vehicle platoons (given the demand for vehicle travel) 
and a traffic simulator that could simulate the coordinated platoons and their movements. 

• The third component involves generating fundamental diagrams of traffic flow for different market 
penetration levels of CAVs; determining these diagrams are essential information when simulating 
traffic. 

• Because POLARIS is the main transportation simulation framework we use, the models will be 
incorporated into it to enable us to analyze the CAV scenarios of interest. 

mailto:jauld@anl.gov
mailto:David.Anderson@ee.doe.gov
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Approach 

The approach that we adopted to achieve the objectives of this task involved development of the behavioral 
models and then implementing them in POLARIS, our main simulation tools, for scenario analysis. For the 
first two objectives, optimization models were identified as the best available tool to simulate rational 
individuals’ behavior. For the platooning simulation, the model developed by Argonne researchers in the 
Mathematics and Computer Science (MCS) Division was adopted and integrated with POLARIS. The model 
tries to form platoons of vehicles while minimizing their energy use. POLARIS sends the demand for travel 
(by platooning-enabled vehicles) to the algorithm, and it coordinates the vehicles’ movements in platoons. 
Then POLARIS uses the results to update the vehicles’ movements. The intrahousehold, vehicle-sharing 
model is also an optimization model that our team developed. The model tries to minimize generalized costs of 
travel of each household when AVs are available. For the third objective, we consulted Texas A&M 
researchers for use of their advanced deep learning algorithm and their microsimulator so we could generate 
the fundamental diagrams and then incorporate them into the POLARIS traffic simulator. Figure II.3.1 
highlights the new components and show how they interact with existing POLARIS components. 

The Intrahousehold, Autonomous Vehicle-Sharing Optimization Model 
One of the possible scenarios for the future of transportation/vehicle ownership is adoption of privately owned 
Level 5 AVs, which could become ubiquitous or at least adopted by a percentage of households. To model the 
travel behaviors of these households, an optimization model was developed that takes the households’ travel 
plans and schedules, along with transportation network information, as inputs and generates the AVs’ travel 
plans. The mixed integer programming (MIP) optimization model finds the optimal number of Level 5 AVs 
that a household needs, given its activities and schedules. It could be considered a Vehicle Routing Problem 
with Time Window that is tailored to a household with Level 5 AVs and the household members’ travel needs. 
The model also schedules the optimal AV trips, while considering vehicle/ride-sharing, travel to home/parking, 
flexibly in timing, taxis, and various travel costs, as well as any charges for zero-occupancy travel. The travel-
related costs include energy, value of time, vehicle ownership, parking, and taxi fares. The optimization model 
has been integrated with POLARIS and is called upon whenever a household is determined to have privately 
owned AVs. The results of the optimization model (encompassing the AVs’ travel plans including zero-
occupant vehicle [ZOV] trips) are also simulated in the POLARIS traffic simulator. 

Figure II.3.1 POLARIS modeling process with CAV improvements highlighted 
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A case study was conducted for Bloomington, Illinois, for the base year (2015), short-term view (2025), and 
long-term view (2040), with details shown in Figure II.3.2. The demand assumptions included high CAV 
demand (with a marginal cost of $5,000, high flexibility) and low CAV demand (with a marginal cost of 
$15,000, low flexibility), where the value of travel time savings is 50% of base (~seated, high-quality transit). 
Data were provided on the base- and forecast-year land use, as well as population and employment provided 
by the MPO (Metropolitan Planning Organization) and vehicle distribution provided by Polk/IHS 
(Information Handling Services) registration data for the base year. The CAV technology Level 4 (i.e., with no 
ZOVs) and Level 5 (with ZOVs) were considered in the scenarios.  

 

Figure II.3.2 Scenario design for Bloomington case studies 

A summary of the results is presented in Table II.3.1 and depicted in Figure II.3.3. They demonstrate that ZOV 
trips could increase single-occupancy vehicle (SOV) trips by an additional 27% (for low CAV penetration 
rates) and 39% (for high CAV penetration rates) over baseline, whereas introducing ZOV pricing of $0.1 per 
mile could reduce the impact to some degree (to 25% and 35%, respectively, for the low and high rates). Fuel 
consumption is reduced by up to 75% for the low CAV penetration rate at 2040 in comparison to baseline (in 
the high-tech case) and by up to 71% in the high CAV penetration rate, depending on the CAV accessory load. 
However, in the low-tech cases, fuel reductions can be as low as 6% from baseline (essentially no change from 
current fuel use despite vehicle powertrain advances). We also found that ZOV charging could further reduce 
fuel consumption by 1% and 5%, depending on vehicle technology and CAV penetration. 
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Table II.3.1 Comparison to baseline for Levels 4 and 5 CAVs for various fleet assumptions 
 

 

Figure II.3.3 Best and worst case performance metrics over time under privately owned, Level 4/5 CAV scenarios 

The Coordinated Platooning Model 
One of the expected benefits of AVs is their platooning capabilities; however, vehicle platooning has been 
studied mainly in terms of one platoon. To analyze the energy impact(s) of platooning vehicles at the regional 
level, we adopted an optimization model developed by Argonne’s MCS Division. The optimization model 
schedules platoons’ formation and dissolution given the demand for vehicle travel. To correctly simulate the 

Scenario Trips VMT VHT Avg. Speed (m 600W1 1000W 2500W 600W1 1000W 2500W
Baseline (2015)2 475,149 1,645,855 63,178 26.1 64,428 64,428
2025_base 523,806 1,851,744 71,440 25.9 48,259 34,530
2040_base 563,131 2,004,973 80,090 25.0 31,493 11,243
(% ∆ from 2015 baseline)

Scenario Trips VMT VHT Avg. Speed (m 600W1 1000W 2500W 600W1 1000W 2500W
2025_base 10% 13% 13% -1% -25% -46%
2025_cav-low 11% 16% 11% 5% -22% -22% -19% -43% -42% -40%
2025_cav-high 11% 20% 14% 6% -19% -17% -12% -41% -40% -34%
2040_base 19% 22% 27% -4% -51% -83%
2040_cav-low 20% 32% 31% 1% -46% -45% -41% -80% -80% -77%
2040_cav-high 20% 36% 37% 0% -43% -41% -33% -79% -78% -74%

(% ∆ from 2015 baseline)

Scenario Trips VMT VHT Avg. Speed (m 600W1 1000W 2500W 600W1 1000W 2500W
2040_cav-low 46% 64% 86% -12% -32% -30% -23% -74% -73% -69%
2040_cav-high 58% 85% 120% -16% -22% -19% -6% -69% -67% -60%
2040_cav-low-ZOV charge 44% 61% 80% -11% -33% -31% -24% -75% -74% -70%
% ∆  from 2040_cav-low -1% -2% -3% 1% -1% -2% -2% -4% -4% -4%
2040_cav-high-ZOV charge 54% 79% 112% -15% -24% -21% -9% -71% -69% -62%
% ∆  from 2040_cav-high -2% -3% -4% 1% -3% -3% -3% -5% -5% -5%
1. CAV accessory load is 0 for the baseline cases
2. Vehicle low tech and high tech scenarios are the same for baseline

Tech-low Tech-high

Tech-low Tech-high

Impacts of level 5 CAV Impact of vehicle technology on fuel use (gallons)

Impacts of population growth Impact of vehicle technology on fuel use (gallons)
Tech-low Tech-high

Impacts of level 4 CAV Impact of vehicle technology on fuel use (gallons)
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platoons’ movements, the POLARIS code also needed to be updated to accommodate changes in travel times 
and trajectories. During the past year, POLARIS was first manually linked to the optimization model 
(involving many pre- and post-processing steps), and then it was enhanced so it would automatically and 
continuously call the optimization model (with the POLARIS vehicles’ trajectories as inputs) and also update 
their movements according to the optimization model results. Because optimization models are 
computationally intensive and tax computing resources, a clustering algorithm was also developed to group 
vehicles into multiple bins and thereby improve performance. This approach breaks the big problem into 
smaller ones, which, in turn, reduces the size of the optimization model problems and improves performance. 
In addition, Autonomie was updated to take into account the reduction in energy consumption attributable to 
the reduction in aero drag on vehicles in platoon. 

A couple of case studies were conducted for a sample of the Detroit region in addition to the Bloomington, 
Illinois, analysis (Table II.3.2).  

Table II.3.2 Bloomington, Illinois, mobility and energy impacts resulting from platooning 
Penetration Rate LOW (Cost = $2,500) 

Wait Time (second) No Platoon 300 600 

Total Trips 452,873 453,555 456,580 

% of platooning capable trips - 35.3% 35.3% 

% of Platooning trips - 2.6% 4.5% 

Total VMT 1,938,903 1,936,901 1,947,523 

%VMT in Platoon  -  1.3% 2.6% 

Fuel Consumption(kg) 152,83, 151,950 151,220 

Fuel Consumption per mile(gr/mile) 78.8 78.4 77.6 

Preliminary results indicate that with increases in wait times, the chances for platooning to occur increase 
significantly. In addition, given the assumptions and models used for estimating reduction in drag coefficients, 
the savings on energy consumption increases by 0.5% and 1.5% for 60 seconds and 200 seconds, respectively. 

Traffic Improvement 
In this project, we contracted with Texas A&M researchers to take advantage of their deep learning models 
developed for controlling CAVs, as well as their microsimulator for generating a new series of fundamental 
diagrams of traffic flow and speed-density curves, which are the most important data for mesoscopic traffic 
simulation. The generated fundamental diagrams will be incorporated into POLARIS traffic flow models to 
develop a realistic representation of traffic flow dynamics in the presence of CAVs. To make the diagrams 
more general but still accurate, for the Chicago network, the highways are clustered into 60 spatiotemporal 
groups that share similar traffic behaviors. 

The diagrams have been generated for the Chicago region at different CAV market penetration rates, and a 
case study was conducted for Bloomington, Illinois. Figure II.3.4 shows how increasing the market penetration 
rate of CAVs affects the flow-density relationships. Network fundamental diagram (NFD) results () also 
indicate that higher penetration rates of CAVs can result in less congestion and less scatter in the fundamental 
diagram. 
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Figure II.3.4  Flow-Density Relationship for M=45. 

Two optimization models have been developed to simulate advanced features of autonomous vehicles. The 
optimization models have been coded in C++ and integrated with POLARIS to be used with different scenario 
analyses when AV simulation is involved. The POLARIS model has been significantly enhanced in order to 
better simulate individuals’ travel behaviors and traffic involving the use of CAVs. Both intrahousehold 
vehicle sharing and coordinated platooning (forming and dissolution) models have been developed, and new 
fundamental diagrams of traffic flow have been generated for various market penetration rates for CAVs. The 
models have also been incorporated into POLARIS, and various scenarios were analyzed, which demonstrates 
how platooning and privately owned vehicles could deliver impacts on energy consumption.  

Conclusions 
This project has combined research on household-level vehicle sharing and traveler behavior, traffic flow 
changes under CAV technologies and coordinated platooning algorithms enabled by vehicle connectivity into 
the POLARIS regional transportation system simulator. This is done in order to explore impacts that privately 
owned autonomous vehicles could have on regional mobility and energy use. The research has demonstrated 
how privately owned autonomous vehicles could increase overall travel due to reduced travel burden (for both 
partial and full automation) as well as due to vehicle repositioning (in fully automated vehicles). We also 
evaluated how these changes interact with vehicle technologies by analyzing a range of additional accessory 
load requirement for CAV in both low-technology (business-as-usual) and high-technology (VTO program 
success) cases. Overall, we found that in business-as-usual vehicle technology cases, fuel consumption 
reductions range from 6% to 33% from baseline, under VMT increases of 85% and 61% respectively, while 
advanced vehicle technology cases show fuel use reductions up to 75% with VMT increases of 61% to 64%. 
Additionally, we found that ZOV pricing could mitigate some of the impact of ZOV by reducing VMT by up 
to 3% and fuel use up to 5%. 

Figure I.3.5 NFD analysis for the Bloomington, Illinois, model 
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Project Introduction 
Challenges to deployment of connected and automated vehicle (CAV) technologies extend beyond the vehicle 
and systems engineering challenges, and arise from a set of technological, economic, demographic, and 
regulatory issues. Informed observers of transportation markets and CAVs industry growth can develop 
intuition about the magnitude and implications of these challenges, but without analytic tools their 
understanding may make incomplete use of quantitative data, may be limited in its accounting for dynamic 
relationships across the system, and may be a poor basis for discussing possible actions. This presents a 
problem: limitations in shared understanding limits action. This task addresses the problem of limited 
actionable understanding by developing, applying, and communicating results from an analytic capability on 
the potential for large-scale adoption of CAVs and barriers to such adoption. This capability uses existing 
quantitative data and understandings of system relationships across the breadth of technological, economic, 
demographic, and regulatory issues.  

Objectives 
This task integrates with NREL’s other CAVs impacts analysis contributions under SMART Mobility through 
closer examination of issues for successful large-scale deployment of CAV technologies and associated 
alternative travel paradigms, such as mobility as a service (MaaS). These technological, economic, 
demographic, and regulatory issues could pose significant barriers. This task identifies and quantifies the 
circumstances and dynamics of potential transitions to future CAV success scenarios. Analysis emphasizes 
“tipping points” to large-scale adoption of CAVs and MaaS by highlighting the existing data that provides 
evidence for them, by performing sensitivity analysis around data inputs, and by exploring scenarios that reach 
high penetration rates or provide additional benefits at lower penetration levels. The resulting analytic 
capability helps DOE and others to understand the potential for CAVs success scenarios and to plan their 
actions accordingly.  

Approach 
The approach of this task includes development of hypotheses about methodology and about CAVs 
deployment scenarios, collection of data about issues for CAVs deployment, and analysis using conceptual and 
functional modeling to test hypotheses. The functional modeling focused on the semi-quantitative 
representation of feedbacks related to CAVs adoption in a system-of-systems perspective and was embodied as 
a system dynamics simulation written in the STELLA programming language. Coordination with other project 
tasks and the identification of gaps in existing data and research were key elements of our approach. This 
approach enables us to meet our objective, as described in the sections below. We coordinated the approach 
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with other parts of the SMART Mobility project. During FY 2018, we obtained results of the Whole Travel 
Survey from Lawrence Berkeley National Laboratory (LBNL) that we will incorporate to refine our 
characterizations of various cohorts of travelers. We developed plans to work with Los Alamos National 
Laboratory (LANL) to improve targeting of sensitivity analysis designs towards outcomes of greatest interest. 
We participated in inter-laboratory coordination discussions (SMART Workflow Task Force and Scenario 
Planning), and as those discussions yield consensus assumptions for key CAVs and other mobility factors 
these will be incorporated into the analyses under this task. 
 
Hypothesis Development 
Hypothesis development provides organizational structure for our methodological and analytic work, 
establishing priorities for the improvement of our understanding of CAVs opportunities. During FY 2018, we 
continued to test hypotheses about CAVs deployment scenarios. The current status of the analytic hypotheses 
is summarized here:  

Table II.4.1 Hypotheses 
Hypothesis Test Status 

Synergies between technology pathways, CAVs concepts, and 
adoption behavior lead to multiple potential “end states.” 

Model results Confirmed 

Freed time from driving (even constrained by operational design 
domain) is a strong driver of adoption. Note: Hypothesis “partially 
confirmed” because time appears to be a moderate, not strong 
driver. 

Model results Partially 
confirmed  

The long term energy outcomes of various CAVs scenario concepts 
differ by half an order of magnitude.  

Model results Confirmed 

 
Data Development 
 Our approach to data development was to create a usable analytic model with plausible data, remain sensitive 
to data limitations and avoid excessive time investment in data issues. Identifying data limitations and data 
improvement options was an important project outcome. Data collection relied on a series of searches of the 
public literature on CAVs under topics that included regulation, insurance, safety, state and local infrastructure 
investment, cost/benefit analysis, and effects on vehicle miles traveled. During FY 2018, we updated the data 
to incorporate the new National Household Travel Survey (NHTS).  
 
Conceptual and Functional Modeling 
Conceptual and functional modeling provided the analytic methodology to achieve task objectives of extending 
human intuition to a more quantitative platform that ensures consistency and accounts for feedbacks across a 
system. We developed a conceptual understanding of CAVs deployment by representing system relationships 
from the literature and expert opinion. We translated this into a functional “CAVs tipping point” model in 
systems dynamics using the STELLA simulation tool. This approach improves on human intuition in several 
ways: It accounts for feedbacks and shows relationships across the system, enabling development of self-
consistent scenarios and development of consensus and shared understanding about what system elements are 
important and how they interact. It can be populated with either quantitative or semi-quantitative data with 
multiple sensitivities, respecting uncertainty and the level of detail available in the data. During FY18, we 
extended the conceptual model to encompass commercial delivery systems, with plans to implement these into 
the existing functional model during FY19. 
 
During FY18 we used the CAVs tipping point model to develop sensitivity analyses exploring CAVs 
deployment scenarios and energy outcomes. A selection of these results is presented below.  
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Results 
Based on preliminary data, we performed multiple sensitivity analyses totaling hundreds of thousands of 
simulations on parameters related to stakeholder actions and preferences, travel choice, and CAVs 
characteristics such as occupancy and dead-head miles. In one such analysis, we ran approximately 13,000 
simulations that varied these parameters over plausible ranges of values. Additional scenarios explored the 
strength of feedbacks and causal influences in the model and identified sensitivities to other input parameters. 
The results show the potential that various stakeholders could slow CAVs growth as bottlenecks in the system 
and the system-wide fuel use under a range of behavioral and financial parameters. 

CAV adoption faces a complex landscape of overlapping stage gates. Figure II.4.1 summarizes the frequency 
(among the scenarios) of particular stage gates becoming the bottleneck limiting the availability of L4 
automated taxis. In many cases, lack of consumer interest or lack of completion of R&D blocks availability. In 
scenarios where those two stages have been overcome, factors such as infrastructure readiness, vehicle 
manufacturing, or regulatory approval impose delays but not permanent bottlenecks. 

 

 
Figure II.4.1 Summary of the frequency of different bottlenecks to CAV adoption among the scenarios. Proportions of 
results in the figure should not be interpreted as probabilities of outcomes because input assumptions do not include 

probability distributions. (Source: NREL.)  

The energy effects of CAVs vary significantly by scenario. Figure II.4.2 illustrates that the long-term energy 
outcomes of various CAV scenarios differ by half an order of magnitude. Because the computer experiment 
did not vary vehicle occupancy or deadhead miles and because the vehicle efficiency was assumed to be 
highest in L4 vehicles, intermediate in L1 vehicles, and lowest in L0 vehicles, lower energy use tends towards 
cases with higher predominance of L4 vehicles. Figure II.4.3 shows a regression tree that indicates consumer 
preference and variable costs are the primary influences on the choice of L4 over L1 and L0 concepts. Figure 
II.4.4 demonstrates the wider range of fuel-consumption outcomes and highlights that the more extreme 
outcomes are associated with higher L4 automated taxi adoption. Such results could facilitate screening to 
select conditions for further analysis. Similarly, Figure II.4.5 displays results from the energy sensitivity study 
in comparison to ranges of CAV assumptions from Stephens et al., potentially indicating screening criteria that 
could be applied to select regions of the parameter space of greatest interest for more detailed analysis. 
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Figure II.4.2 Fuel-consumption outcomes for scenarios in the screening study. Each corner of the triangle represents a 
“pure” Level 0, Level 1, or Level 4 vehicle fleet and points in between those corners represent outcomes with mixes of 

those vehicle types. (Source: NREL.) 

 

 

 

Figure II.4.3 Regression tree showing major influences on energy consumption. Each pie chart shows the fraction of results 
that lie in the best 5% of fuel consumption within simulations selected by the preceding branching criterion. (Source: 

NREL.) 
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Figure II.4.4 Distribution of energy outcomes for scenarios, distinguished by the predominance of L4 CAVs in the scenarios. 
(Source: NREL.) 

 

 
Figure II.4.5 Comparison of fuel consumption vs. total vehicle miles traveled (VMT) in energy sensitivity analysis (each point 
represents one of the simulations from the energy sensitivity study) relative to multi-lab study scenarios (lines and shaded 

ranges) as reported in Stephens et al.  
 
A utility value for travelers in each cohort can be calculated as a function of cost, time, vehicle occupancy, and 
demand and can be averaged across cohorts to estimate a utility value for each simulation. Plots of the average 
utility value versus fuel consumption could provide a valuable comparison across scenarios. For example, 
using the preliminary results from the energy sensitivity study, Figure II.4.6 illustrates how scenarios with a 
lower L4 adoption have a larger range of utilities, but a smaller range of energy consumption, compare to 
scenarios with higher L4 adoption. 
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Figure II.4.6 A traveler’s utility is calculated for each simulation as a function of capital and operating costs for travel, the 
time taken, vehicle occupancy, and demand for travel. Each point in the figure is the value of average utility of travelers 

versus fuel consumption in a single simulation. The left panel shows simulations with Level 4 adoption below 20%; the right 
panel shows those with Level 4 adoption above 20%. Travelers prefer higher utilities to lower ones.  

Conclusions    
Ongoing work on CAVs tipping-point dynamics has continued to demonstrate the capability to generate self-
consistent CAVs-adoption scenarios for broad use by the CAVs stakeholder and analysis community. This 
capability can be applied to elucidate the relative influences of behavioral, cost, and technical parameters on 
CAVs adoption, thus highlighting where high value research might proceed to close substantial, influential 
data gaps. This work is exploring potentially significant feedbacks, points of leverage, and bottlenecks that 
may affect CAVs adoption, which includes (but is not limited to) consumer and manufacturer adoption 
choices. During FY18, we incorporated additional data and expanded sensitivity analyses. We analyzed CAV 
tipping-point dynamics in detail by generating hundreds of thousands of sensitivity simulations of CAV 
adoption scenarios. Future work will explore adoption differences among urban areas and analyze additional 
vehicle technologies and services, including commercial delivery services. 

Key Publications 
 The results of this task were submitted for presentation at the Annual Meeting of the Transportation 

Research Board and publication in the Transportation Research Record. The submission, “Potential 
Energy Implications of Connected and Automated Vehicles: Exploring Key Leverage Points through 
Scenario Screening and Analysis” was accepted for presentation and the manuscript will be revised and 
resubmitted for consideration as a publication.  
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Project Introduction 
Connectivity and automation provide opportunities for implementation of innovative and effective system-
level monitoring and control. Coordination control systems for connected and automated vehicles (CAVs) 
operating in different traffic scenarios can potentially improve traffic efficiency, safety, and energy 
consumption. However, most of the current research in connectivity and automation is focused mainly on 
safety leaving still many open questions and uncertainty regarding the energy impacts of these new 
technologies. The uncertainties become even higher when the interaction between human drivers and vehicles 
with connectivity and automation capabilities is considered. In this context, further exploration of mobility 
gains and energy savings potential is needed. This project aims to investigate opportunities to optimize traffic 
systems through connectivity and automation and assess their performance under different scenarios. In 
particular, it explores the potential energy savings and efficiency improvements that can be achieved through 
coordination control systems for CAVs, contributing to the SMART Mobility program goal of yielding 
meaningful insights on how SMART technologies can improve Mobility Energy Productivity. It will also 
provide new insights regarding efficient coordination/control strategies that could offer energy and mobility 
improvements.  

Objectives 
Develop optimal vehicle coordination strategies to increase mobility energy efficiency and a simulation 
framework to verify their effectiveness in partial and full CAVs market penetration scenarios 

• Apply the developed coordination strategies and assess their performance on traffic corridors  

• Enhance accuracy of the fuel consumption models  

Approach  
The approach taken to accomplish the objectives of the project for this period of performance involved:  

• Integration of enhanced fuel consumption models. A polynomial metamodel was calibrated using data 
obtained from higher fidelity models.  

• Adaptation of the optimal coordination and simulation framework developed in the previous period of 
performance to traffic corridors  
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• Simulation-based assessment of the CAVs optimal coordination framework applied to traffic corridors 
considering different traffic scenarios 

• Exploration of communication-related challenges Collaborations with the University of Delaware and 
the University of Tennessee Knoxville helped with the adaptation of the optimal coordination framework 
to an urban corridor and the ongoing exploration of communications-related challenges respectively. 
Recently, through collaboration with ANL, Autonomie models are being used for fuel consumption 
estimations. 

Results  
1. Enhanced fuel consumption models  
A polynomial metamodel for estimation of fuel/energy consumption was calibrated based on simulation data 
from Autonomie. The polynomial model estimates fuel/power consumption as a function of speed and 
acceleration ( cruise accelf f f= + ), where 2 3

0 1 2 3cruisef b b v b v b v= + + +  and 2
0 1 2( )accelf a c c v c v= + + , cruisef  and 

accelf  are the fuel consumption during cruising and acceleration phases, ib  and ic  are coefficients to be tuned, 
v  is speed and a  is acceleration. 
Fuel consumption (or power), speed, acceleration and time data is used to calibrate the polynomial model, i.e., 
finding the coefficients values that will better fit the data for a specific vehicle. The coefficients are found by 
curve fitting using actual or simulated (from higher fidelity models) data. Once the model is calibrated, it will 
use speed and acceleration as inputs to estimate the fuel/power consumption (Figure II.5.1 left). 

Figure II.5.1 Fuel/Power consumption estimation process (left), curve fitting for a medium duty vehicle (right) 

Figure II.5.1 (right) illustrates the curve fitting for a medium duty vehicle where the coefficients ib  and ic  are 
4 5 6 8 5 4 6

0 1 2 3 0 1 21.04 10 ,  2.23 10 ,  1.49 10 ,  2.99 10 8.67 10 ,  1.42 10 ,  1.16 1,  0b b b b c c c− − − − − − −= × = × = − × = × = × = × = − ×   
The loss of accuracy of the calibrated model (with respect to Autonomie data) for three standard driving profiles, 
i.e., Federal Highway Driving Schedule (FHDS), Urban Dynamometer Driving Schedule (UDDA) and US06, is 
included in Table II.5.1. 

 Table II.5.1. Loss of accuracy for a medium duty vehicle 
Loss of Accuracy [%] FHDS UDDS US06 

Medium duty vehicle 0.46 2.8 2.18 

 
2. Optimal coordination on interconnected traffic scenarios 
2.1. Full market penetration 
2.1.1. Highway corridor 
The effectiveness of the proposed optimal coordination framework was evaluated though microscopic traffic 
simulations using VISSIM software and compared to a baseline scenario in which all the vehicles are driven by 
human drivers. The simulation is performed for a highway corridor (corridor length 2.5 km) scenario with two 
on-ramp roads and one off-ramp road (Figure II.5.2) to analyze the effects of local coordination at merging on-
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ramps. To represent the longitudinal driving behavior of humans in the baseline scenario, we used the psycho-
physical driver behavior model developed by Wiedemann included in VISSIM (Wiedemann 99) and assumed 
that the desired speed is set to 50 km/h for control zone 1 and 60 km/h for control zone 2. We also considered 
homogeneous traffic. The traffic demand for the main and ramp road 1 was set to 1400 veh/h and 600 veh/h, and 
three different traffic demand scenarios were considered for the ramp road 2: 1)1200 veh/h, 2)1500 veh/h, and 
3) 1800 veh/h. The exit rate of vehicles on the off-ramp road is set to 30 %. The simulation results are illustrated 
in Figure II.5.3.  

 

Figure II.5.2 Simulation scenario - highway corridor 

 

Figure II.5.3 Simulation results - highway corridor 

By following the optimal control inputs, the vehicles traveling on the corridor follow smoother acceleration 
patterns which avoid the frequent stop-and-go driving commonly observed in baseline scenarios. This way the 
optimal coordination mitigates the traffic jam propagation with significant reduction of travel time and improved 
fuel economy with respect to the non-coordinated scenario as shown in Figure II.5.3.   
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2.1.2. Urban corridor 
Using VISSIM, we define a study corridor (in MCity) that consists of a highway on-ramp, a speed reduction 
zone (SRZ), a roundabout, and an intersection (see Figure II.5.4).  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure II.5.4 Simulation scenario - urban corridor 

Vehicles enter the network on the ramp, join the traffic on the highway with a desired speed of 25 m/s, and 
then enter the SRZ where the speed limit drops to 11 m/s. Exiting from the highway segment, the vehicles 
travel through the roundabout, where a desired speed of 13 m/s is in effect, until the end of the path (corridor 
length 1.26 km). To evaluate the network performance with the proposed control algorithm, we analyze two 
cases with different traffic demand levels. The case 1 represents the baseline scenario where all vehicles in the 
network are non-connected and non-automated vehicles. In this case, the Wiedemann car following model 
built in VISSIM is applied. 1.2 s time headway is adopted to estimate the minimum allowable following 
distance. The case 2 represents the optimal case (100% market penetration of CAVs), where all the vehicles 
follow the proposed optimal control algorithm. The proposed control framework is applied in this case to 
recommend optimal acceleration/deceleration for each CAV in the network. The same time headway as in case 
1 is applied in the optimal control model. Table II.5.2 summarizes the traffic scenarios created (and evaluated 
for baseline and optimal cases). 

 Table II.5.2 Summary of traffic scenarios 
  
 
 
 
 
 

Loss of Accuracy [%] Corridor [veh/h] Highway [veh/h] Urban [veh/h] 

Scenario 1 200 600 300 

Scenario 2 300 1000 500 

Scenario 3 400 1400 600 
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By eliminating vehicles’ stop-and-go driving throughout the corridor, transient engine operation is minimized 
through the optimal control algorithm, leading to direct fuel consumption savings with respect to the baseline 
case as shown in Figure II.5.5.  

Figure II.5.5 Accumulated fuel consumption per vehicle along the corridor 

We can observe a large difference in accumulated fuel consumption especially after the merging point. 
While CAVs are immediately preparing for the following conflict zones the human-driven vehicles are 
traveling with higher speed until they are aware of the downstream conflict zones. Also, CAVs are 
coordinated with each other to create enough gaps for merging and crossing the intersection, whereas 
human-driven vehicles need to stop for mainline vehicles and wait for green light signal to cross the 
intersection. As traffic demand increases, a large speed drop is unavoidable even in the optimal control 
cases. However, the optimal corridor control still yields substantial fuel economy improvement and travel 
time reduction as seen in Figure II.5.6. 

Figure II.5.6 Simulation results - urban corridor 

2.2. Partial market penetration 
To evaluate the effectiveness of the proposed optimal coordination framework in a highway corridor and 
considering partial market penetration of CAVs and heterogeneous traffic (LDVs and HDVs), it is necessary to 
enforce a position constraint ( ip −1( )t  ip− >δ sp afe ) in the controller solution to avoid rear-end collisions which 
might occur as a result of inaccurate estimation of the human-driven (non-connected) vehicles behavior. We use 
the highway corridor illustrated in Figure II.5.2 and conducted simulations considering a fixed traffic 
demand for main and ramp roads (Qm, Qr,1, Qr,2) = (1200, 1000, 600). We also assumed a fixed ratio of light 
duty/heavy duty vehicles (90/10) and different penetration rates of optimally coordinated connected and 
automated light duty vehicles (LDCAVs). In simulations, one penetration rate of connected and automated 
heavy-duty vehicles (HDCAVs) is considered (100%), i.e., the total 10% of trucks in the traffic network 
are all assumed to be connected and automated. For the case of LDVs we assume 0% (baseline) and 60% 
penetration rates (due to space constraints, further results will be part of a future publication). Additionally, 
we consider the exit rate to the off-ramp road to be 30%. 
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The spatial-temporal distribution plots for mean speed are shown in Figure II.5.7. In the baseline case (Figure 
II.5.7 (a)) the main road vehicles reduce the speed to values below 30km/h near the two merging zones. The 
worst traffic condition is observed in ramp 1 where the vehicles perform stop-and-go driving that propagates 
upstream the ramp. This congestion is due to the vehicles located near the merging zone that are waiting for a 
safe gap to merge into the main road.  

(a) Scenario 1: 0% PR HDCAVs, 0% PR LDCAVs 

(b) Scenario 2: 100% PR HDCAVs, 60% PR LDCAVs 

Figure II.5.7 Spatial-temporal distribution of mean speed plots of main and ramp roads (Black lines indicate the start and 
end of the control and/or merging zones) 

 
In contrast, by introducing high penetrations of optimally coordinated LDCAVs, i.e., 60% (Figure II.5.7 (b)), 
the traffic flows smoother in the ramp 1 while some effects are observed on the main road and the ramp 2 where 
the average speed is slightly decreased, and the traffic density increased, particularly on the main road. 
Ongoing work is exploring the impacts of additional penetration rates both on traffic and fuel consumption. 

Conclusions  
Microscopic traffic simulations have been performed to test the performance of the developed optimal 
coordination controller. The effectiveness of the controller to improve fuel economy and reduce travel time on 
traffic corridors has been demonstrated under 100% penetration of CAVs considering different traffic 
conditions and a highway and an urban corridor.  

The coordination framework has been adapted to operate safely in a scenario including mixed traffic, i.e., 
CAVs interacting with human drivers. In this partial penetration case, preliminary results reveal that the 60% 
penetration of CAVs can aid to mitigate the propagation of traffic bottlenecks at the expense of a slight speed 
reduction on the main road considering a hypothetical highway corridor with two on-ramps. Ongoing research 
is exploring the effects of additional penetration rates on traffic conditions and fuel efficiency considering 
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heterogeneous traffic (different vehicles classes/powertrains). We are also exploring the impacts of optimal 
coordination applied to real-world traffic scenarios and the effects of communication instabilities in the overall 
performance of the control.  
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Project Introduction 
Sensors, as well as connectivity between a vehicle and other vehicles (V2V) or the infrastructure (V2I), 
provide information to the vehicle about its environment and future driving conditions. A vehicle with 
automated driving then uses that information to perform its mission and accomplish various objectives: 
improved safety, increased mobility, greater comfort, better use of travel time, increased road capacity (e.g., 
platooning), and others. As a result, the way vehicles move is changing, which impacts their energy efficiency. 
These changes can hardly be captured by common procedures to quantify energy efficiency that evaluate 
vehicles based on a limited set of “human-driven” driving cycles. 

Automation and connectivity also can be used for eco-driving—in which energy efficiency is another objective 
of the vehicle dynamics control—without compromising drivability and travel time. In parallel, vehicles 
feature an ever-broader range of advanced powertrain technologies, from hybridization to transmissions with a 
high number of gears, designed to improve the overall vehicle efficiency. It is uncertain how combining 
powertrain and Connected and automated vehicle (CAV) technologies will impact energy efficiency 
improvements: will one cancel the benefit of the other, or will they add up? Will there be synergies from 
adopting a holistic approach that looks at both vehicle dynamics and powertrain operations? Will there be 
powertrain designs that achieve greater energy efficiency at lower cost only when coupled with eco-driving 
algorithms? What will the impacts be in the real world, not just in the best-case scenarios? 

This project aims to tackle these challenging questions by designing eco-driving and energy-management 
strategies for vehicles with advanced powertrain technologies, and by developing a software framework to 
evaluate them in as many realistic scenarios as possible. 

Objectives  
• Estimate the energy-saving potential of advanced powertrain technologies in the context of vehicle 

automation and connectivity. 

• Evaluate the benefits of various eco-driving approaches when applied to vehicles with advanced 
powertrain technologies. 

• Develop eco-driving and energy-management strategies that control vehicle speed and powertrain 
cooperatively in order to provide maximum energy savings, especially for vehicles with advanced 
powertrain technologies. 
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• Facilitate the development of energy-saving automated driving algorithms by the industry and research 
community through model-based system engineering. 

Approach  
RoadRunner: simulation of powertrain and driving dynamics for CAVs 
Vehicle-level simulations for estimating energy consumption typically model driving with a drive cycle (i.e., 
predefined speed as a function of time). This approach is not suitable for CAVs, where the vehicle itself 
dynamically decides its own speed based on its environment. As a result, in previous years we initiated in the 
development of RoadRunner: a framework that can simulate multiple vehicles with full powertrain models and 
the interactions between vehicles and their environment. RoadRunner uses powertrain models from 
Autonomie, Argonne’s established vehicle energy-consumption simulator, but adds new capabilities such as 
multi-vehicle simulation, models of the road, causal models of human driving, V2X communications, and 
sensors. Figure II.6.1 illustrates the steps in a typical RoadRunner use case. The user first defines a scenario: 
the route, the number of vehicles, the type of vehicles, and the type of CAV technology for each vehicle. 
RoadRunner then automatically builds the Simulink diagram, runs the simulation, and post-processes the 
results for the user to analyze. 

Eco-driving for CAV 
Eco-driving consists of adjusting vehicle speed to minimize energy consumption, for example coasting to a red 
light. Although some experienced human drivers practice eco-driving, it can be more systematically applied in 
CAVs, thanks to the active velocity control by onboard computers and environmental awareness from sensors 
and V2X. Our research seeks practical and implementable control strategies CAVs can use to drive in an 
energy-efficient fashion, and to evaluate their real-world energy impact.  

We will eventually use RoadRunner to demonstrate the eco-driving controllers developed as part of this 
project. As a result, these controllers will have to interact with advanced models of the powertrain, including 
transient dynamics, and only receive information about surrounding environment that can be realistically 
obtained in a real-world situation. In other words, such controllers will address some of the challenges of 
implementation typically not addressed in more theoretical approaches. One key requirement for the controller 
is for it to adapt to a changing environment and to the response of the vehicle itself, accounting for the 
imperfection of models assumed during the optimization and the uncertainty of the environment. 

Model-Predictive Control (MPC) is a technique that accomplishes this requirement, so the first focus in this 
project is to implement and demonstrate an eco-driving controller with embedded MPC. MPC uses the concept 
of receding horizon: at each time step, MPC computes the optimal command and state trajectories over an 

Figure II.6.1 RoadRunner workflow to simulate a CAV scenario 
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entire finite horizon (e.g., the next 20 seconds), but only applies the first step of the optimization. In the 
following time step, the horizon window moves one step further and the optimization is performed again. As a 
result, MPC performs the optimization at each time step with the most recent information about the state of the 
system, which creates a feedback loop that is critical to the stability of the system. MPC is a well-established 
approach, and is particularly well suited for linear and quadratic systems; in such cases, the optimization 
method applied at each time step is Quadratic Programming (QP), which is relatively fast and simple to 
implement. However, the linearity condition limits the number of control variables QP can optimize, and 
therefore leads to suboptimal results. 

Therefore, the other focus of this project is to develop optimization algorithms for advanced powertrains and 
that can be incorporated in the MPC framework. We can achieve this by applying optimal control theory to the 
eco-driving problem: given a horizon, constraint, and initial and final conditions, which control variable 
sequence results in the lowest energy consumption cost over the horizon? The optimization algorithm takes 
into account all the control variables in the optimization, so that velocity and powertrain are optimized 
simultaneously. This is critical to ensure maximum energy savings from vehicles with both advanced 
powertrain technologies (e.g., hybrids) and CAV capability.  

Results  
Powertrain operation impact of eco-approach algorithms 

To evaluate the impact of connectivity on powertrain operation, we developed an eco-approach scenario that 
we then applied to five conventional engine-powered vehicles. The eco-approach algorithm, inspired by 
literature, features a speed-only control logic that minimizes average tractive energy consumption and avoids 
stopping at red lights based on information about incoming signal phase and timing. We ran simulations for 
selected routes in the Chicago area, and fuel savings ranged from 5 to 9%. The resulting operating points are 
shown in Figure II.6.2. We demonstrated a 30 to 40% reduction in the number of shifts for each gear, 
especially for high gears. The reduction of demand for acceleration also leads to higher engine operation at low 
loads in the eco-signal examples, and therefore to lower average engine efficiency. 

Model validation of truck platooning in RoadRunner 
We implemented in RoadRunner control algorithms inspired by literature for the intelligent driver model 
(IDM), adaptive cruise control (ACC), and cooperative ACC (or CACC). These models allow simulations of 
close-driving platooning scenarios. In a platoon, vehicles have reduced drag coefficients as a function of both 
inter-vehicle spacing and the number of vehicles. The aero drag reduction coefficients are integrated into 
RoadRunner for short-gap driving (wind tunnel data from Lawrence Livermore National Laboratory). We 
validated the model of a three-truck platoon in RoadRunner based on test data provided by Lawrence Berkeley 
Laboratory. RoadRunner builds the Simulink diagram of the scenario, including information flows between 
truck vehicle models. After the simulation, the results showed that discrepancies in average inter-vehicle gap 
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Figure II.6.2 Eco-approach impacts on the energy benefits of components 
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were within 4% compared to test data, while many of the operational signals, including fuel consumption, were 
well matched. Key highlights are shown in Figure II.6.3. 

RoadRunner core developments 
We have improved RoadRunner to better support eco-driving studies and accelerate public release. A better 
integration with Autonomie allows us to use plant models from vehicles defined in Autonomie, and the 
scenario definition is overall easier for the user. The road model can now be initialized from real-world routes 
as defined by their waypoints, thanks to the automated extraction of route attributes (position of traffic lights, 
grade, speed limits, etc.) from HERE Maps API. Finally, internal changes to the model organization of each 
simulated vehicle allow the simulation of a more vehicle supervisory control paradigms. 

Real-world implementable eco-driving control with MPC  
This year, we implemented the first controller in RoadRunner that optimizes both vehicle speed and powertrain 
operations. This control, based on the MPC framework and using QP for optimization, computes the optimal 
engine torque of a conventional engine-powered midsize vehicle with a 6-speed automatic transmission during 
a cruise control scenario. Gear shifting follows a default rule-based control strategy. We set the horizon for 
MPC to 500 m, and discretized the distance in 25-m steps. We evaluated the controller over three artificially 
generated short routes (7 km each) and two real-world routes (using HERE data), and compared these to a 
baseline human driver model that simply tries to follow the speed limits. The controller with MPC-QP yielded 
3.2 to 6.8% better fuel economy, at the expense of longer travel time, as shown in Table II.6.1. 

  

  

 
  

 

 
  

 

  

 
  

 

 
  

 

  

Figure II.6.3 CAV model validation on platooning scenario for middle (veh2, left) and trailing (veh3, right) vehicle 
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Table II.6.1 Comparison of fuel economy and travel time by controllers 

Type of 
Driving 

Fuel Economy/Travel Time 

Artificial short 
cycle 1 (flat) 

Artificial short 
cycle 2  

(up-down) 

Artificial short 
cycle 3  

(down-up) 

Real world 1 
(Argonne to 

Chicago, 24 mi) 

Real world 2 
(Denver to Silver-

thorne, 54 mi) 

Human driver 37.1 mpg/330 s 36.7 mpg/332 s 37.4 mpg/332 s 41.0 mpg/1443 s 28.9 mpg/3129 s 

MPC-QP 38.7 mpg/342 s 39.1 mpg/350 s 39.6 mpg/341 s 42.8 mpg/1522 s 29.8 mpg/3274 s 

Difference 4.3%/3.6% 6.8%/5.4% 6.0%/2.7% 4.6%/5.5% 3.2%/4.6% 
 
The MPC-QP controller achieved better fuel economy thanks to smoother acceleration and deceleration at 
speed limit changes, optimal cruising speed, and grade anticipation. Better results could be achieved by adding 
more control variables to the optimization, but this would require solvers other than QP, which cannot handle 
the increased complexity; the following section details such alternatives. 

Optimal control algorithms applied to CAV eco-driving 
Optimal control theory is a method that is well suited for complex powertrain and speed co-optimization for 
eco-driving. We enhanced the optimal eco-cruise control algorithm developed in the first year of this project to 
take real-world route information as an input by processing the map data into segments with piecewise 
constant grades and speed limits [1], [3]. Case studies show up to 8% fuel saving potential for conventional 
vehicles, and 1.2% energy savings for electric vehicles. In these studies, the eco-cruise control relies on the 
assumption that optimal speed at steady state is constant—a simplifying assumption that allows analytical 
solutions to the control problem. However, we demonstrated that with a different formulation, optimal control 
theory leads to a periodic solution (i.e., where vehicle speed periodically oscillates) that alternates between 
acceleration and coasting. Up to 4% energy savings can be achieved, without detrimental impacts on driving 
comfort. 

 
Figure II.6.4 Electric vehicle travel between stops 

We also expanded the optimal control algorithm to car-following and intersection approach problems, which 
follow the same formulation as for eco-cruise control, but are subject to different types of constraints. Stop 
signs are point-constraints of speed (zero) in reference to distance. Figure II.6.4 shows the optimal control and 
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speed profiles (Opt) for an electric vehicle travelling between three stop signs with two speed limits, compared 
to the trajectories of human driving (modeled by the Intelligent Driver Model, IDM). 

Car-following adds time-variant position constraints to the existing problem formulation. Unlike the other 
constraints, the occurrences of boundedness are ambiguous in terms of position. Our proposed algorithm uses 
iterative trial and error to recursively adjust the parameters in the optimization. This eventually eliminates all 
the constraint violations [3].  

Conclusions  
• We continued the development of RoadRunner to better enable eco-driving research. 

• We analyzed the impact of connected and automated driving on powertrain operations: 5 to 9% fuel 
savings and a 30 to 40% reduction in shifting in an eco-approach scenario.  

• We validated a model of a three-truck platoon in RoadRunner; the average inter-vehicle gap in the 
simulation was within 4% of the test data. 

• We implemented an eco-cruise-control algorithm in RoadRunner that features model-predictive control 
and quadratic programming, and that creates 3 to 7% fuel savings for a conventional car. 

• We improved the eco-cruise algorithm that optimizes speed and powertrain for vehicles with multiple 
degrees of freedom (e.g., hybrids) to work on real-world grades. Case studies show up to 8% fuel saving 
potential for conventional vehicles, and 1.2% energy saving for electric vehicles. 

• We expanded the optimization algorithm to cover car following and intersection approaches. 

• Future work will focus on further improvements and validation of the models in RoadRunner, and the 
evaluation of real-world implementable eco-driving strategies for advanced powertrain vehicles. 
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Project Introduction  
Work accomplished under this task includes two aspects related to CACC (Cooperative Adaptive Cruise 
Control) trucks: (A) Control Performance Analysis Based on Test Track Data; and (B) CACC truck and real-
time simulation in the loop for intersection operation to evaluate energy consumption. Therefore, in the 
following report, each section contains two parts accordingly labeled with (A) and (B) respectively. 

Objectives  
Control Performance Analysis Based on Test Track Data 
The extensive fuel consumption test conducted at Transport Canada Test Track in Blainville, Canada 
covers variety of maneuvers including:  

• Separation Distance/Time: 4 m (13 ft) to 87 m (285 ft), equivalent to 0.14 s to 3.0 s at 65 mph (105 
km/h). 

• Truck and trailer configuration: standard trailer with aerodynamic treatment (side-skirts + boat-tail). 

• Vehicle speed: 89 km/h (55 mph) and mostly 105 km/h (65 mph). 

• Vehicle weight (tractor + trailer): 14,000 kg (31,000 lbs) and 29,400 kg (65,000 lbs) 

• One tractor towing two loaded trailers, operating as a Long Combination Vehicle 

• 2-truck or 3-truck CACC strings following a manually driven SUV 

• Cut-in and cut-out by an SUV between truck 1 & 2, and between truck 2 & 3 

• Speed variation between 55 and 65 mph 

The objectives of this part of work is to reuse the available test data for control performance analysis. 
The outcome of the analysis could be used for three purposes in the future: (a) to understand the 
statistical behavior of the three CACC system in different maneuvers; and (b) to find out the limit of 
the CACC system which could have implications for next stage field operational test with public traffic; 

mailto:David.Anderson@ee.doe.gov
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and (c) for possible performance improvement in the future if there is any chance to refine the 
controller. This part of work was partially funded by EEMS. 

CACC Truck and Real-time Simulation In-the-Loop for Intersection Operation 
The objectives for this part of work are: Develop a HIL (Hardware-in-the-Loop) simulation environment at 
Richmond Field Station (RFS) experimental intersection by: (1) generating an intersection traffic model in 
Aimsun based on real-time traffic data we already have; (2) developing and integrating Active Intersection 
Traffic Signal Control with Aimsun simulation incorporating CAVs; (3) integrating through I2V & V2I 
communication the experimental CACC-trucks with the intersection traffic signal controller; and (4) extensive 
field test of the CACC truck in this environment for the evaluation of any fuel saving benefit for such cooperative 
operation of CACC trucks and an intersection. 

Approach 
A. Control Performance Analysis Based on Test Track Data 

i. Field test data preparation of three CACC trucks for different scenarios, which was obtained 
during the test on Transport Canada Test Track in Blainville near Montreal of Canada in 
August 2017; 

ii. Quantitative analysis of the closed-track test data for most important scenarios with speed 
and distance tracking errors as the performance measures. The statistics used are:  

iii. Speed Error [m/s]: the speed tracking error of each truck in meters per second; it is defined 
as the difference between the reference speed and the measured truck speed, which is 
quantified as: root mean square (RMS) error and maximum value. 

iv. Distance Error [m]; the distance tracking error of each truck in meters; it is defined as the 
difference between the reference distance and the measured front gap in meters, which is 
quantified as: root mean square (RMS) error and maximum value. 

B. CACC Truck and Real-time Simulation In-the-Loop for Intersection Operation: The Concept of 
Operation is described below as shown in Figure I.6.1:  3 trucks using low speed CACC; the first 
truck is to be driven manually and the three trucks are connected with DSRC (Dedicated Short 
Range Communication); the live trucks, real-time simulation, and Active Traffic Signal Control 
will be integrated in the following sense 

i.  Using the PATH research intersection at RFS as the test site, which will be modeled in the 
microscopic traffic simulation package Aimsun; the model will be calibrated using field 
collected traffic data; the demand for other movements will also be generated from field 
collected traffic data; while the CACC truck string will be added or imbedded in one major 
movement, which will be reflected in real time in the microscopic traffic simulation. 

ii. ( a simplified optimal control (Model Predictive Control) or other appropriate control 
approach will be used to generate: (1) traffic signal control, and (2) desired (advisory) speed 
for CAVs for minimizing the total travel time directly (or, fuel consumption indirectly) by 
integrating the intersection signal operation with CACC truck operation; the overall 
simulated virtual traffic will be used for traffic signal control and the corresponding fuel 
consumption; the green distribution (control parameters) thus generated will be used for 
practical traffic signal control of the intersection and the desired speed of the corresponding 
movement will be used as the set-speed of the real trucks for CACC operation through the 
intersection. 
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The following figure shows the main components to be included in the system: 
 

 

Figure II.7.1 The Concept of Operation of Integrated CACC Trucks, real-time microscopic traffic simulation in Aimsun, and 
Active Traffic Signal Control. 

 

Results  
Control Performance Analysis Based on Test Track Data 
Transport Canada Motor Vehicle Test Track data included fundamental maneuvers such as constant speed 
following at different time gaps, cut-in and cut-out between trucks 1 and 2, and between trucks 2 and 3, long 
combination (one tractor towing two full-size trailers), speed variations between 55 mph ~ 65 mph etc. Since 
each run of a scenario on the track was for 64 miles, and each scenario had three successful runs, it makes 
sense to use such test data for statistical analysis of the control performance with respect to those scenarios. 
The following are the results: 

Constant Time Gap Following 
Since the vehicle speed is constant at 65 mph, for a given constant time gap, the clearance distance will not 
change. Therefore, the test scenario is similar to platooning (or constant clearance distance following). This 
subsection focuses on the test data analysis for performance of three-truck CACC following at distances: 18 m, 
6 m and 4 m. 

Table II.7.1 shows the speed and distance tracking errors for three T-Gaps (D-Gaps): 0.6 s (18 m), 0.21 s (6 
m), and 0.14 s (4 m) respectively. Each scenario has been tested on the track for 16 laps, which is 64 miles and 
each condition has been repeated three times.  
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Table II.7.1 Root Mean Square and Maximum of tracking errors 
 

Maneuver D_Gap [m]
Vehicle 
Position

RMS Max RMS Max
ACC 6m 1 0.05 0.55 0.19 0.45

CACC 6m 2 0.08 1.00 0.17 0.54
CACC 6m 3 0.09 1.01 0.25 0.64

ACC 4m 1 0.06 0.70 0.21 2.09
CACC 4m 2 0.08 0.84 0.18 1.08
CACC 4m 3 0.10 0.76 0.28 1.41

ACC 18m 1 0.05 0.53 0.29 0.53
CACC 18m 2 0.08 1.11 0.19 0.84
CACC 18m 3 0.09 0.97 0.23 1.19

Speed Error [m/s] Distance Error [m]

 
 

It can be observed from Table II.7.1 that the maximum distance following error for truck 3 is about 1.4 m, 
which causes concern for a 4 m distance following. To investigate the cause of such significant distance error 
with respect to the desired short following distance, driving modes and distance tracking errors of the three 
trucks have been analyzed. Two causes have been identified that caused the large distance tracking error: 

• Transition from manual to automatic mode at the beginning of the run, which is the case for the 18 m 
and 6 m following cases respectively  

• Driver accidentally switched off the automatic control  

It can be observed from Table II.7.1 that CACC tracking errors are generally larger than ACC tracking errors, 
which seem unreasonable. In fact, since the CACC following scenarios were tested without any vehicle in 
front of the lead truck, the leader was actually under CC (Cruise Control) mode. In this mode, the reference 
trajectory is internally planned for smooth acceleration and deceleration. This is why it has less tracking error 
in CC mode than in CACC mode. 

Cut-in and Cut-Out between Truck 1 & 2 on Test Track 
When the cut-in maneuver was between truck 1 and truck 2, truck 1 (in CC mode) speed and distance tracking 
would not be affected, which is therefore ignored. The cut-in performance is similar for all the 16 laps (each 
lap has two cut-in maneuvers on the two straight track sections). More detailed data analysis showed the 
following behaviors: front target distance sudden drop (cut-in happened)  the subject truck (truck 2) speed 
drop  speed and following distance transitioned to the desired values  front target distance suddenly 
increased (when cut-out happened)  truck 2 speed increasing to close the gap until the desired distance gap 
was reached  both speed and distance tracking resumed to steady-state tracking. It is noted that the distance 
tracking error is about 2 m, which is much smaller than the actual distance changes during a vehicle cut-in 
maneuver. This is due to the reference distance trajectory planning while taking into account the characteristics 
of the cut-in maneuver. Otherwise, the distance tracking error would be significantly larger, which would 
cause large speed tracking errors. As a result, it would cause spikes in feedback control action and truck 2 
would jerk significantly. 

Since the cut-in happened between truck 1 and truck 2, the following behavior of truck 3 was directly affected 
by the speed changes of truck 2 and therefore indirectly affected by the cut-in vehicle. As a result, the speed 
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tracking errors are smaller than those of truck 2; and the distance tracking errors are also smaller on average. 
However, the speed and distance tracking error changing logics are similar to that of truck 2. 

Table II.7.2 lists the speed and distance tracking errors of the three trucks. It can be observed that the 
maximum distance tracking error is nearly 2.5 m, even with trajectory planning for both desired speed and 
desired distance. This was due to the delay in driveline response caused by large truck mass and inertia. 
Practical ride quality of the subject truck during the cut-in maneuver still showed smoothness in performance, 
which is desirable.  

Similar observations and conclusions can be made for the cut-in maneuver between trucks 2 and 3. In this case, 
trucks 1 and 2 would not be affected by the cut-in vehicle with the current control configuration. Truck 3 
during the cut-in and cut-out should behave similarly to truck 2 in the previous maneuver, i.e., cut-in between 
trucks 1 and 2.  

Table II.7.2 also shows the speed and distance tracking errors for cut-in maneuvers between trucks 2 and 3. It 
is noted that the maximum distance tracking error is 2.5 m for truck 3, which implies the latency of response 
for the third truck in the CACC string. It also shows that the practical string stability that could be achieved is 
ultimately bounded instead of asymptotic as designed in [1]. 

 

Table II.7.2 Cut-in Maneuvers: Root Mean Square and Maximum of tracking errors 

Maneuver D_Gap [m]
Vehicle 
Position

RMS Max RMS Max
Cut in between 

1 & 2 35 1 0.05 0.54 0.30 0.55
Cut in between 

1 & 2 35 2 0.30 1.81 0.37 2.50
Cut in between 

1 & 2 35 3 0.20 1.34 0.48 2.50
Cut in between 

2 & 3 35 1 0.05 0.58 0.30 0.60
Cut in between 

2 & 3 35 2 0.09 1.03 0.22 0.82
Cut in between 

2 & 3 35 3 0.30 1.84 0.37 2.50

Speed Error [m/s] Distance Error [m]

 

 

Three Truck CACC with Speed Variations 
Response to speed variations of the first truck is the test case for string stability for any multi-vehicle 
following strategy including platooning and CACC from a control viewpoint. The reason is that the overall 
system delays and control responses will be reflected in the speed variation scenarios. Admittedly, the response 
also depends on the reference trajectory planning of each truck and the information that is used from the front 
truck, particularly, the maximum acceleration and deceleration. The effect of maximum deceleration on the 
feedback control would not heavily depend on the current speed of the truck since the total braking torque of 
the truck would not change significantly with speed. The acceleration capability of a fully loaded truck is 
rather limited as truck speed increases. From a control point of view, the reachable set of the engine torque 
control in the high-speed range is small. However, for commercial trucks with engine braking, higher vehicle 
speeds would correspond to higher engine speed, which will lead to larger available braking torque, while 
engine braking capability is rather low at low speed due to low engine speed. For the trucks that we tested, 
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since the service brake control activation deactivates the control of engine torque, engine braking torque and 
the service brake itself, we have deactivated the service brake control for most maneuvers except the 
coordinated braking control in emergency situation. Therefore, the deceleration needs to fully rely on the 
engine brake control since the truck does not have a transmission retarder. For those reasons, in the speed 
variation maneuver, the maximum deceleration is limited to 0.3 m/s2, and the maximum acceleration is below 
0.1 m/s2. The following plots show the system’s string stability related performance. The speed switching logic 
between the minimum 55 mph and maximum 65 mph in the test is as follows: once it reaches minimum or 
maximum speed, the CACC string will stay at that speed to cruise for one minute, and then it starts to switch to 
the other.  

Since truck 1 is in CC mode and there is a virtual vehicle (defined as a vehicle running exactly with the 
reference trajectory) ahead of it, the reference trajectory planning is with respect to the virtual vehicle. 
Therefore, the control response is different from trucks 2 and 3, which are in CACC mode. i.e. the two 
following trucks use the information passed by the DSRC. 

Table II.7.3 shows the maximum speed and distance tracking errors for 3-truck CACC speed variation 
maneuvers. It can be observed from the table that (a) the truck further behind has larger speed and distance 
tracking errors, reflecting the weak string stability characteristics; and (b) the maximum distance tracking error 
is nearly 2.5 m, which means that for highway maneuvers with the maximum acceleration and deceleration 
listed before, the following distance should not be closer than 10 m for safety. This is similar to the maximum 
distance tracking error for cut-in maneuvers observed before. However, the performance should be improved 
when the service brake automatic control deactivation problem can be resolved so that service brakes could be 
applied to provide a higher braking rate. Also, if the truck had a transmission retarder, the deceleration 
performance could be improved further.  

 
CACC Truck and Real-time Simulation In-the-Loop for Intersection Operation 
We cannot make any conclusion for this part of work since it is ongoing due to delay of funding arrival. At this 
stage, we are still developing the system and the algorithm. However, the following summarize the progress of 
this part of work up to the end of December 2018: 

• Renovated two of the three Freightliner trucks for automated control, which can be controlled from 
speed 0; 

• Renovated one PC-104 control computer on one of the trucks; 

• Renovated the interface with J-1939 Bus so that all the data reading and control command can be 
executed through J-1939; 

Maneuver D_Gap [m]
Vehicle 
Position

RMS Max RMS Max
ACC Speed 
Variation 35 1 0.12 0.98 0.92 5.73

CACC Speed 
Variation 35 2 0.23 1.53 0.48 2.50

CACC Speed 
Variation 35 3 0.57 4.35 0.42 2.50

Speed Error [m/s] Distance Error [m]

Table II.7.3 Truck Speed Variation between 55 ~ 65 mph 
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Conclusions  
Control Performance Analysis Based on Test Track Data 
The data analysis has shown that there is still room for CACC performance improvements, which include but 
are not limited to: systematic fault detection and handling, reducing transient tracking errors for cut-in and cut-
out maneuvers which involve sudden target distance changes, and for speed variations. These are unavoidable 
when the CACC string is operated in real-world traffic. 

The results showed that the performance of the CACC system is reasonably robust and stable for constant 
speed following – the RMS speed tracking error was well within 0.1 m/s and the RMS distance tracking error 
was well within 0.3 m. It has been found out that some larger transient maximum distance tracking errors 
(about 2 m) were mainly caused by transitions between manual and automatic, which often happened at the 
very beginning or during the runs due to driver’s accidentally switching OFF and then ON the CACC mode.  

Future work needed before full-scale public operation would include extensive testing of the CACC system 
with public traffic on a freeway corridor by commercial truck drivers while iteratively evaluating and 
improving the following aspects: (a) control performance and reliability in different traffic and road geometry, 
particularly, road grade; (b) quantitative fuel saving and emission reduction benefits in real-world traffic; and 
(c) driver acceptance and behaviors for using CACC trucks in public mixed-traffic operation. 

CACC Truck and Real-time Simulation In-the-Loop for Intersection Operation 
We cannot make any conclusion for this part of work since it is ongoing due to delay of funding arrival.  

Key Publications  
 X. Y. Lu, S. Shladover, and S. Bergquist, Truck CACC implementation and test to verify control 

performance, accepted for TRB Annual Meeting, Jan. 2019, Washington, D. C. 
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Project Introduction 
Previous research and development on CACC (Cooperative Adaptive Cruise Control) at LBNL and PATH 
(also in the U.S. and internationally) were mainly focused on IC engine vehicles of the same type for 
transportation mobility purposes. CACC for vehicles of different types and different powertrains have not been 
developed and implemented, although the automatic control of vehicles with different power sources will be an 
important issue in energy savings for CACC. The work proposed here for DOE/VTO will develop the CACC 
string with at least three power types: IC engine (gasoline and/or diesel), hybrid electric, and fully electric, 
which offers many new possibilities. With this connected automated vehicle string platform, DOE/VTO can 
conduct extensive research and development and field test for data collection for energy saving and emission 
reduction studies in a long run. The collected data in real-world traffic can be used for calibration of 
microscopic simulation models for more accurate meso- and macroscopic level energy consumption and 
emission change evaluation. 

This project is a joint effort of LBNL, ANL and INL. More specifically, for FY 2018: 

The roles of the LBNL team will include:  
• Develop PC-104 industrial computer and install Real-time operating system QNX 

• Develop lower level software including interfaces with commercially available remote sensors (such as 
radar, lidar and video camera, or their combination), DSRC units and CAN Bus 

• Preliminarily implement CACC algorithm on the 4 vehicles 

• Conduct initial test with ANL and INL on a test track; candidate test tracks include: (a) GoMentum 
Station in California (http://gomentumstation.net/ ); and (b) Navy Air Station in Alameda, in California; 
both test sites are in the proximity of LBNL. 

 

The roles the ANL team will include:   
• Provide interface protocol with CAN Bus for real-time data reading and control of both driving torque 

and the brake 

• Develop powertrain mapping for vehicles with different powertrain types 

• Assist and coordinate with LBNL for CACC overall system development 

mailto:David.Anderson@ee.doe.gov
http://gomentumstation.net/
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Objectives  
The objectives of this project for FY18 was to produce a preliminarily design and develop CACC capability 
for a four-vehicle string. The CACC capability was required to employ at least three powertrain types. The 
target system was required to run on a test track at high speeds where the first vehicle operates using cruise 
control (CC). System test and demonstration was to be conducted on a closed track (if applicable). 

Approach 
 
The following approaches will be adopted to develop the system. 

 Develop Overall System Structure 

 Develop upper and lower control strategy and adopting previously developed suitable CACC algorithm 
for upper level control [1] 

 Develop remote sensor (radar and/or lidar) for target detection and tracking  

 Purchase and develop DSRC communication capability for V2V 

 Perform system integration 

 Perform initial system tuning and test at Richmond Field Station  

 Perform initial test and tuning for upper and lower level control for string stability of 4-car CACC on test 
track. 

 

Results 
 
Overall System Structure 
The following Figure II.8.1 shows the overall system structure: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           

 
 

Figure II.8.1 Overall CACC system structure 

 
The functionality is described as follows: 
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• PC-104: is an industrial control computer with real-time operating system (RTOS) QNX; it is most 

critical part of the overall system; it runs all the processes including the drivers for all the components 
and interfacing with CAN Bus 

• Linux Laptop: this is for system development and tuning purposes since PC-104 does not have display 
by itself; the Linus laptop will act as the display and to run the highest-level script to execute the 
commands/processes on the PC-104 computer 

• WSU DSRC (Wireless Unit for Dedicated Short Range Communication): is the hardware unit or 5.9 
GHz wireless communication for V2V (vehicle-to-vehicle communication) capability, which needs a 
1Hz GPS usually 

• 5Hz GPS is to provide vehicle location with respect the ground (the earth) 

• Radar/Lidar: is the remote sensor for front target detection and tracking and eventually to provide the 
target distance and relative speed which are to be used by the upper level control algorithm 

• DVI (Driver Vehicle Interface): to be used for displaying any message/information to the driver and 
receiving any driver command such as driving mode (including: manual, ACC and CACC) and Time 
Gap selection etc.  

 
Control System Structure 
Figure II.8.2 depicts the CACC control software structure. The upper block includes the input data such as: 
remote sensor data for target detection/tracking and DSRC wireless communication data to determine the 
relative speed and distance. It also includes the driver command from DVI. The middle block is to use the 
output from the upper block to determine the desired acceleration/deceleration for vehicle following according 
to driver selected Time Gap and desired speed while maintaining string stability, which is the Upper Level 
Control. The lower block is the Lower Level Control which essentially convert the output of the Upper Level 
Control, i.e. the acceleration/deceleration, to engine torque control and brake control which are to be sent to 
CAN Bus for execution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.8.2 Control System Structure 

Vehicles to Be Used for CACC Development 
The following Figure II.8.3 shows the types of vehicles to be used for the CACC development:  
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• Both the Honda Accord and Toyota Prius PHEV with ACC are Parallel Hybrid Powered vehicles with 
ACC (Adaptive Cruise Control) capability; the powertrain contains motors driving each wheel; the IC 
engine can also provide power to the front axle; the motor and engine can jointly provide power to the 
vehicle at the same time to generate large driving torque; the motors also act as generators in vehicle 
deceleration for energy economy 

• The BMW i3 with ACC is Serial Hybrid in the sense that the vehicle is powered by motor only; the IC 
engine is only used to generate the electric to be used by the motor and stored in battery 

• The Ford Taurus is a traditional IC engine powered vehicle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.8.3 Vehicles to be used 

 
 
Other progress of the project: 
• LBNL team is currently working on the PC-104 computer, DSRC units, and remote sensors. 

• ANL team has made one vehicle ready in the sense that the required CAN Bus data can be accessed and 
the vehicle torque can be controlled.  

• It is expected that ANL will send two cars to LBNL in a few months for control system development. 
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Conclusions 
The project began in September 2018 and has developed an overall system structure and an approach for the 
control structure. 
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Project Introduction 
Eco driving includes a broader set of strategies to reduce energy use in vehicles. Most of the studies to-date 
have been focused on individual scenarios and applications to reduce fuel consumption and exhaust emission. 
This project aims to identify through analysis of a broad set of Eco-driving scenarios to fully define the Eco 
driving strategies, and to prioritize those that could achieve higher energy efficiency and generate larger 
benefits. In the second year, the project will further evaluate eco-driving strategies through collection and 
analysis of the field data and experiments. 

Objectives 
To analytically and experimentally evaluate the energy saving benefits (to the subject vehicle and vehicles 
behind) and impacts (on efficiency and safety of surrounding traffic) by applying eco-driving strategies 
designed for human drivers and ACC-like driving. 

Approach 
The LBNL project team will conduct analyses to broadly assess Eco-driving strategies and applications in 
order to establish a foundational understanding of associated energy implications. The approaches for this task 
include:  

a) Evaluation of the potential opportunities for achieving Eco-Driving.  

b) We will assess the energy consumptions for light- and heavy-duty vehicles for various operation 
scenarios from the perspectives of driving cycle to identify the potential opportunities for energy savings 
and their priorities.  

c) Study of Eco-Driving strategies and applications.  

d) Various Eco-driving strategies will be analyzed against the energy saving opportunities identified under 
sub-task (a). A broader set of strategies for full range of Eco-driving application scenarios will be 
studied. Examples of these strategies may include vehicle feedback devices (smart gauge, eco assist 
displays, and phone apps), Eco approach and departure at intersections, curve speed warning, real-time 
traffic alert, Eco route guidance, platooning (reduction of aerodynamic drag), etc. This analysis will be 
built upon the study under RQ1.1 (Define CAV concepts and time frames for adoption), which provides 
two examples of Eco-driving application scenario, including infrastructure-to-vehicle (I2V) cooperative 
eco-driving support for Level 0 manually driven vehicles and urban eco-signal control with I2V 
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communication to vehicles. The systematic evaluation of Eco-driving strategies will enable us to fully 
define the Eco-driving strategies and their applications. This study will build the foundation for the 
follow-on research and experimental studies under this task.  

e) Assessment of current development of the Eco-driving applications.  

f) Conduct a thorough literature review to assess the state-of-the-art studies and developments for eco-
driving applications. A significant portion of the existing studies have been concentrating on a limited 
number of Eco-driving strategies, including Eco approach and departure and platooning. We will review 
these plus others to include the full breath of eco-driving approaches, and assess the results (the benefits 
and impacts) obtained from these studies to determine the areas where sufficient knowledge exists and 
the gaps in each application area. Analysis will be conducted to evaluate how to address these gaps.   

Results 
Under task (a) the assessment will be conducted from two perspectives:  

1) Assessment of Energy Dissipation for City and Highway Driving 

The energy dissipation for vehicles need is studied first in order to identify the potential opportunities for 
energy savings and their priorities. Assessment is conducted quantitatively on energy dissipation for entire 
driving duty cycles that include both urban and highway driving.  

While the energy losses for cars and heavy vehicles may occur in the forms of engine loses, drive train 
losses, parasitic losses, auxiliary electrical losses, and power to wheels losses [1], [2], [4], Eco-Driving 
using ITS related technologies can potentially address improvements of power to wheels efficiency, i.e., to 
reduce unnecessary acceleration and braking, as well as wind resistance by application of controls or 
influencing driver’s behaviors. The assessment conducted under this task defines the areas where Eco-
Driving strategies may contribute to fuel savings (i.e., to minimize possibly engine losses during extended 
driving time including idling for combustion engine vehicles and lower speed operation), as well as a 
boundary fuel savings enabled by Eco-Driving.  

2) Trip Decomposition and Fuel Consumption Estimation 

We further conducted analysis of trips in order to understand the scenarios and the unnecessary of wasteful 
fuel consumptions and to identify energy saving opportunities. For this purpose, we start with 
decomposing the trips and analyzing the energy consumption distributions. We categorize fuel 
consumption into two types, i.e., the baseline fuel consumption and unproductive fuel consumption.  

The baseline (productive) energy consumption is defined as the energy necessary to operate a vehicle 
following the maximum speed limits (at which a vehicle may legally travel on a particular stretch of road) 
to accomplish a prescribed trip mission. Whereas unproductive energy consumption is the energy 
consumed in addition to the baseline energy consumption due to unnecessary decelerations, accelerations, 
speeds lower than prescribed speed limit and stops. 

The variation in vehicle characteristics may result in differences of the fuel consumption but it only 
contributes to the vehicle-based baseline fuel consumption, On the other hand, unproductive fuel 
consumption occurred due to vehicle deceleration and acceleration and unnecessary stops where stops are 
not always warranted (e.g., stop at red), and change of the speed (i.e., unnecessary braking and fast 
accelerations) where constant speed is designed. The scenarios that involve unproductive fuel 
consumptions may include:  

• On freeway – traffic congestion and incident caused shockwave or fluctuations of speed 

• On arterial highways, traffic congestion,  
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• At signalized intersection – traffic or queue, signal control, speed 

• At un-signalized intersection –stop signs, traffic queue, pedestrians 

• Others – speed limit, pedestrian crossing, grade  

 
We have developed an approach for the analyses as shown in Figure II.9.1 Four main steps needed to assess 
the energy consumptions for various operation scenarios from the perspectives of trips. The first step is to 
analyze the trip composition by road segments using statistics, including the Vehicle Miles Traveled (VMT) by 
road type and the trip length by trip purpose or the trip length distribution [4]. Then traffic delays by trips are 
estimated in the next step [5], [6]. In the third step, the fuel consumptions by trips are estimated based on the 
results from the previous part. As the final step, the fuel consumptions of different trip purposes or different 
trip lengths, including baseline and unproductive consumptions, are put together to identify the potential 
opportunities for energy savings and their priorities. The team has begun the analyses following the approach 
defined in Figure II.9.1 and plan to have this work done by March 2019.  
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Figure II.9.1 Flowchart for Estimating Fuel Consumptions of Trips  
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Conclusions  
This project started in June 2018 and no conclusions have been reached by September 2018.  
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Project Introduction 
Automated electric shuttles and other automated or autonomous vehicles show promise to reduce fuel 
consumption by reducing personally owned vehicle operation and substitution of electricity for petroleum fuel 
while increasing mobility in several conceptual implementations. Fully autonomous vehicle systems have 
many challenges to overcome before they can operate, at scale, at level 4 or level 5 automation on public 
streets and highways. In the near term, the concept of automated mobility districts, campus-sized areas 
designed with special considerations for vehicles using CAV technologies, may provide opportunities for 
automated electric vehicle transportation.  

Objectives 
The nature of such automated mobility districts makes them well suited as early test beds from which data can 
be gathered to better understand the implications of CAVs technologies on energy consumption and mobility. 
The information produced will be provided to SMART mobility modeling efforts to better predict mobility 
energy productivity in future scenarios. 

Approach 
This task has sought to partner with early testing/implementation of automated electric shuttles that are being 
contemplated or pursued in various neighborhood, military base and campus settings around the country. One 
early implementation of automated electric shuttles operating in a campus setting was identified at University 
of Michigan as part of their Mcity Driverless Shuttle pilot, detailed in a case study report [1]. Mcity 
researchers agreed to work with INL researchers to collect charging energy data to complement their behavior-
based study of human interactions with the automated shuttles. Precision energy metering hardware was 
installed in each of the branch circuits used exclusively to charge the shuttles, and the devices were networked 
to allow for remote access to the data. Mcity researchers, as part of their study, collected travel path data on 
each of the shuttles. These data streams are shared, and the reduced data is joined to provide a daily snapshot 
of energy consumption and the routes travelled. Because the automated shuttles are on a fixed route, 
sensitivities affecting energy consumption of vehicles, such as weather or speed profile, can be explored. 
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Results 
The Mcity automated electric shuttles were launched in June, 2018. While data were collected continuously 
since the launch, only a sample of travel data was available for analysis in advance of completion of Mcity’s 
researcher data portal, which will allow full access to the data at the end of FY-18. Complete analysis of the 
data will follow, and the preliminary analysis based on the one-week sample of travel data provided in the 
meantime is summarized here. 

The shuttles’ top speed was observed to be around 10 MPH on the two-stop route with a round trip distance of 
1.2 miles. The vehicles have seats for 10 passengers plus one conductor. The route was electronically mapped, 
and the vehicles are limited to self-driving operation on the assigned route. Summary data from a summer day 
of operation in July is detailed in the table below.  

Table II.10.1 Operational Data Details – July 17, 2018 

Shuttle ID Distance 
Travelled (Mi) 

Recharge 
Energy (kWh) Operating Time (hr) AC Recharge 

Energy (Wh/Mi) 

Shuttle 54 16.5 31.1 4.3 1883 

Shuttle 56 19.5 32.5 5.5 1668 

 
 
 

Future analysis will provide a distribution of energy usage over a range of daily weather conditions and 
varying speed traces due to interaction with traffic on the route. This analysis will explore the changes in 
energy usage and investigate sensitivities that affect the vehicles’ efficiency. 

Conclusions 
The test data analyzed to date represents an early automated shuttle deployment, and the magnitude of the 
vehicles’ energy use likely reflects technology that is not fully matured. The early analysis shows that these 
10-seat vehicles have high energy usage, consuming about 80% of the electrical energy of a 35-seat electric 
transit bus [2]. Large ancillary loads coupled with slow average speed is likely a contributing factor. Both the 
climate control system and self-driving functionality are expected to be large ancillary loads, though only the 
self-driving hardware is unique, compared to transit and personal electric vehicles. Future work could further 

 Figure II.10.1 Power data from the two shuttle charging circuits over a 24-hr period is shown 



Energy Efficient Mobility Systems 

104     II  SMART Mobility- Connected and Autonomous Vehicles (CAVS) 

determine the share of energy consumed by each sub-system, and investigation of other vehicle types under 
varying routes will also improve understanding of automated vehicles’ energy impacts. The project team 
additionally made connections with other sites that are starting or will soon start deploying automated shuttles, 
which may additionally enable future comparison of energy consumption data between different vehicle types 
and locations. Test data from this task (including energy consumption, along with driving behavior) are useful 
to other efforts contemplating district- or campus-based automated shuttle operation, and particularly will be 
shared with the SMART Mobility Urban Science task (US 2.4.1) developing the Automated Mobility District 
modeling and simulation toolkit. 
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Project Introduction 
While originally intended to provide validation for specific SMART related project, this work has been re-
scoped somewhat in the current Fiscal Year due to delays in coordinating, obtaining data, and finalizing 
experiment plans across the various SMART projects. While additional efforts will be spent towards specific 
validation in future years, this year’s focus was on 1) validating and investigating several highlighted CAV 
impact studies used in pervious DOE bounding analysis and 2) investigating additional items related to field-
collected data in terms of desired collection rate and related parameters. 

Objectives 
• Validate previous CAV impacts drawn from earlier literature and bounding reports 

• Aid in validation of specific SMART research projects (in collaboration with PIs) 

• Utilize Argonne’s research fleet of instrumented CONV., HEV, PHEV & BEVs and historical data 
repository for evaluation of data quality/sampling sensitivities and possibilities for expanded data 
collection 

Approach 
Dynamometer based testing of A-to-B drive-cycles (CAV to non-CAV behaviors) with sufficient repeats to 
draw meaningful conclusions across multiple powertrain types combined with historical analysis of Argonne’s 
data repository spanning multiple vehicle and powertrain types across regulatory and real-word driving 
conditions. 

The test vehicles used for the reference validation study were a 2017 Ford F150 with a 3.5L V6 and 10-speed 
automatic transmission and 2017 Toyota Prius Prime HEV with a 1.8L I4 and a power-split transmission 
coupled to the engine with a one-way clutch. For the purposes of this study, the Toyota Prius Prime was 
considered a HEV when in charge sustaining mode and a BEV when in charge depleting mode (due to its full 
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EV operating capability). The Ford F150 was considered an advanced conventional vehicle and a conventional 
vehicle with idle stop-start capability, depending on whether the idle stop-start function was enabled or not. 
More detailed specifications for each vehicle are presented in the table below. 

TABLE II.11.1  Test Vehicle Specifications 
 

  
Test Vehicle 2017 Ford F150 2017 Toyota Prius Prime 
Architecture Conventional ICE Vehicle Plug in Hybrid Vehicle 

Engine 3.5 liter Turbo, V6, DOHC 24V, 
280 kW (375 hp) @ 5,000 rpm 

637 Nm (470 lb-ft) @ 3,500 rpm 

1.8L, Inline 4-cylinder, 
72kW (96hp)@5200rpm, 

142Nm (105 lb-ft) @ 3600rpmL 
Transmission Four wheel drive 

10-speed automatic transmission 
Final Drive 3.21 

Front Wheel Drive 
Power split w/ one-way engine 

clutch 
Motor N/A MG1: 23kw (31hp), 40Nm (30 lb-ft) 

MG2: 53kw (71hp), 163Nm (120 lb-
ft) 

Battery N/A Li-ion, 350 V, 25 Ah 
8.8 kWh net capacity 

EPA Label Fuel Economy (mpg) 17 City / 23 Hwy / 20 Combined  
(4WD option) 

55 City / 53 Hwy / 54 Combined 

 

Results 
Validation of Highlighted CAV References 
Test cycles completed on the dynamometer included a series of intersection approach and launch speed traces 
based on the simulation studies by Barth et al. and Li et al. The first drive cycle was based on the study by 
Barth et al. and included four different intersection approach and launch speed profiles. Each of the four 
vehicle speed profiles corresponds to a different intersection approach and launch strategy. A diagram of the 
intersection approach scenario for this situation is shown in the figure below. 
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Figure II.11.1 Intersection eco-approach and launch with no stop required (Situation 1) 

In order to effectively measure the fuel and energy consumption for each of the four different speed profiles, a 
custom drive cycle was created with 30 consecutive repeats of each one. The average of the 30 repeats was 
then used for comparison of the different approach and launch strategies. 

The fuel and energy consumption for four different eco-driving strategies in an intersection scenario described 
by Situation 1 are presented below. The experimental results include fuel and energy consumption for the four 
approach and launch strategies shown above, across three different powertrain types. The figure below 
summarizes the relative fuel and energy consumption for approach strategies 2 through 4, compared to 
approach 1. 

Figure II.11.2 Summary of the relative fuel and energy consumption for approach strategies 2 through 4 for Situation 1 

The second drive cycle used for this study was based on the paper by Li et al. and consists of three different 
speed profiles for approaching an intersection where a complete stop is required and approach distance is long 
enough to coast to a stop. The intersection scenario and the three different speed profiles used for this study are 
shown below. 
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Figure II.11.3 Intersection eco-approach with stop and idle required (Situation 2) 

 
In addition to the three approach and launch speed profiles, a constant speed cruise was also added to the 
beginning of the drive cycle in order to obtain a measure of the best possible fuel consumption by cruising 
through the intersection without stopping. The constant speed cruise was set to 17.8 m/s (40 mph) and ran for 
total of 5.85 km (3.64 mi), equivalent to 10 times the distance of a single intersection approach and launch 
speed profile. Following the constant speed cruise, the rest of the drive cycle was made up of 10 consecutive 
repeats of each of the three different approach and launch speed profiles, representing different approach 
strategies for situation 2 from the Discussion of Eco-Driving Strategies section. The fuel and energy 
consumption for the constant speed cruise and each of the three different approach and launch strategies was 
then determined from the average value of the 10 repeats. 

The fuel and energy consumption for the three different approach strategies shown are shown below for 
Situation 2. The first figure shows a summary of the relative fuel and energy consumption of all four 
powertrain types for approach strategies 1 through 3 compared to cruising through the intersection on a green 
light without stopping. The second figure is a summary of the relative fuel and energy consumption of 
approach strategies 2 and 3 compared to approach 1, representing the potential benefits of eco-driving from 
connected and automated vehicles compared to identical, human driven vehicles. 

Figure II.11.4 Summary of the relative fuel and energy consumption of approach strategies 1 through 3 compared to 
cruising through the intersection without stopping for Situation 2 
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Figure II.11.5 Summary of the relative fuel and energy consumption of approach strategies 2 and 3 compared to approach 
1 for Situation 2 

Sampling Rate Investigation 
The figure below highlights the main issue observed related to sampling rate observed across several vehicles 
and drive-cycles done in the laboratory at Argonne. Specifically, the figure below highlights the loss of 
information as acquisition rate decreases. While the loss of resolution and thus miscalculation of energy varies 
from cycle-to-cycle, this observation was similar across a range of relevant drive cycles. In the plot below, 1Hz 
is shown in black (the line showing underrepresented peaks), despite 1 Hz often being used as a default 
acquisition rate in many in-field data collection projects. Summary recommendations regarding collection rate 
are shown in the conclusions below. 

Figure II.11.6 Loss of information due to decreased sampling rate  

Conclusions 
• Eco-Situation 1 - For the advanced conventional vehicle, approach strategy 2 had very little fuel 

consumption benefit when compared to approach 1, while approach strategies 3 and 4 showed more 
significant benefits of 5% and 3%, respectively. The HEV and BEV powertrain types showed significant 
benefits for fuel and energy consumption and increased slightly between approach 2 and 4. Similarly, the 
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reference results also show an increasing benefit between approach 2 and 4 when compared to approach 
1. It should be noted that the absolute value of the reference benefits is significantly higher than the 
experimental test results for all of the powertrain types tested, suggesting more recent vehicle 
developments may have altered the expected benefits from certain CAV strategies. 

• Eco-Situation 2 - Comparing eco-approach strategies to standard intersection approach by human 
drivers, electrified vehicles again have higher relative fuel/energy consumption benefits than 
conventional vehicles. The HEV and BEV enjoy fuel and energy consumption benefits of 12-20% thanks 
to eco-approach, with the higher benefits realized by the HEV. The conventional vehicles, on the other 
hand, see fuel consumption benefits of 7-12%, with the higher benefits attained by the vehicle without 
idle stop-start technology.  

• 1 Hz data appears insufficient for many “energy” based calculations and assessments from on-road data 
due to omissions of significant peaks and valleys related to the sampling rate. It appears that 2-2.5 Hz 
may provide acceptable results for signals that are relatively clean (i.e. direct torque/power 
measurement), but collection rates closer to 4 Hz may be needed to translate noise data such as GPS 
information into energy-relevant numbers (i.e. force and tractive power) 

 

Key Publications 
 “QUALITATIVE ANALYSIS AND EXPERIMENTAL RESULTS OF ECO-DRIVING STRATEGIES 

FOR DIFFERENT POWERTRAIN TYPES AND SCENARIOS”, 2019 TRB Presentation.  
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Project Introduction  
The WholeTraveler Transportation Behavior Study is designed to explore the energy implications of 
behavioral factors associated with adoption and use of emerging transportation technologies and services 
(connected and automated vehicles, mobility-on-demand, electric vehicles, e-commerce). The project uses an 
innovative, regionally-focused survey designed to understand the relationship between pivotal population 
characteristics, attitudes, and preferences, and their likelihood to adopt emerging technologies and services. In 
addition, the survey is designed to shape an understanding of how those technologies and services are likely to 
be used, how these uses are expected to affect the transportation system, and what the resultant energy 
implications may be.  

Objectives 
• Explore the question: how does the US traveler (segmented by demographics) make decisions impacting 

transportation energy use in the: 

o Very short-term: reroute, mode choice 

o Short-term: Day-ahead travel planning 

o Medium-term: Vehicle ownership & type 
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o Long-term: Housing location, etc. 

• Identify historic patterns in lifecycle trajectories and map out relationships to transportation behaviors to 
be used to predict change-points and decision points when people would be most likely to respond to 
policy incentives. 

• Couple definitions of heterogeneous traveler groups based on lifecycle trajectories with data on other 
dimensions of heterogeneity including personality/psychological traits, environmental preferences, 
metrics of risk aversion and intertemporal discounting, traditional demographic data, and other historic 
behavior patterns (such as technology adoption) to determine the most useful definition of heterogeneity 
that can best explain variation in behavioral outcomes of interest: openness to CAV and/or EV 
adoption/use, car ownership patterns, degree to which TNCs are compliments or substitutes to car 
ownership or public transportation use, and short-term, high-resolution travel behavior patterns 
(locational GPS data).  

• Use insights from all of the above analyses to inform expansion and enrichment of agent-based modeling 
efforts within SMART Mobility. 

Approach 
 The approach taken in this study involves a survey-based data collection, and subsequent analyses to answer a 
variety of research questions.  

The survey was conducted in two phases: (1) Phase 1 is an online survey collecting information on 
respondents: transportation needs and preferences, psychological characteristics of interest, demographic 
characteristics, and the timing of key historic life events; and (2) the second phase of the survey is a GPS data 
collection phase, where participants provide a week’s worth of their Google Location History GPS data 
collected on their smartphone, and answer a short series of questions about their transportation choices during 
that week. 

The survey is focused in the 9 core counties of the San Francisco Bay Area (Alameda, Contra Costa, Marin, 
Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma). The sampling method used is an Address-
Based random sample in this region.  

The survey design and subsequent analyses are geared towards answering a series of pressing questions:  

1. What are, and what will be, the demand curves of travelers in a transforming transportation 
system? In particular, what are the barriers to and drivers of adoption and use of emerging 
technologies (connected and automated vehicles, mobility-on-demand, electric vehicles, e-
commerce), how are they distributed across the population, and how do they compare to each-
other in terms of degree of influence? Possible dimensions of heterogeneity relevant to 
understanding these barriers and drivers include: psychological characteristics (Big Five: 
Openness, Conscientiousness, Extroversion, Agreeableness, Neuroticism); risk aversion; discount 
rate; lifecycle phases; commute needs/characteristics; intergenerational influencers; household 
composition; past technology adoption patterns; peer effects; preference for driving or driving 
ability/access; preferences over mode characteristics (travel time, cost, uncertainty of cost, 
uncertainty of travel time, ability to engage in other activities while traveling, ability to transport a 
child needing a car seat, ability to trip chain, hassle, safety, environmental preferences, level of 
interaction with others taking the same mode); and demographics. 

2. What are the energy implications in the transportation system of these demand curves (barriers 
and drivers)? 

2.1. E-Commerce: to what extent is home delivery a compliment or substitute for trips to the 
store in several categories of purchases (prepared food, groceries, household items, 
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clothing and accessories)? What are the biggest driving and dissuading characteristics of 
home delivery, and what implications does this have for scale up projections? 

2.2. Mobility on Demand / shared mobility: to what extent are Uber, Lyft or similar TNCs providing 
a service that compliments or replaces other transportation modes (including walking, 
biking, public transit, etc.), and at what cost points? To what extent does cost uncertainty 
(e.g., Uber surge pricing) influence peoples’ willingness to depend on TNCs relative to other 
modes? 

3. What are the underlying patterns and influencers of technology adoption? In particular, how does 
awareness of, exposure to, and interest in transportation technologies and services of interest, 
as well as proxy technologies, correlate with other relevant travel characteristics, needs, and 
preferences? 

3.1. Technologies: hybrid vehicles (gasoline-electric); plug-in electric vehicles; smartphones; 
rooftop PV; adaptive cruise control (“L1”); partially automated vehicles (“L2,” e.g., Tesla 
“Autopilot”); fully automated vehicles (“L4”); Uber/Lyft or other TNCs (single passenger 
option); Uber Pool, Lyft Line or other TNC (carpool option); navigation or trip-planning apps 
(e.g., Google Maps, Apple Maps, WAZE); Amazon Prime account; and car-share services 
(Zipcar, Car2Go) 

4. What are the dynamic lifecycle drivers and barriers to transportation decisions and their long-
term energy implications? 

4.1. What are the primary archetypal lifecycle trajectory patterns across the population, and what 
are the correlations between key life phases and transportation choices (vehicle ownership 
and mode use) across these archetypal patterns?  

4.2. How do change points in lifecycle phases drive changes in transportation choices (vehicle 
ownership and mode use)? 

4.3. To what extent are these life phases, their change points, and their implications for shifts in 
transportation choices (vehicle ownership and mode use) predictable within an individual, or 
segments of the population? 

5. Are the demand curves for these different emerging technologies and services interconnected? 
What is the degree of correlation between emerging technologies and services of interest in 
terms of propensity to adopt or use, or preferences for their defining characteristics? 

6. What are the energy implications of the demand curves (barriers and drivers)? What is the 
degree of correlation between energy intensity of needs and preferences on the one hand, and 
propensity to adopt, use, or preferences over the emerging technologies and service of interest 
on the other? 

7. What are the differences between stated preferences and actual travel patterns recorded in 
high-resolution day-to-day GPS observations? Are there indications of actual travel distance and 
methods that affect the priorities and preferences which travelers indicate? To what extent are 
travel choices (e.g., route and time of departure) flexible within a given traveler and what 
implications would this have for energy consumption? 

8. Can these insights improve transportation system modeling and simulation flexibility, richness, 
and accuracy? Can a deeper understanding of heterogeneity across the population in terms of 
characteristics, preferences, propensity to adopt (demand curves for) these emerging 
technologies and services, as well as traditional mode use, fundamentally inform simulation 
models? 
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The analysis approach used varies depending on the question being explored. For the most part, data analysis 
will use standard econometric and statistical techniques, such as linear regression and discrete choice 
modeling.  

In some instances, the analyses approach itself will be innovative and novel. In particular, machine learning 
clustering methods designed for clustering multivariate sequences (such as Optimal Matching) are used to 
identify archetypal lifecycle trajectory patterns. These clustered sequences, or archetypal patterns, can then be 
further analyzed to understand broad patterns in life phase transitions across the population, and the 
relationship between shifts in these patterns and critical transportation related decisions. 

Results  
Data collection is complete and we exceeded our targets of 900 Phase 1 responses and 200 Phase 2 responses. 
Specifically, invitation letters were sent to 60,000 active residential mailing addresses in this study area, 
encouraging potential participants to go to a designated website to fill in the Phase 1 survey. A single reminder 
postcard followed up this initial letter. The Phase 1 survey was administered online only, and took a median of 
27 minutes to complete. Upon completion of the Phase 1 survey, respondents were invited to participate in 
Phase 2. Those that opted in to Phase 2 were provided with a series of simple instructions to select the 
necessary settings on their smartphones to enable Google to maintain their Location History. After a week, 
instructions were provided for the respondents to download an archive of their Google Location History, and 
upload it to a web tool that enabled them to select the date range of the data they agreed to submit, respond to a 
short series of questions, and transfer the data to a Lawrence Berkeley National Laboratory secure server. 
Respondents that completed Phase 1 were provided with a $10 Amazon gift card, and those that complete 
Phase 2 were provided with an additional $20 Amazon gift card. The response rate was 1.7% for the Phase 1 
survey, resulting in about 997 complete responses and an additional 48 responses that completed the entire 
survey other than the life history calendar. The final number of these respondents that subsequently followed 
through and completed Phase 2 as well was 301. 

We have started conducting analyses of these data to tackle the first round of pressing questions. The two sets 
of results generated with the data thus far are summarized below. These results were generated using the Phase 
1 data only, and in particular only the first 915 complete survey responses from Phase 1. These will be updated 
with the final set of responses included. 

Conclusions 

Following a process of comprehensive background research informing the development of a 
methodologically rigorous two-phase survey strategy during the first year of the project, the 
WholeTraveler team completed data collection in July 2018. Throughout the process, the research 
team has been focused on identifying opportunities to produce and distribute high-impact findings of 
this project, and to support related projects within the SMART Mobility portfolio. In contribution 
toward these objectives, the WholeTraveler team produced two invited papers that were submitted 
to the journal Transportation Research Part D: Transport and Environment. Key findings are 
presented in the following. 

The first paper is entitled, “How to reach the users: Evaluating what characteristics indicate adoption 
of energy efficient transportation solutions in the face of rapid transformation”. This paper explores 
several characteristics of WholeTraveler respondents, and identifies two primary groups of adopters 
of emerging transportation technology. Based on classic diffusion adoption theory, the team 
differentiated respondents into categories of initial adopters and potential adopters. Findings 
identified age, income, education, presence of children in the household, mode characteristic 
preferences, personality characteristics, and location qualities as predictors of adoption of emerging 
transportation technologies. Evaluation included a focus on three emerging transportation 
technologies and services: ride-hailing (either shared/carpool or individual passenger), alternative 
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fuel vehicles (hybrids and plug-in electric vehicles (PEVs)), and three different levels of automated 
vehicle (AV) technologies.  

Some key insights gained from this analysis: 

• The carpool option of ride-hail services provides valuable accessibility to emerging transportation 
options for those that can’t take advantage of many of the other technological innovations  

• Having a young child of an age requiring a car seat or other specialized restraint, as well as being an 
introvert, both present barriers to diffusion potential of ride-hailing services  

• Those with disabilities or illnesses preventing them from driving do not currently view fully automated 
vehicles as a solution to mobility constraints  

• Those with relatively long commutes (up to 50 miles) are disproportionately more likely to adopt PEVs, 
suggesting that range anxiety does not appear to be binding for these commute distances 

• The populations that make up initial adopters (innovators and early adopters) look very different in many 
instances than the population of potential adopters (when early majority are also included). In particular, 
age ranges of current adopters differ significantly from those with a high diffusion potential of innovated 
vehicle technologies (PEV and AVs), with younger cohorts not yet able to adopt these technologies, but 
highly interested in doing so in the future.  

The data revealed that potential adopters possess different qualities and characteristics from initial 
adopters, suggesting that in order for adoption to advance beyond the smaller group of initial 
adopters to a larger population of potential adopters, more information, intervention strategies, and 
other behavioral levers must be identified and adjusted to encourage participation within the 
potential adopters group. However, Figure III.1.1 illustrates that the portion of respondents interested 
in adoption of several emerging technologies is substantial, with potential to shift toward adoption if 
adequately supported. 
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Figure III.1.1 Phase of diffusion and diffusion potential in the population by technology/service. Source:  LBNL, NREL, and 
INL Joint Study) 

The second paper focuses more closely on a specific demographic characteristic identified as a substantial 
limiter to adoption of emerging transportation technologies in the preceding paper, and is entitled, “Children at 
home: a barrier and driver of sustainable mobility patterns in the San Francisco Bay Area”. This inquiry used 
the novel life history approach to examining transportation choice over the course of life events, embodied in 
the WholeTraveler data collection effort. This analysis revealed that day-to-day mode choices are triggered by 
different family life stages defined by stages of development of the household’s children. It also showed that 
having children has a significantly different impact on transportation choices depending on the age at which 
the parent has their first child. With regard to transportation behavior, having children is associated with 
relatively more energy intensive transportation choices, generally increasing reliance on motorized modes, 
while reducing the extent to which parents use public transit and walking or biking. Additionally, children 
represent a barrier to being able to take advantage of ride-hailing. Although the timing of this doesn’t 
necessarily correspond to car seat requirements, but rather appears to correspond more to when children are 
over eight years of age.  

However, the act of having children by itself is associated with other factors that affect transportation behavior, 
with shifts toward more car driving. Processes in preparing to have children, referred to as nesting, as well as 
the association with aging – getting older is a part of being a parent – and having children also contribute to 
barriers in adopting emerging transportation technologies. These effects differ with the age of parents at the 
birth of a first child, with younger parents driving less and using ride-hailing more as compared to older 
parents. Older parents apparently change their behavior less than younger parents, possibly related to 
aforementioned age effects that coincide with higher dependence on driving. A simplified table of the effects 
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of transitions between family stages and mode use behavior is shown in Table III.1.1. See paper for more 
details. 

Table III.1.1 The Effect of Transitions between Family Stages on Mode Use Behavior  

Family Stage \ Mode Use (1) 
drove 

(2) 
public 

Text(3) 
ride-hailing 

(4) walk or 
bike 

Number 
of modes 

used 

nesting 0.0404* 
(0.0227) 

-0.0122 
(0.0335) 

-0.00703 
(0.0663) 

-0.0187 
(0.0303) 

0.0108 
(0.0292) 

children -0.00587 
(0.0202) 

-0.106** 
(0.0330) 

-0.0437 
(0.0682) 

-0.0672* 
(0.0295) 

-0.102** 
(0.0296) 

children (>8yr) -0.00587 
(0.0202) 

-0.106** 
(0.0330) 

-0.0437 
(0.0682) 

-0.0672* 
(0.0295) 

-0.102** 
(0.0296) 

children (>18yr) 0.0296 
(0.0501) 

-0.103 
(0.0857) 

-0.0979 
(0.135) 

-0.0238 
(0.0830) 

-0.0464 
(0.0508) 

Adj. R-sq 0.472 0.398 0.437 0.432 0.585 

#people 731 592 198 567 878 

 

Standard errors clustered at the person level in parentheses 

+ p < 0.10, * p < 0.05, ** p < 0.01 

In addition to the preceding papers, the WholeTraveler team is working to provide data outputs and a 
de-identified version of the dataset to other SMART Mobility researchers to inform related and 
ongoing projects. Coordination with researchers within each of the other pillars and among several 
national labs is ongoing.  

Key Publications  
 Spurlock, C. Anna, Victor Walker, James Sears, Gabrielle Wong-Parodi, Ling Jin, Margaret Taylor, 
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Transportation Research Part D: Transport and Environment. In review. 

 Todd, Annika, Margaret Taylor, Ling Jin, Gabrielle Wong-Parodi, Victor Walker, James Sears , Anand 
Gopal, and C. Anna Spurlock. Children at home: a barrier and driver of sustainable mobility patterns in 
the San Francisco Bay Area. Transportation Research Part D: Transport and Environment. In review. 
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Project Introduction 
New smart mobility solutions are emerging in the transportation sector, including electrification, automation, 
and sharing. These solutions provide opportunities to improve energy productivity and security. For example, 
the electrification could displace conventional fuel usage, the automation could significantly improve vehicle 
operational efficiency, and the sharing could potentially increase vehicle occupancy. To understand their 
energy impact, it is important to evaluate their technology acceptance that could be affected by technological 
and behavior factors. Therefore, this project aims to use a vehicle and mobility choice modeling approach to 
explore consumers’ behavioral factors and technological opportunities to facilitate the transition to 
transportation electrification, sharing and automation. In particular, this project will improve the inputs, 
assumptions, and choice structures of the Market Acceptance of Advanced Automotive Technologies-Mobility 
Choice (MA3T-MC) model. The core of the model is a multinomial nested logit model that simulates 
consumers’ vehicle choices (buy new vehicles or not, and buy human-driven vehicles (HV) or fully-automated 
vehicles (AV)) and mobility choices (primarily using personal vehicles, TNC with HVs, TNC with AVs, or 
public transit). Scenario results of technology acceptance of different vehicle and mobility choices from this 
study could facility other SMART research.  

 

Objectives 
The objectives of this project are to 1) understand behavioral factors and technological opportunities to 
accelerate transition to transportation electrification, automation, and sharing, and 2) model consumer mid-
term and long-term consumer choices of vehicle and mobility technologies with a focus on energy 
implications. 

 

Approach 
In this project, we will firstly finalize the MA3T-MC model with completed modeling structure and 
preliminary inputs and assumptions to be able to simulate long-term vehicle choices and mid-term mobility 
choices. Then, the behavioral parameters of the MA3T-MC model will be calibrated to SMART studies, 
historical and stated-preference data, including sales, TNC/mode choice demand, WholeTraveler observation 
and/or other surveys. Finally, we will use the MA3T-MC model to generate scenario results to facilitate 
SMART research. 
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Results 
In FY18, to model heterogeneous travel behaviors, we focused on the segmentation of travelers. The 2017 
National Household Travel Survey (NHTS) data are used for the clustering. Among multiple attribute 
categories available in the NHTS data, we select 10 attribute categories that potentially better affect 
consumers’ acceptance of different mobility choices. Figure III.2.1 shows the structure tree with 10 levels of 
attribute categories. These attribute categories could potentially capture the differences in consumers’ 
acceptance of different vehicle and mobility choices. For example, the vehicle ownership attribute is a key 
factor in consumers’ purchase decisions of EVs. The medical condition affects purchase decisions of CAVs. 
Finally, the combination of both driving intensity and commute distance provides additional information on 
daily driving behaviors of travelers.  

The full segmentation structure tree in Figure III.2.1 could potentially grow to an extremely large size when a 
high dimension of attribute categories is considered. Therefore, in FY18, we developed an object-weighted K-
Mode clustering algorithm for reducing the segmentation size. The clustering algorithm is based on the 
classical frequency-based K-Mode clustering algorithm that minimizes the total dissimilarity cost of all 
households relative to their assigned segments. To better reflect difference in household weights in the NHTS 
dataset, we also introduce a weighting factor for each household in the clustering algorithm. We implemented 
the algorithm in Java. By considering different segment sizes, we finally clustered the entire NHTS household 
dataset into 7,238 segments. These segments are used in MA3T-MC model for simulating technology 
acceptance of different vehicle and mobility choices. 

 

Figure III.2.1 Segmentation structure tree for modeling traveler heterogeneity 
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We also calibrated the MA3T-MC model using the NHTS data on mode choice. In particular, the shares of 
person miles traveled (PMTs) by transportation modes (i.e., transit, personal vehicle, and ride-hailing) are used 
for the calibration. With preliminary assumptions and inputs on technology (e.g., cost and fuel economy), 
infrastructure (e.g., fuel cost), and mobility characteristics (e.g., waiting and access time for different mobility 
choices), we used the MA3T-MC to obtain preliminary results on the vehicle and mobility technology 
acceptance as shown in Figure III.2.2 and Figure III.2.3. 

 

(a) without AV technology 

 

(b) with AV technology 

Figure III.2.2 Mobility choices in person miles traveled (PMT) 

Figure III.2.2 shows the technology acceptances of different mobility choices. In particular, Figure III.2.2 (a) 
corresponds to the scenario when AV technology is assumed not available in the market in the simulation time 
scope (before 2050), while Figure III.2.2 (b) is associated with the scenario when AV technology is available 
in the market in 2030 and is getting mature since then. It is shown that, when AV technology is not considered 
(Figure III.2.2 (a)), the non-automated shared mobility gradually increases its acceptance among travelers with 
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the assumption that travel cost for shared mobility is continuously reduced over time. However, in all 
simulation years, driving personal vehicle is the primary transportation mode. On the other hand, when AV 
technology is considered (Figure III.2.2 (b)), the automated shared mobility is becoming a major transportation 
mode in later years, mainly thanks to its benefits on time and travel cost savings.  

 

(a) without AV technology 

 

(b) with AV technology 

Figure III.2.3 Sales by vehicle technologies 

Figure III.2.3 shows the estimated sales of different vehicle choices without AV technology (Figure III.2.3(a)) 
and with AV technology (Figure III.2.3 (b)). All vehicle technologies are grouped into four categories, 
conventional fuel HV (Conv_HV), alternative fuel HV (Alternative_HV), Conventional fuel AV (Conv_AV), 
and alterantive fuel AV (alternative fuel AV). When AV technology is not considered (Figure III.2.3(a)), 
aternative fuel HVs including both plug-in hybrid electric vehicle (PHEVs) and battery electric vehicle (BEVs) 
gradually increase their sales and reach a total market share higher than 50% by 2050. When AV technology is 
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assumed to enter in the market in 2030 (Figure III.2.3(b)), the total sales are increased significantly shortly 
after 2030 mainly because of the AV technology. The total sales gradually declines in later years because more 
consumers choose to use other mobility choices as shown in Figure III.2.2(b).  

Figure III.2.4 shows the probability of choice of vehicle fuel and mobility technologies by each of selected 8 of 
the modeled 7238 consumer segments. Each line represents the choice probability by a consumer segment for 
(a) buying new personal vehicles (including HV and AV), (b) primarily driving current vehicles, (c) primarily 
using public transit, (d) buying new personal AVs, (e) buying new battery electric AVs, (f) buying new battery 
electric HVs, (g) primarily using AV TNC, and (h) primarily using HV TNC. 

 

Figure III.2.4 Disaggregate Consumer Choices of Vehicle and Mobility Technologies 

 

Conclusions 
In FY18, we developed a segmentation method for clustering all NHTS sampled households into 7,238 
segments to reflect heterogeneous travel behaviors. These heterogeneous travel behaviors are important factors 
to evaluate future technology acceptance of electrification, automation, and shared mobility in the 
transportation sector. We also completed the functional development of the MA3T-MC model, integrated with 
the segmentation results, and we showed a set of preliminary findings on the vehicle and mobility choices in 
both mid- and long term-scopes. We found that the AV technology can have a disruptive impact for both 
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shared mobility fleet and personal vehicles in the market mainly because of its consumer value on travel time 
cost recovery, driving stress reduction, and safety improvement. 

For future work, the MA3T-MC model needs improved assumptions on both AV technology and shared 
mobility characteristics from other SMART tasks. Also, the MA3T-MC model could provide scenario results 
of technology acceptance of different vehicle and mobility choices to facility other SMART research. Another 
extension is to improve the modeling structure of the MA3T-MC model. For example, currently the vehicle 
sales and stock are assumed to have no impact on the average vehicle miles traveled (VMT) in the MA3T-MC 
model. However, when the sales are significantly increased after 2030 as shown in Figure III.2.3(b), that will 
lower the average VMT because each household has limited time budget in operating personal vehicles. That 
will in return limits the total sales of personal vehicles. This factor could be integrated in the MA3T-MC 
model. 

Key Publications 
 Fei Xie, Zhenhong Lin, (2018). A Segmentation Method in Modeling Heterogeneous Mobility Behaviors 

using Travel Survey Data – a Case Study with the 2017 National Household Travel Survey (draft).  
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Project Introduction   
Transportation Network Companies (TNC) or ride-hailing services such as Uber and Lyft are becoming a 
popular alternative to conventional modes of personal transportation. However, there are scarce data and little 
research conducted to understand travelers’ choice of this transportation mode and impacts on travel behavior 
and energy consumption. This task analyzes the relationship between the supply of TNCs in a region and 
impacts on mobility and travel behavior (e.g. vehicle ownership, deadheading, VMT) and energy use. The 
results are useful as inputs for travel activity models used in other pillars (e.g. BEAM and POLARIS) to test 
the sensitivity of the availability of these services to travel and energy use. 

Objectives  
The main objective of this task is to estimate the effect of TNC services on specific measurements related to 
energy use including vehicle ownership, vehicle type (e.g. fuel efficiency, electric vehicles) and vehicle miles 
of travel. This will help the SMART consortium to estimate both the short- and long-run system energy 
impacts of large-scale TNC deployment using travel activity models developed under other SMART tasks. 
There were several activities under this task in 2018: 

• Examine the relationship between the entrance of TNC services across U.S. cities (first at the urban 
area level, and subsequently at the zip code level) and personal vehicle registrations. 

• Travel and energy implications analysis of a database of individual rides provided by a TNC in 
Austin, Texas. 

• Coordination with other SMART pillars to develop a TNC research framework identifying data and 
research needs to understand energy consequences of widespread use of TNC services. 

• Begin analysis of effect of TNC entry on vehicle ownership and VMT in Texas, using dataset of 
individual vehicle odometer readings. 

mailto:Email:%20.Henao@NREL.gov
mailto:TPWenzel@lbl.gov
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Approach 
For the analysis of the relationship between date of entry of TNC service and vehicle registrations, we use the 
difference-in-difference econometric statistical regression model with the following datasets: 

• Dependent Variable: Vehicle registrations at the zip code level (2010-2016) using a national database 
of individual vehicle registrations provided by IHS Automotive (previously R.L. Polk & Company). 

• Independent Variable: TNC entry dates (Month/Year) using UberX and Lyft. 

• Controlling Variables: Population, population density, economic variables such as income and 
unemployment. 

For the analysis on travel and energy implications of a TNC service in Austin, TX, we used a dataset of around 
1.5 million individual rides provided by RideAustin, a non-profit TNC established in Austin Texas when Uber 
and Lyft left that market in May 2016. The data are from May 2016 to April 2017. The RideAustin dataset 
identifies each driver and passenger, so activity by individual drivers or passengers can be tracked over time. 
The database includes the location coordinates of each vehicle at several points along a particular ride, as well 
as the measured distance of the route taken while transporting a passenger. The database also includes the year, 
make, and model of all vehicles being used by RideAustin drivers. 

We continue coordination with other SMART pillars (e.g. Urban Science, Task 2.1.4) to develop a research 
framework identifying major aspects of TNC services that will affect energy use, both increasing or reducing 
energy use. For example, reducing energy use by increasing vehicle occupancy with pooling services such as 
UberPool or LyftLine, decrease vehicle ownership moving from an habitual driver to a multimodal traveler, or 
concentrating VMT in fewer, high-mileage or electric vehicles. At the same time, TNCs can increase VMT and 
energy use with induced travel, drivers commuting long distances into urban centers, deadheading, or travel 
mode replacement shifting from more energy efficient modes (transit, bike or walk) to TNCs.  

Results  
In FY18 we drafted three research reports. Preliminary results from each of the reports are as follows: 

Impacts of Ride-hailing on Vehicle Registrations 
Preliminary results suggest that TNC entry has increased vehicle ownership and has an ambiguous effect on 
electric vehicle registrations. In all cases assessed, we show results for two different regression models with 
different representations of TNC service availability in an urban area or ZIP code: (1) an average effect based 
on whether TNC had launched in an area in a given year; and (2) a discrete annual effect that estimates TNC 
entry effect in each year after TNC entry. For each estimate reported, we also provide the 95% confidence 
interval (using cluster-robust standard errors) in parentheses.  

We find that TNC entry is associated with an increase in per-capita vehicle registrations. At the urban area 
level, the average effect model suggests that, on average, TNCs increase per-capita vehicle registrations by 
1.2% (95% confidence interval: 0.5% to 1.9%) over the period examined (relative to per-capita registration had 
the TNC not been introduced), and the discrete annual model finds an effect that generally agrees in magnitude 
with the binary model and that increases over time, from 1.4% (0.7% to 2.1%) in year one to 3.3% (1.7% to 
4.9%) in year three. ZIP code-level results generally agree: the average effect model suggests that, on average, 
TNCs increase per-capita vehicle registrations by 1.2% (95% confidence interval: 0.9% to 1.4%) over the 
period examined (relative to per-capita registration had the TNC not been introduced), and the discrete annual 
model finds an effect that generally agrees in magnitude with the binary model and that increases over time, 
from 1.3% (1.1% to 1.5%) in year one to 2.2% (1.6% to 2.8%) in year three. Estimates for control variables 
exhibit expected signs: per-capita vehicle registrations increase with higher populations at a decreasing rate 
(positive linear effect and negative quadratic effect), decrease with higher population densities at an increasing 
rate (negative linear effect and negative quadratic effect), decrease with increases in unemployment, and 
increase with higher average income at a decreasing rate (positive linear effect and negative quadratic effect). 
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Travel and Energy Implications of a TNC service in Austin, TX 
Using detailed data on approximately 1.5 million individual rides provided in the RideAustin program in 
Austin Texas, we quantify: the additional miles TNC drivers drive: before beginning and after ending their 
shifts, to reach a passenger once a ride has been requested, and between consecutive rides (all of which is 
referred to as deadheading); and the relative fuel efficiency of the vehicles that RideAustin drivers use 
compared to the average vehicle registered in Austin. We conservatively estimate that TNC driver commutes 
to and from their service areas account for 19% of total ride sourcing VMT; in addition, we estimate TNC 
drivers drove 55% more miles between ride requests within 60 minutes of each other, accounting for 25% of 
total ride sourcing VMT. Vehicles used for ride sourcing are on average two miles per gallon more fuel 
efficient than comparable light-duty vehicles registered in Austin, with twice as many hybrid-electric vehicles. 
New generation battery electric vehicle with 200 miles of range would be able to fulfill 90% of full-time 
drivers’ shifts on a single charge. The RideAustin data also indicate that a substantial percentage of all rides 
start or end at downtown entertainment and airport land uses. We estimate that the net effect of ride sourcing 
on energy use is a 43% to 92% increase compared to baseline pre-TNC personal travel. Figure III.3.1 
summarizes the net effect of five factors discussed above on the energy use from ride sourcing operation.  

Figure III.3.1 Low and high estimates of net energy impact of ride sourcing in Austin 

Quantifying the Impacts of TNCs on Transportation and Energy 
TNCs impact transportation and energy across multiple domains such as vehicle miles traveled, parking, 
safety, and energy use. Furthermore, TNCs combined with traditional and emerging services represent the 
onset of mobility as a service (MaaS) in which transportation is ordered, purchased, and consumed as an 
integrated system, rather than as a small portion of a single monthly budget. MaaS is likely to impact not only 
the traveler and network, but also the built environment, future infrastructure (e.g. parking, curb utilization), 
fleet management, regulations, and key social, economic, and energy implications. Although TNCs have 
gained rapid popularity, data and research that can inform mobility and energy impacts remains scarce. There 
is a critical knowledge gap in analyzing the conditions that can drive various emerging mobility services 
towards societal goals. This project aims to address this gap by developing a framework to explore the energy 
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impacts of ride-hailing that span key research questions, hypotheses, data needs, and data collection strategies. 
The comprehensive framework proposed is intended to guide the future (re)design of integrated mobility 
systems, harnessing new technologies and services to help align public and private co-benefits, while also 
addressing critical potential risks and unintended consequences. The draft preliminary research framework to 
quantify energy impacts is presented as Table III.3.1. 

Table III.3.1 TNC Energy Framework, Potential Impacts 
 

 

 

 

 

 

 

 

 

 

 

Conclusions   
All the studies under this task are ongoing; no conclusions are available as of this time. 

Key Publications    
 Wenzel, T., Rames, C., Kontou, E., Henao, A. Travel and Energy Implications of Ridesourcing Services 

in Austin, Texas. Transportation Research Part D: Transport and Environment. In review. 
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Project Introduction 
As new mobility options and new vehicle technologies disrupt the transportation system, there remains a high 
degree of uncertainty around the interaction between these trends and the behaviors and preferences of 
travelers. This project seeks to quantify the energy and mobility impacts of these trends by simulating in detail 
the emerging transportation system and the heterogeneous preference profiles of travelers based on empirical 
studies of traveler behavior. 

We approach this task in two phases: 1) We developed the BEAM travel demand model, which is capable of 
simulating a multi-modal transportation system including the operations of demand-responsive ride hailing 
fleets. The model was applied and calibrated to the San Francisco Bay Area. 2) We explored the modal 
sensitivity of travelers, the impact of their value of time, and the limits of technology adoption based on results 
from the Whole Traveler Behavioral Study. 

The following progress report summarizes the BEAM model, describes the study design, and explores results 
from the model application. 

Objectives 
Our project objective is to quantify the energy and mobility impacts of these trends by simulating in detail the 
emerging transportation system and the heterogeneous preference profiles of travelers based on empirical 
studies of traveler behavior. 

Approach 
 
The BEAM Model 
The Behavior, Energy, Autonomy, and Mobility (BEAM) model is an integrated, agent-based travel demand 
simulation framework. Individual agents express preferences through a utility-maximizing evolutionary 
algorithm that minimizes each individual’s cost and time spent traveling via diverse modal options, including 
the competition for scarce supply resources such as parking spaces and charging infrastructure. 

BEAM simulates the essential elements that compose a dynamic transportation system. From the road 
network, parking and charging infrastructure, to the transit system and a synthetic population with plans and 
preferences, the virtual system is an amalgamation of multiple spatially resolved layers that together represent 
an integrated transportation system (Figure III.4.1). 

mailto:David.Anderson@ee.doe.gov
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Figure III.4.1 BEAM represents the road network, land use, 
parking infrastructure, charging infrastructure, transit 

system, traveler activities, personal mobility, and explicit 
vehicle movements.  

 

BEAM is an extension to the MATSim (Multi-Agent Transportation Simulation) model, where agents employ 
reinforcement learning across successive simulated days to maximize their personal utility through plan 
mutation (exploration) and selecting between previously executed plans (exploitation). The BEAM model 
shifts some of the behavioral emphasis in MATSim from across-day planning to within-day planning, where 
agents dynamically respond to the state of the system during the mobility simulation. In BEAM, agents can 
plan across all major modes of travel including driving, walking, biking, transit, and demand-responsive ride 
hailing. Several key features of BEAM are summarized here: 

MATSim Integration - BEAM leverages the MATSim modeling framework [1], an open source simulation 
tool with a vibrant community of global developers and users. MATSim is extensible (BEAM is one of those 
extensions) which allows modelers to utilize a large suite of tools and plug-ins to serve their research and 
analytical interests. 

Resource Markets - While BEAM can be used as a tool for modeling and analyzing the detailed operations of a 
transportation system, it is designed primarily as an approach to modeling resource markets in the 
transportation sector. The transportation system is composed of several sets of mobility resources that are in 
limited supply (e.g. road capacities, vehicle seating, TNC fleet availability, refueling infrastructure). By 
adopting the MATSim utility maximization approach to achieving user equilibrium for traffic modeling, 
BEAM is able to find the corresponding equilibrium point across all resource markets of interest. 

Dynamic Within-Day Planning - Because BEAM places a heavy emphasis on within-day planning, it is 
possible to simulate modern mobility services in a manner that reflects the emerging transportation system. For 
example, a virtual ride hail service in BEAM responds to customer inquiries by reporting the wait time for a 
ride, which the BEAM agents consider in their decision on what service or mode to use.  

Rich Modal Choice – BEAM offers multiple mode choice specifications. Mode can be exogenously defined, or 
agents can endogenously choose mode during the simulation day at the trip level (dynamic mode choice) or 
before the simulation at the tour level (tour-based modal replanning). The modal options available to agents 
include walk, bike, drive alone, ride hail, and three different variations on public transit (walk to transit, drive 
to transit, and take ride hail to/from transit). 

Ride Hail Operations – Ride hailing companies are already changing the mobility landscape and as driverless 
vehicles come online, the economics of these services will improve substantially. In BEAM, ride hailing is 
modeled as a fleet of taxis controlled by a centralized manager that responds to requests from customers and 
dispatches vehicles accordingly.  
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Designed for Scale - BEAM is written primarily in Scala and leverages the Akka_ library for currency which 
implements the Actor Model of Computation [2]. This approach simplifies the process of deploying 
transportation simulations at full scale and utilizing high performance computing resources. BEAM has been 
designed to integrate with Amazon Web Services including a framework to automatically deploy simulation 
runs to the cloud.  

Traveler Heterogeneity 
In BEAM, preference heterogeneity is primarily expressed through the value of travel time of each traveler ( 

Figure III.4.2). Based on research conducted by the SFCTA [3], we distributed the value of time lognormally 
with a mean value conditioned on household income. In addition, personal and household characteristics such 
as gender, age, household size, number of personal vehicles, and any other readily available co-variate from 
the American Community Survey are available used to inform agent choices within BEAM.  

 

Figure III.4.2 Value of travel time in the virtual population simulated in BEAM, disaggregated by annual household 
income (note that “200” in the figure contains all income above $200k). 
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Figure III.4.3 Household income distribution of the simulated population in BEAM.  

 

Technology Diffusion Scenarios 
In order to explore the potential impacts of shared, automated mobility service adoption, we created three 
scenarios based on results from the Whole Traveler Behavioral Study [4]. Each scenario is distinguished by the 
number of simulated travelers who include ride hail or ride hail transit as modal alternatives in their mode 
choice procedure. 

Table III.4.1 Technology diffusion scenarios used for analysis. 
Scenario Description Rationale 

Unlimited 

This is equivalent to the base scenario 
used for calibration, but it features a 
price for ride hail services 50% of the 

base scenario. 

Serves as a base scenario that assumes no one will 
categorically refused to adopt AVs in the future. 

100% of the population considers ride hail as a mode 
in this scenario. 

AV-Interested 
Based on Whole Traveler respondents 
who expressed interest in adopting AV 

technology when available. 

Serves as a more conservative scenario based on the 
limits of expressed interest in AV technology. In total, 
47% of the population considers ride hail as a mode 

in this scenario. 

RH-Interested 
Based on Whole Traveler respondents 

who either use ride hail or are interested 
in using ride hail. 

Serves the most conservative scenario due to a 
modified application of parameters from whole 

traveler (without county fixed effects). In total, only 
26% of the population consider ride hail as a mode in 

this scenario. 
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Results  
We investigate the medium-term impact of behavioral sensitivity to mode through sensitivity analysis. Using a 
calibrated model with heterogeneous values of time, we assess the response of the travelers to changes in cost 
of each mode. In Figure II.4.4 and Figure II.4.5, we see that changes to the cost of gasoline (+/- 50%), the cost 
of ride hailing (+/-25%), and the cost of transit (+/-50%) can yield substantial shifts in modal share and 
substantial changes in system energy consumption, as much as 18%. 

Figure III.4.4 Modal shares for the Base San Francisco Bay Area scenario and three sets of variations with cost of modes 
shifted +/-50% (for gasoline and transit) or +/-25% (for ride hail). 

Figure III.4.5 System energy consumption for the Base San Francisco Bay Area scenario and three sets of variations with 
cost of modes shifted +/-50% (for gasoline and transit) or +/-25% (for ride hail). Percentage labels are all relative to the 

Base scenario. 
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When the SF Bay Area scenario is simulated across the three scenarios defined in Table III.4.1, the restrictions  

on ride hailing and ride hail transit as modes result in substantial shifts in modal share from these modes to 
other modes, mostly car (Figure III.4.6). Even though ride hail trips produce more vehicle miles traveled than 
car (due to empty vehicle movements), we find that scenarios with reduced ride hail use lead to increases in 
energy consumption ( Figure III.4.7). This is due to a reduction in ride hail transit as a mode and a slight 
reduction in walking. 

 

Figure III.4.6 Modal share between a base scenario 
(equivalent to the scenario used for calibration except with 

reduced ride hail cost by 50%) and two scenarios where 
adoption of ride hail is limited according to the demographic 
distributions estimated from the Whole Traveler Behavioral 

Study. The AV Interest scenario simulates adoption by 
respondents who indicated interest with AV technology. The 

RH Use/Interest scenario includes respondents who 
indicated use of or interest in shared mobility (but with 

overall reduced uptake due to a lack of geographic specificity 
in application of the model results). 

  

Figure III.4.7 Total system energy consumption comparison 
between a base scenario (equivalent to the scenario used 
for calibration except with reduced ride hail cost by 50%) 
and two scenarios where adoption of ride hail is limited 

according to the demographic distributions estimated from 
the Whole Traveler Behavioral Study. The AV Interest 

scenario simulates adoption by respondents who indicated 
interest with AV technology. The RH Use/Interest scenario 
includes respondents who indicated use of or interest in 
shared mobility (but with overall reduced uptake due to a 
lack of geographic specificity in application of the model 

results). 

Conclusions  
We have introduced the BEAM travel demand model and our application to the San Francisco Bay Area. We 
have conducted an initial set of calibration and validation exercises. We have conducted a series of sensitivity 
studies with a focus on the impact of traveler behavior on modal shares and system energy consumption. 

• The population is sensitive to modal cost, varying costs by +/-50% can increase the energy consumption 
of the system as much as 13% or decrease by as much as 18%. 

• The diffusion potential of AV technology in the context of automated ride hailing will result in different 
modal and energy outcomes. When substantial numbers of travelers are uninterested in using an 
automated ride hailing fleet, the modal shares involve more driving due to the reduction in use of hide 
hail as a transit access/egress mode. This increases system energy consumption as much as 6%.  

Key Publications   
 Colin Sheppard, Rashid Waraich, Sid Feygin, Michael Zilske, Anand Gopal. “SMART Mobility MDS 

Task 3.1 - BEAM Interim Report on Calibration Results, Medium-term Study, and Proof-of-Concept 
Long-term Approach.” 
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Project Introduction  
The research in transportation clearly indicates that potential changes in travel demand are a key driver of 
uncertainty surrounding the overall impacts of future mobility on energy use. In this task, we seek to extend 
POLARIS to better characterize mobility decisions that are made under new mobility technologies and modes. 
We will enhance core behavioral modeling components of POLARIS to capture changes in short-term, mid-
term, and long-term decision-making brought about by new technologies. We will use the updated POLARIS 
transportation simulation model to evaluate the energy and emissions outcomes of these new mobility 
technologies in the context of the Chicago metropolitan region. 

Objectives  
• Enhance the POLARIS simulation framework to incorporate the range of decision-making applicable 

to the scenarios of interest under mobility decision science (MDS). 

• Model traveler behavior in POLARIS as it pertains to vehicle choice, activity planning, mode choice, 
and other choices that are sensitive to factors related to future mobility scenarios. 

• Understand technological, behavior, and other factors that affect shifts in mobility energy 
productivity. 

• Evaluate behavioral response due to future mobility, design policies, and model energy impacts. 

• Complement other approaches by testing in multiple regions, using multiple approaches, and 
modelling different behaviors. 

Approach 
The approach to achieving the objectives of this project involves implementing various behavioral models 
developed as part of this research, other MDS tasks, or drawn from the literature. Models of key traveler 
behaviors are incorporated into the POLARIS agent-based modeling framework in order to evaluate 
sensitivities of the various behaviors to potential changes under various MDS scenarios. Figure III.5.1 
overviews the improvements to the core POLARIS simulator. The primary tasks under the travel-behavior 
simulation project over the last fiscal year involved: 

1. Development of an activity time of day and duration choice model, 

2. Updating the existing mode choice model to capture multimodal travel, 

mailto:jauld@anl.gov
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3. Estimation of a new scheduling and conflict-resolution model, 

4. Implement an intra-household automated vehicle sharing optimization model, 

5. Exploring the behavioral sensitivity of the POLARIS ABM with the above improvements, and 

6. Case studies demonstrating energy impacts under various scenarios. 

 

Figure III.5.1 POLARIS modeling process with MDS improvements highlighted 

The project requires significant inputs from throughout the SMART Mobility research program, and 
collaboration with a number of other laboratories and universities. The University of Illinois at Chicago (UIC) 
helped estimate the activity start and duration model, as well as developing a new activity scheduling and 
conflict resolution model. The University of New South Wales (UNSW) and UIC contributed to the update of 
the mode choice model and exploration of value of travel-time changes through the FY 2017 MDS 2.1 task. 
All models, whether estimated at Argonne, estimated through university or laboratory collaborators, or drawn 
from the literature, were implemented in POLARIS as agent-based behavioral modules controllable through 
external parameter files, as described in the POLARIS repository and various publications. We then used the 
POLARIS-Autonomie simulator with updated behavioral modules to analyze the energy impacts for scenarios 
related to level 5, fully automated vehicle sharing, as discussed in the CAV7A1.3 annual report, and for 
intermodal transit access improvement, as detailed in the MM1.3 annual report. 

Activity time of day and duration modeling 
Argonne and the team from UIC developed a complex econometric formulation relating activity start time and 
duration choice to a variety of activity-specific characteristics, individual socio-demographics, scheduling, and 
system performance variables. The model was implemented as a copula model between a hybrid random-regret 
minimization and utility maximization choice model (for start time choice) and a hazard-duration model for the 
duration of the activities. This formulation allows heterogeneous choices to be represented and the significant 
correlations to be captured between the choice of activity start time-of-day (TOD) and activity duration 
(Golshani et al. 2018). The model was coded into the POLARIS framework. It was then calibrated using 
simulation to update the time-specific constants. Key findings of the model are demonstrated by the direct and 
cross elasticities of the start time alternatives, as shown in Figure III.5.2. The model is critically important, 
because it allows the simulation to capture the process for time-of-day choices and how these choices change 
under different network performance and generalized cost assumptions. This makes the model sensitive and 
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dynamically responsive to changes in congestion, reliability, valuations of travel time, and other factors. The 
model’s sensitivity to key covariates was evaluated and verified in the sensitivity study discussed below. 

Figure III.5.2 Key findings from activity start time choice model 

Mode choice modeling 
We updated and improved the POLARIS base-mode choice so it can capture multi-modal decision-making and 
incorporate new mobility options. The model estimation process leveraged multiple datasets, including the 
Chicago 2009 household travel survey, as well as a recent survey of Chicago-area transit riders (Auld et al. 
2019). Multiple surveys were combined to both capture the baseline mode choice, and understand how mode 
choices have changed now that new mobility options are widely available that were not when the original 
Chicago household travel survey was completed. We developed a process to combine the datasets into a single 
dataset and impute characteristics of the non-observed mode alternatives using the POLARIS multi-modal 
router (see MM1.3 annual report for router 
details). The router allowed us to calculate 
exact travel cost/time components for various 
drive, transit, and intermodal options that we then 
used in model estimation. We also collected 
information on historical and current transit, taxi, 
and other modal fares, pass usage, parking costs, 
and so forth to enhance the realism of the 
estimated model. We then estimated separate and 
combined mode choice models for each dataset, 
for multiple trip types (i.e., home-based 
work/school, home-based other, non-home 
based). We analyzed results in terms of the 
reasonableness of the estimated value-of-travel time components; all models demonstrated good fit and 
expected behavior. Table I.5.1 shows value of time estimates for the home-based work model. In order to 
implement the model in a simulation, we made extensive changes to the POLARIS network skimming process, 
which generates average travel time and cost estimates from/to each zone in the model. The skimmed values 
are then used for each mode choice decision when the model is run. We updated the skimmer to include time-
dependent skims by mode for all of the cost components required, including in-vehicle time access/egress time 
by car and walk, wait time, transfers, and fares paid. 

Table I.5.1 Home-based Value of Time by Income Level 
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Scheduling and conflict resolution model 
Working with the team at UIC, we developed an optimized activity-scheduling framework for POLARIS 
(Shamshiripour et al. 2019). The framework has two levels. In the upper level, decision tree classifiers 
determine the strategic resolution to conflict cases depending on an individual’s decision to modify either of 
the activities, modify both of them, or ignore either of them. Then, in the lower tactical level, a mathematical 
model determines exactly how the conflict is resolved, based on three types of information:  

1. Requirements dictated by the upper-level strategic resolution component,  

2. Parametric hazard models that determine the maximum modification tolerated by the individual, and 

3. Binary choice models to estimate propensity to change activity start time versus its duration. 

The scheduling framework  
The scheduling framework establishes an efficient link between the two levels, in that the upper-level model 
can easily obtain feedback from the lower-level model and set boundaries of the lower-level model more 
effectively. Attributes of the conflict itself along with the activities involved in it, as well as the individual’s 
socio-demographics, are incorporated into the different components of the framework to achieve a 
behaviorally sound model. Day of week, activity type (i.e., mandatory, social, recreation, shopping), geometry 
of conflict, duration and average frequency of the activity, and age of the individual are among the most 
influential variables. 

Intra-household autonomous vehicle sharing optimization model 
We developed a new intra-household vehicle-sharing optimization model that represents household vehicle 
sharing behavior in the presence of autonomous vehicles that can reposition themselves. The model optimizes 
vehicle and ride sharing within the household while accounting for various costs, such as the disutility of 
scheduling changes, fuel, parking and time costs, and road pricing costs at the household level. The objective 
function is shown in Equation 1. 

The model was implemented as a household-level decision-making process within POLARIS, which is used 
for all households with access to an automated vehicle. We evaluated the model for multiple cities using 
household travel survey data to quantify the potential impacts of various road and parking pricing options on 
unoccupied miles traveled (Javanmardi et al. 2019). We applied the updated model to case studies of privately 
owned level-5 AV impacts in Bloomington, Illinois, as discussed in the CAV7A1.3 annual report and in Auld 
et al. (2019). Findings from both the survey analysis and the simulation analysis indicate that unoccupied 
mileage pricing can be effective at mitigating the vehicle miles traveled (VMT) impacts from zero-occupancy 
vehicles (ZOVs). 

(1) 



FY 2018 Annual Progress Report 

III  SMART Mobility - Mobility Decision Science (MDS)    139 

Behavioral sensitivity analysis 
We performed a behavioral sensitivity analysis on the updated POLARIS activity-based model to determine 
the simulator’s sensitivity to key behavioral parameters. A previous study revealed that miles traveled are 
sensitive to the travel time parameter in the mode and destination choice models, with an elasticity of 
approximately -0.25 (there is a 2.5% reduction in miles traveled for every 10% increase in the travel time 
parameters). We performed a new parametric study on 10 additional bundles of key behaviors to identify key 
parameters for additional study to reveal how they will change under future mobility scenarios. Figure III.5.3 
shows the results of the analysis for the VMT metric. Key findings from this study include the sensitivity of 
regional mobility results to modal travel time components. Many other behavioral parameters were found to 
have limited behavioral impacts, likely due to the limited study area. Bloomington, Illinois, is relatively small, 
with poor transit service and homogenous land use mix. These factors all limit behavior responses, and require 
larger-scale analysis to identify further sensitivities. 

Figure III.5.3 VMT sensitivity to changes in behavioral parameters 

Transit access study results 
We performed a scenario analysis to explore the impacts of improving transit accessibility using the updated 
POLARIS model, including the new mode choice model and network skimmer along with the improved multi-
modal router and transit simulator developed under MM1.3. This analysis was performed using the 
Bloomington, Illinois, model a representative small city with relatively limited transit service, where the 
majority of trips taken are by private automobile. The scenario analysis included a baseline scenario, as well as 
a scenario where transit access/egress by transportation network companies (TNCs) was subsidized by the 
transit agency at no cost to the traveler (a first-mile/last-mile TNC application). Table-III.5.2 shows the results 
of the scenario analysis. 

Table-III.5.2 Transit Access Scenario Mobility and Energy Results  

  

Total 
VMT 

SOV 
VMT 

Taxi/TNC 
VMT 

TNC-to-
transit 
VMT 

Bus 
VMT 

SOV / 
Taxi/ 

TNC % 

Walk 
to 

Transit 
% 

TNC to 
Transit 

% 

Overall 
Transit 

% 

Baseline 2,265,786 1,946,530 313,974 1,805 3,477 72.6% 1.3% 0.1% 1.3% 

TNC 
access 

2,232,961 1,945,728 278,018 5,737 3,477 72.4% 1.2% 0.3% 1.5% 

% 
change 

-1.4% 0.0% -11.5% 217.8% 0.0% -0.3% -6.3% 226.6% 10.9% 
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The simulation results demonstrate a moderate reduction in auto-based VMT from single-occupant, high-
occupancy, and taxi/TNC trips and a commensurate increase in transit use. This increases transit energy usage, 
but reduces overall energy use substantially because the transit modes tend to be much more efficient on a per-
passenger basis. Interestingly, the 11% increase in overall transit use comes at an agency cost of subsidizing 
only 5,737 miles of TNC access for approximately 2,000 new transit riders. Most significantly, by providing 
these miles of TNC access, over 33,000 auto miles traveled are removed from the network, which also 
decreases overall system congestion. Figure III.5.4 shows the geographic distribution of where transit is used 
and the change in transit utilization under the TNC access scenario. 

Figure III.5.4 Change in transit mode share from baseline to subsidized TNC access scenario  

Overall, it appears that providing no-cost access to transit can increase overall transit ridership by increasing 
the catchment area of transit routes that are competitive with the auto mode. This extends potential transit use 
to riders outside of walking distance from the nearest stop. In addition, this also increases transit use by 
locking in the additional riders to the transit mode when they are in the downtown/business areas away from 
their vehicles. 

Conclusions  
We significantly enhanced POLARIS to simulate the impacts of various traveler behaviors under different 
future mobility scenarios. We implemented and tested key improvements to the mode choice and timing choice 
models, paired with improvements in the network skimmer and activity scheduler for more realistic activity 
pattern generation and choice specification, which demonstrate the sensitivity of the regional mobility metrics 
to the key parameters. The updated model has been used to explore potential impacts of transit access policies; 
increased drive-to-transit access demonstrates an increase in transit usage and reduction in energy usage and 
system congestion. 
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IV.1 Enhance Existing Models to Estimate Impact of Modal Shifts;  

Intracity Passenger Travel (ANL) [Task 1.3] 
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Project Introduction  
With the advent of automated and connected transportation systems, car and bike sharing, transportation 
network companies (TNCs), and on-demand transit services, as well as the increasing availability of real-time 
traffic and transit information, travelers have the opportunity to evaluate their multiple routing options and 
make better-informed decisions. These advancements call for a comprehensive modeling of the system as an 
integrated multimodal network. The significance of having such an integrated tool lies in (1) a more accurate 
modeling of private car, transit vehicle, and traveler movements and interactions in an environment with 
various possible levels of connectedness and automation; and (2) a more accurate modeling of user decision 
making via integrated mode choice/path assignment and ensuring that the modeled choices are consistent with 
observation. 

In this task, we sought to extend the POLARIS model to include multimodal network representation, 
intermodal routing, multimodal supply simulation of cars, transit (bus, urban rail, commuter rail, etc.), taxis 
and TNCs, and active modes (walking, biking, bike-sharing, etc.). This approach will enable us to model the 
supply aspect of intermodal transportation, which consists of complex interactions between cars, transit 
vehicles, and travelers. Moreover, we will extend the SVTriP model to generate realistic bus 
speed/acceleration/idling profiles to provide the necessary linkage between POLARIS and Autonomie. With 
these enhancements, we will be able to quantify the mobility and energy impact(s) of transit use under 
different scenarios in the context of the Chicago metropolitan region in Illinois, as well as in Bloomington, 
Illinois. 

Objectives  
• Quantify the energy impact of transit under different scenarios (ridership, vehicle technologies, etc.). 

• Integrate the Autonomie energy models with POLARIS and quantify the energy impact(s) of transit 
under different scenarios using multi-year Chicago data.  

• Extend SVTriP for transit buses. 

• Extend POLARIS to simulate movements of multiple modes; simulation will account for traffic 
congestion, sit/stand/miss/get rejected for passengers, wait times, etc. 

mailto:omer@anl.gov
mailto:David.Anderson@ee.doe.gov


FY 2018 Annual Progress Report 

IV  SMART Mobility - Multimodal Transportation (MM)    143 

• Quantify the energy impact(s) of different transit ridership levels based on historical data and the use of 
TNC services as a competing or complementing mode. 

Approach 
The approach to achieving these objectives involves implementing various supply models and integrating them 
with the existing models in POLARIS. Figure IV.1.1 highlights the various components of POLARIS, as well 
as SVTriP and Autonomie, which have been relevant to this task. 

 

 Figure IV.1.1 POLARIS Modeling Process with Multimodal Tasks Highlighted 

 

The primary subtasks under this task over the last fiscal year involved the following: 

 

 

 

 Integrating the intermodal routing algorithm with the mode choice model of POLARIS. 

Implementing complex transit fare structures to inform routing and mode choice. 

Developing a multimodal simulator and integrating it into POLARIS. 

Extending SVTriP for transit buses. 

 Running scenarios to test the impact(s) of transit use on mobility and energy. 

Intermodal Routing Algorithm and Mode-Choice Integration 
In FY 2017, a significant update to the POLARIS routing module was implemented allowing for 
heterogeneous, intermodal route selection. The newly developed, time-dependent intermodal A* (TDIMA*) 
algorithm is a point-to-point, shortest-path algorithm that includes driving, walking, biking, and all transit 
modes (e.g., bus, suburban bus, rail, commuter rail, and so on). For a given origin-destination pair and 
departure time, it generates the shortest path based on the traveler’s and the destination activity’s attributes, as 
well as the desired set of modes. The traveler may choose driving, walking to transit, biking to transit, park-
and-ride (PNR), kiss-and-ride (KNR), or including bike-share services along their path, as well as utilizing 
transportation network company (TNC) services such as Uber or Lyft. 

In a metropolitan region such as Chicago, there are 40 million trips on average on a given weekday. In order to 
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improve computational performance and the behavioral realism of the mode-choice model, some filtering 
heuristics were developed. As shown in Figure IV.1.2 there are several areas in the metropolitan region with 
no feasible walking access to any transit service. It is computationally infeasible to try finding walk-to-transit 
routes for these trips. As a result, a Dijkstra-based heuristic is developed. From every walking link in the 
multimodal network, the walking time and distance to the nearest transit stop/station are calculated and stored. 
It takes less than a minute to pre-calculate these distances and store them for each of the 123,000 walking links 
in the Chicago region. The mode-choice model of POLARIS retrieves that information and checks whether the 
walking distance from origin to transit (access) or the walking distance from transit to the destination (egress) 
is above the traveler- and activity-specific threshold (e.g., 1 km, 2 km). It is important to note that this feature 
is specific to the traveler (age, lifestyle, etc.), as well as to the activity (urgency, origin and destination 
locations, etc.). 

Similarly, it is not realistic for a traveler to drive close to the destination for 40 minutes, get off, and then take 
transit to the destination and spend 5 minutes. Hence, similar heuristics are developed for drive-to-transit 
(e.g., PNR, KNR, and TNC access trips). From every road link in the multimodal network, the driving time 
and distance to the nearest transit stop/station are calculated and stored. Similarly, it takes less than half a 
minute to pre-calculate these distances and store them for each of the 56,000 driving links in the Chicago 
region. The mode-choice model of POLARIS retrieves that information and compares the driving distance 
from origin to transit (access, important for PNR, KNR, and TNC to transit) or the driving distance from 
transit to the destination (egress, important for TNC after transit) with the door-to-door (direct) driving 
distance. If the values are “too close” to each other, the drive-to/from-transit option is not feasible. 

 

 

Figure IV.1.2 Filtering Heuristics for Locations with no Feasible Walking Access to/from Transit 

Implementation of Complex Fare Structures 
The POLARIS model was updated to read the General Transit Feed Specification (GTFS) (also used by 
Google Maps) fare structure provided by each transit agency. Depending on the agency, fares are collected 
based on number of boardings (reduced/free transfer fees), boarding and alighting stations, zones through 
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which the itinerary passes, and the transit lines used. For example, in the Chicago region, Chicago Transit 
Authority (CTA) and the Pace suburban bus service use a boarding-based fare system with reduced transfer 
fees. However, they enforce a two-hour limit from the first boarding for a subsequent boarding to count as a 
transfer. On the other hand, fares for Metra (the Chicago metropolitan area’s commuter rail system) are based 
on the boarding and alighting stations. These complex structures are successfully replicated in the TDIMA* 
algorithm. The algorithm tracks the monetary cost. Moreover, the monetary cost is also a factor in the route 
choice based on travelers’ activity-specific values of time. And finally, this monetary cost also informs the 
mode-choice model. 

Multimodal Simulation 
As discussed before, the mode choice model of POLARIS provides modes for every trip based on traveler and 
activity characteristics. The TDIMA* algorithm provides routes for each of these trips, some of which are 
intermodal. In order to obtain mobility and energy metrics, these trips must be simulated using a multimodal 
network representation. Figure IV.1.3 provides a detailed flowchart of multimodal simulation.  

Initially, every traveler is moved in the network along his/her assigned route. If the current link is not a transit 
link, then the traveler drives, bikes, or walks to the end of the link according to the route assigned by the 
TDIMA* algorithm. If the traveler is already riding in a transit vehicle, and the current link is not a transit link, 
then the traveler alights the vehicle. If the link is a transit link, and the traveler is staying on board, then the 
traveler rides to the next node in the transit vehicle. If the traveler is standing, and a seat becomes available 
because of some other travelers alighting, then the traveler gets seated. If the link is a transit link, and the traveler 
is in a vehicle but has to transfer, then the traveler alights and waits for the next trip. If the link is a transit link, 
and the traveler is not in a vehicle, then the traveler waits for the next trip. At every arrival at the end of a link, 
two checks are performed: one is whether the traveler’s experience up to that point is close enough to the pre-trip 
experience determined by the router. By experience, we mean the “generalized cost of travel,” which is a 
weighted sum of cumulative walking time, biking time, driving time, in-transit-vehicle time, waiting time, 
monetary cost, and transfer penalties. If the experienced generalized cost is significantly higher than the pre-trip 
generalized cost, the rerouting event is triggered. In other words, the TDIMA* algorithm is called upon to find 
the best route from the link at which the traveler is located to the traveler’s destination. The rerouting event is also 
triggered if the traveler is rejected from boarding a transit vehicle because it is at capacity. 

 

Figure IV.1.3 Flowchart for Multimodal Simulation 
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At the end of every traveler and transit vehicle trip, detailed trajectories are stored into the output database of 
POLARIS. For a traveler, this information includes pre-trip and actual arrival times; pre-trip and actual 
generalized cost; pre-trip and actual travel times of walking, biking, driving, in-transit-vehicle (seated or 
standing) separately; pre-trip and actual waiting counts; pre-trip and actual waiting times; and pre-trip and 
actual transfer penalties. These values are reported both on a link-by-link basis and at the trip level as a 
summary. Similarly, for a transit vehicle, pre-trip and actual arrival times; pre-trip and actual dwell times; pre-
trip and actual travel times; travel distances; and seated and standing loads are reported both on a link-by-link 
basis and at the trip level as a summary. 

Extend SVTriP for Transit Buses 
The link-by-link transit vehicle trajectories also serve as an input to SVTriP. SVTriP receives average speeds, 
maximum speeds, and stopping times for a transit vehicle on a link-by link basis and generates naturalistic 1-
Hz speed profiles, as shown in Figure IV.1.4. The transition probability matrices (TPMs) used for the bus trips 
were generated using the data provided by the National Renewable Energy Laboratory (NREL) for 2,036 bus 
trips in the Twin Cities area. The trips add up to 81,000 vehicle-kilometers and 2,216 vehicle-hours. 

 

 Figure IV.1.4 POLARIS to SVTriP 

Results 
The POLARIS-SVTriP-Autonomie full energy process has been implemented to the Bloomington, Illinois, 
network. Following are the network characteristics: 

• 3,010 nodes 
o 2,540 street nodes 

o 470 transit stops/stations 

• 15,062 links 
o 7,023 road  

o 8,068 walk 

o 511 transit  

• 17 routes 
• 31 patterns (route variations) 
• 923 transit vehicle (bus) trips 
• 37,035 multimodal traveler trips 
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Out of the 37,035 multimodal traveler trips, 5,006 of them involve buses. The remaining trips are for walking 
or bike trips only. Because the transit system is underutilized, the average passenger miles per gallon (pMPG) 
is 14.2, which is significantly below the nationwide average of 32 pMPG. On the other hand, the average 
vehicle miles per gallon (vMPG) is 3.4, which is very close to the national average of 3.26 vMPG. See Figure 
IV.1.5 for the distributions of pMPG and vMPG.  

 

Source: Oak Ridge National Laboratory, Transportation Energy Data Book, 2016. 

 Figure IV.1.5 Histograms of (a) Passenger Miles per Gallon (left) and (b) Vehicle Miles per Gallon (right) 

 

Conclusions  
The POLARIS model has been significantly extended in order to simulate the movements of multimodal 
travelers and transit vehicles. The TDIMA* algorithm has been enhanced to include the fare structures of 
transit agencies. Smart heuristics have been developed to filter out infeasible walk-to-transit and drive-to-
transit modes for the mode-choice evaluations. Moreover, SVTriP has been extended to include transit buses. 
The updated POLARIS -> SVTriP -> Autonomie process can successfully simulate the mobility and energy 
outcomes in a fully multimodal network representation. 
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Project Introduction    
Shared mobility systems, such as carsharing, have facilitated automotive access on a temporary basis, which 
allows people to gain automotive mobility without the need to own vehicle. Such a transformation facilitates 
greater multi-modalism, which ultimately reduces the energy use and emissions derived from transportation 
activity. A number of studies have evaluated the impacts of carsharing systems on vehicle holdings, vehicle 
acquisitions, driving, and overall modal shift. But much more can be learned through a deeper inspection of 
existing survey and activity data that allow us to identify how shared mobility systems can best support multi-
modal behavior, and where such systems are most effective in facilitating transitions to reduced personal 
vehicle ownership and multi-modal travel behavior.  

In this project, researchers are using survey and vehicle activity data collected through car2go, the largest 
carsharing operator in the world, to study activity patterns and mode shift dynamics that are caused by shared 
mobility systems. Car2go delivers what is called one-way free-floating carsharing in that it provides one-way 
carsharing within a large urban zone. Members can pick up a vehicle parked anywhere in the zone and drop it 
off anywhere else in the zone to close their session. They pay only for the time that they use the vehicle. 
Car2go is the largest one-way carsharing operator in the world, operating in about 30 cities.  

Researchers affiliated with UC Berkeley and LBNL have conducted research evaluating the high-level impacts 
of car2go on vehicle holdings, VMT, and modal shift. Leveraging this early work and associated data 
resources, this project is advancing an in-depth understanding of urban mobility patterns and modal shift 
within the context of the urban and infrastructure environment. One of the key innovations of this project is to 
understand the relationship between land-use, density, as well as public transit operations and infrastructure to 
impacts from one-way shared mobility systems. Developing this understanding requires a solid foundation of 
data descriptive of the public transit system and operations.  

The research team at INL is further expanding the integration of public transit operational and infrastructure 
data into the analysis of shared mobility system impacts. Researchers at INL are building a database of transit 
operational attributes to establish inputs into the modeling efforts of the broader project. The database 
assembled by the INL effort will provide the foundation for a broader DOE understanding of public 
transportation operations as well as potential further exploration of public transit energy consumption across 
and within systems. The analysis of shared mobility impacts and its relationship to public transit and land-use 
will inform policy and understanding of potential impacts of such systems within broader regions beyond the 
scope of the cities studied in this project.  
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Objectives  
The objective of this project is to address central questions related to how travel behavior impacts from one-
way shared mobility systems vary with land-use, multi-modal infrastructure, and urban travel patterns. 
Resources from the car2go dataset and other supporting data are being used to produce insights that are 
potentially generalizable to broader travel patterns, multi-modal behavior, and the integration of shared 
mobility with existing transportation systems.  

Among the questions being addressed includes the following: 

 What is the spatial distribution of the impacts of car2go on modal shift, vehicles owned by the 
household, and driving?   

 How are observed shifts in travel behavior, as caused by car2go, associated with specific types of urban 
form and public transit infrastructure?   

 What can the distribution of behavioral shifts tell us about the urban and environmental ingredients 
needed for one-way carsharing and other shared mobility systems to have an effective impact on 
behavior (e.g., lowering private vehicle use, energy use, and emissions)? That is, systems like car2go 
mainly operate in cities, at a finer level of granularity; are there certain types of urban forms where some 
users make the decision to switch modes or avoid vehicles?   

 Are there certain types of environments where shared mobility is effective in facilitating a modal shift? 
What levels of public transit service are needed to provide enough multi-modalism for people to 
facilitate reduced car ownership in the presence of one-way carsharing? 

 Are certain patterns of home and work locations associated with modal shift in the presence of one-way 
carsharing? 

 How can the insights from the questions above inform projected impacts in the Smart City Challenge 
Finalist cities that have and do not have one-way carsharing? What other American cities might extract 
the greatest shifts toward multi-modalism from one-way carsharing that do not have it?  

These research questions are being explored in five cities for which there are survey data of car2go users. 
These cities are San Diego, Seattle, Washington DC, Vancouver, and Calgary. Car2go extensively used 
BEV vehicles in at least one of these cities (San Diego). The insights from this effort are being projected 
on forecasting impacts that could occur within Smart Cities that do not have one-way carsharing. More 
broadly, the project is generating an understanding of how one-way shared mobility impacts behavior in 
different regions, which is critical for understanding how infrastructure and policy can maximize their 
energy impacts.  

Approach  
Researchers will conduct data analysis using several sources of data. These include the following: 

 Survey data of about 9000 car2go users within five North American cities  

 Activity data from car2go to understand activity patterns at a more localized level 

 Data sources describing urban form, infrastructure, public transit systems and ridership. 

Researchers are using location data within the survey responses to illustrate the spatial distribution of 
respondent home and work locations. These impacts are being then be mapped to the urban environments of 
residence and work locations. The data is being overlaid with other urban attributes including public transit 
infrastructure, public transit ridership, land use attributes, population density, and socio-economic attributes. 
The spatial alignment of these data is being used to draw associations between one-way carsharing impacts and 
urban form. The effort is aimed to establish insights on the environmental features that are conducive to having 
impacts from existing shared mobility and shared automated vehicle systems. The analysis is also evaluating 
how shifts toward multimodal behavior are associated with sociodemographic attributes of households, which 
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was also collected in the survey. Researchers are also developing predictive models, currently with logistic 
regression and choice model structures, which can apply the attributes of the local environment to predict the 
potential impacts of one-way shared mobility within environments that do not yet have such systems. The 
project aims to use these models to provide some forecasting of impacts with select Smart Cities. 

Results  
Using data collected during the previous year, the research team has developed a series of maps that illustrate 
the distribution of impacts that car2go has had on travel behavior and on vehicle ownership. These results 
include a spatial analysis of mode shift in terms of walking, bus use, and rail use. In addition, the impacts of 
vehicle shedding and vehicle suppression are mapped across the five cities of study. The map of five impacts 
within Washington DC is shown in Figure IV.2.1. The spatial distribution shows some interesting dynamics at 
work. The net change in walking shows a mixed distribution of impacts across the city. Some areas in the city 
core had respondents reporting an increase in walking, whereas other regions in the core and outer edges of the 
city reported a decline. With respect to changes in bus and rail use, the patterns show a general shift away from 
both modes in the core of the city, and some increased use of both modes in the urban periphery. The impacts 
on vehicle ownership show distinct patterns as well. Vehicle shedding appears to be concentrated in the urban 
core, whereas suppression shows areas of concentration in the outer areas of the city.  
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Figure IV.2.1 Map of Mode Shift and Vehicle Impacts in Washington DC due to car2go 
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Figure IV.2.2 Map of Mode Shift and Vehicle Impacts in San Diego due to car2go  

Different patterns of impact can emerge across different cities. For example, Figure IV.2.2 presents a map of 
the same impacts in San Diego and shows that car2go has a distribution of effects that are in some cases 
different from those observed in Washington DC. For example, there is a more widespread increase in 
walking. Similar to Washington DC, the change in rail and bus use are found mostly to be a reduction in the 
central areas of the city, while there are also selected regions of increase in public transit use around the 
periphery. Vehicle suppression impacts are somewhat similar between the two cities, while vehicle suppression 
exhibits no visible concentration in the core of San Diego, in contrast to the pattern shown in Washington DC.  

Net Change in Walking Net Change in Rail

Net Change in Bus Vehicle Shedding

Vehicle Suppression
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The analysis of other cities, including Seattle, Calgary, and Vancouver, also reveal patterns that will be 
discussed in future project outputs. In addition, we have advanced the development of empirical models that 
explore the causal impacts of these changes based on a rich dataset of demographics and public transit 
infrastructure. These models will themselves present insights on the underlying factors that explain the noted 
changes in behavior. The models will also be applied in the coming year to illustrate how such data can be 
used to make projections of impacts from one-way carsharing with cities that may not yet have operational 
one-way carsharing systems.  

Conclusions    
Building on the progress from last year, the research team has completed a literature review of related research, 
advanced the spatial analysis of impacts from one-way carsharing, developed a database of demographic and 
transit attributes by census tract in the study cities, and developed preliminary models for impact estimation. In 
the coming year, the research team looks to complete the analysis and modeling, demonstrate the application 
of predictions on outside cities, and advance the results to academic publication.    

Key Publications    
 Publications are pending. The project has advanced considerable work in analysis and modeling and 

expects to produce a journal article discussing the key outcomes of the study. 

 



Energy Efficient Mobility Systems 

154     IV  SMART Mobility - Multimodal Transportation (MM) 

IV.3 Energy Analysis and Optimization of Multi-Modal Inter-City 
Freight Movement (NREL, ANL, INL) [Task 2.1] 
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Project Introduction  
Trucking is the dominant freight-carrying mode in the U.S., carrying nearly three-quarters of all annual 
tonnage transported. Trucking is also the second least energy-efficient mode for freight transportation behind 
aviation. Potential exists for freight energy use to be reduced through the application of smart technologies 
(e.g. platooning, electrification, automation) and optimization of freight movement through mode shifting (e.g. 
shifting from trucks to rail). This research revolves around the questions of “how could energy efficiency be 
maximized through the application of smart technologies and optimization of the freight network?”, and “what 
are the technologies and approaches which can impact the inter-city freight delivery, and how much impact 
could these changes potentially have on the over-all energy use for freight movement in the United States.”  

Objectives  
The primary objective of this research project is to evaluate and understand the energy and emission impacts of 
inter-city freight movement and opportunities for improvements in energy efficiency due to optimized modal 
shifting and the introduction of smart technologies. 

A number of emerging smart technologies such as platooning, electrification, and automation have 
demonstrated the potential to improve trucking freight efficiency. However, each of these is limited by a 
number of factors, including availability, applicability, and method of use. For instance, platooning as a 
technology is limited by the availability of platoonable ton-miles, the gap spaced between leading truck and 
following trucks, the number of trucks in platoon, the slope of road, traffic conditions, etc. As part of this 

mailto:kevin.walkowicz@nrel.gov
mailto:yzhou@anl.gov
mailto:victor.walker@inl.gov
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project, the research team will explore the opportunities and limitations of smart technologies and document 
their overall potential for national scale energy impacts. In addition, the team will look at the ways that 
businesses can use different types of freight delivery methods to best achieve their goals while increasing 
efficiency and reducing energy costs. This may include shifts from one mode of delivery to another (such as 
using rail systems and trucks) and looking at different business methods such as off-hour transportation. 

Approach  
This project utilized several key elements to better understand the impacts of inter-city freight changes at the 
national scale. We have worked to gather data associated with freight movement, develop baseline models, and 
identify new scenarios to analyze which can then be used as inputs to the agent-based models being developed 
under the SMART Mobility Consortium to examine specific impacts of technology and modal shift of freight 
movement. Scenarios address in FY17 included understanding ‘automation and platooning’ and understanding 
opportunities for ‘shift to truck’ scenarios resulting from changes in operating costs and efficiencies due to 
new technology. The scenarios to be address in FY18 included (and are summarized in this report include): 

• What effect can electrified long haul trucks have on energy, time and cost for region or nationally and 
what % of inter-city freight movement (tonnage and ton-miles) that could be moved by a 300 mile- or 
500 mile- electric trucks? 

• What effect can ‘load pooling’ optimization have on energy, time and cost for city and national? 

• Other scenarios identified for future analysis (FY19 and beyond) also include: 

• What effect will optimized/increased connectivity and intelligence have to maximize truckload 
efficiency and what impact will this have on energy time and cost for region or nationally? 

• What effect will dedicated lane use have and what impact will this have on energy, time and cost for 
region or nationally? 

• What effect will ‘time of day scheduling’ have and what impact will this have on energy, time and cost 
for region or nationally? 

• What is the lowest ‘cost’ (time + energy +infrastructure) option to accomplish same O-D as today? 

• What effect will ultra-high efficiency trucks (beyond SuperTruck) have and what will the impact be on 
energy, time and cost for region and national? 

• What effect will increased trailer capacity (double/triples) have on energy, time, cost, and congestion at 
regional and national level? 

• What effect will fuel cell / H2 vehicles have and what impact will this have on energy, time and cost for 
region or nationally? 

• What effect will increased or decreased driver cost have on modal share, energy for region or nationally? 

Results  
What effect will ‘electrified trucks’ have on national energy use? - Quantifying Opportunities of Electrified 
Freight Movement by Class 7-8 Trucks 

We first summarized electric range and other major characteristics of future medium duty (Class 3-6) and 
heavy duty (Class7&8) electric trucks recently announced by several auto makers, shown in Table IV.3.1. The 
base price of Tesla Semi-300/500 are still higher than comparable diesel truck and other alternative heavy duty 
trucks, according to Argonne’s AFLEET model [1], shown in Figure IV.3.1. 
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Table IV.3.1 Performance Characteristics of Existing and Future Electric Trucks 

Manufacturer Name 
Capacity  

(lbs) 

Energy 
Consumption* 

(kWh/mi) 

Battery 
Pack  
(kWh) 

Range 
(mi) 

Base Price 
$ Available  

Tesla 
Tesla Semi 

- 500 80,000 2.00 1000 500    150,000  2019 

Tesla 
Tesla Semi 

- 300 80,000 2.00 600 300   180,000  2019 

Tesla 

Tesla 
Founders 

Semi 80,000 2.00    200,000  2019 

Daimler 
E-FUSO 

Vision ONE 24,250 1.40 300 215  2021 

Daimler 
FUSO 

eCanter  3.5 tons 1.04 83 80  
Available 

now 

Cummins AEOS 44,000 1.40 140 100  2022 
* Full payload, highway driving speed (55mph) 

 

Figure IV.3.1 - Price Comparison of Heavy Duty Trucks with Different Powertrain Technologies 
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Second, we used FastSim [2] developed by the National Renewable Energy Laboratory to estimate energy 
consumption of a 500-mile electric truck. Truck energy efficiency varies with cargo mass and coefficient of 
aero drag. This analysis used a weighted highway driving cycle, numbers shown in Figure IV.3.2. 

Figure IV.3.2 - Simulated Truck Energy Consumption (kwh/mile) a 500-mile electric truck 

Based on projections of tonnages and ton-miles made by FHWA’s FAF 4.0 [3], we estimated % of truck ton-
miles could be electrified using average length of haul between 123 freight zones (origin/destination) in the 
United States. Then, we estimated number of electrified heavy duty truck (Class 7&8) needed in 2045 on the 
road to fulfill the projected freight movement assuming using trucks with 300- or 500- miles electric range. 
From the number of electric trucks on the road, we estimated the electric truck market penetration from 2017 
to 2045 using a logit function, formula (1). We estimated both low and high cases of the market shares (sales 
and stocks) assuming high and low truck load (tonnage per truck) and average annual truck mileage, about 
60,000 miles. In average, if we assume each truck’s average load is at lower end, about 16 tons [4], then the 
number of electric trucks needed will increase, which leads to high sales and stock shares. If we assume each 
truck’s average load is at higher end, about 22 tons, then the number of electric trucks needed will decrease, 
which leads to low sales and stock shares As an example, Figure IV.3.3 shows estimated sales and stock shares 
of electric Class 7&8 truck needed in 2045 assuming all trucks have a 500-mile electric range.  

𝑡𝑡=𝛿𝛿+  ln [𝐹𝐹 {𝑡𝑡}∕( 1−𝐹𝐹{𝑡𝑡})]+𝜇𝜇  (1):    δ and β are coefficients that become scalar factors determining the shape 
of the market penetration curve and µ is the error term. 
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Figure IV.3.3 - Electric Class 7&8 Truck Market Shares (500-mi electric range) 

Based on the sales share, we estimated the number of electric class 7&8 trucks on the road in 2045 using total 
number of class 7&8 trucks projected by EIA’s AEO 2017 [5] and heavy truck survival functions [6]. We 
assume the electric trucks will replace conventional diesel trucks. Using Argonne’s NEAT model [7], we could 
estimate the total energy consumption by different powertrain technologies in Class 7&8 truck sector. 

Next, we estimated that electrified Class 7&8 electric truck with 500-mi electric range could potentially reduce 
the petroleum consumption by 1.61 quad in 2050, while the electricity consumption increases by 0.99 quad, 
comparing to EIA’s AEO2017 reference case, shown in Figure IV.3.4. Another scenario assuming 300-mi 
electric range shows that petroleum consumption by 1.14 quad in 2050, while the electricity consumption 
increases by 0.69 quad. 

 

Figure IV.3.4 - Energy Impact of Electrified Class 7&8 Electric Truck in the United States (500-mi electric range) 

Developing a Tour-Based Model for Inter-City Freight Movement - Analysis to Understand ‘Load Pooling’ 

In addition, a tour-based model with was developed to quantify the energy benefits of freight load pooling 
using multimodal shipping. Dijkstra’s shortest path algorithm was implemented to find the most energy 
efficient route for freight deliveries. The framework and the logic of the model are presented in Figure IV.3.5. 
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A multimodal freight network is developed by combining freeway, rail, and waterway. Then, taking energy 
intensity and freight OD pair as inputs, Dijkstra’s shortest path algorithm is ran on the network and output the 
optimized results for freight load pooling scenario. A baseline scenario was also developed for comparison and 
energy savings calculation. The baseline energy consumption is estimated using CFS data. The model 
framework was developed in R. 

Figure IV.3.5 - Model framework and workflow. 

In order to run Dijkstra’s shortest path algorithm and quantify the energy consumption, a multimodal freight 
network topology needs to be created. 69 major US metropolitan areas listed in CFS data were selected for the 
national level analysis. First, each individual network GIS shapefile (freeway, rail, and airport) was converted 
to a routable network and produce the topology of the network. A multimodal freight network topology was 
then created by joining topologies, as shown in Figure IV.3.6. 

 

Figure IV.3.6 - Multimodal freight network topology and data 

The national baseline modal share of freight shipment was obtained from 2012 CFS data, and it is shown in 
Table IV.3.2. At the national level, the majority of freight was shipped by truck and water. 45% of freight was 
transported by truck, and 35% of freight by water. Only around 10% of freight adopted multimodal shipment. 
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It is estimated that the national wide freight shipments consume 29,534,259 gallons of fuel. The freight volume 
assignment on the links of multimodal network topology is shown is Figure IV.3.7. The thickness of the link 
represents the volume. Purple, pink, green, and blue represents air, freeway, rail, and water. 

Table IV.3.2 Baseline Modal Share of U.S. 
 

 

 

 

 

 

 

 

 

 

Figure IV.3.7 - Baseline Freight Volume Assignment of U.S. 

After adopting load pooling, the national wide modal share of freight shipment is shown in Table IV.3.3. The 
freight volume assignment is shown in Figure IV.3.8. To minimize the energy consumption, the model also 
shifted all truck freight to rail, water, and water-rail. The estimated energy use is 12,043,536 gallons of fuel. 
The energy use comparison between baseline and load pooling are compared in Figure IV.3.9. Load pooling 
could potentially save 59% of total energy consumption for inter-city freight national wide.  

 

MODE TOTAL WEIGHT (Pound) SHARE 

Truck 5,226,979,561 45% 

Rail 1,564,807,853 13% 

Water 4,010,178,945 35% 

Road - Rail 717,184,337 10% 

Road - Water 53,733,426 0.5% 

Air 21,420,152 0.2% 
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Table IV.3.3 Loading Pooling Modal Share of U.S. 
 

 

 

 

 

 

 

 

 

Figure IV.3.8  Load Pooling Freight Volume Assignment of U.S. 

 

MODE TOTAL WEIGHT (Pound) SHARE 

Truck 0 0% 

Water 4,871,297,316 42% 

Rail 3,626,224,113 31% 

Water - Rail 3,075,362,693 27% 

Air 30,798,672 0.2% 



Energy Efficient Mobility Systems 

162     IV  SMART Mobility - Multimodal Transportation (MM) 

 

Figure IV.3.9  National wide comparison between load pooling and baseline. 

 

Conclusions  
National impact analysis found that electrified Class 7&8 electric truck with 500-mi electric range could 
potentially reduce the petroleum consumption by 1.61 quad in 2050, while the electricity consumption 
increases by 0.99 quad, comparing to EIA’s AEO2017 reference case. In addition, a tour based model was 
developed and applied to at the nation scale. It demonstrated that modal shift was able to 59% of energy use 
national wide. To encourage modal shift from conventional truck to more fuel-efficient modes, more 
improvements need to be achieved to make rail and waterway more competitive and appealing to freight 
shipment, such as enhancing modal speed. Seamless modal transition is a necessity for load pooling since 
delay caused by modal transition could discourage multimodal shipment.  

Beginning in FY18 with available funding/resources, NREL researchers have demonstrated a preliminary 
modeling method to identify opportunities for fuel/energy savings using CFS data combined with optimization 
techniques which can be used to evaluate scenarios such as load pooling and other considerations. The model 
was also applied to Columbus, OH region as well as the data available for the entire US (reported under 
separate report). 

This method was able to provide initial results demonstrating that load pooling was ideally able to save 56% of 
energy use for freight shipment originated from Columbus, OH and 59% of energy use national wide. To 
encourage modal shift from conventional truck to more fuel-efficient modes and be able to approach these 
maximum levels. 

More improvements need to be achieved to make rail and waterway more competitive and appealing (time and 
total cost) to freight shipment, such as enhancing modal speed. 

Seamless modal transition is a necessity for load pooling since delay caused by modal transition could 
discourage multimodal shipment. 

Key Publications  
 Y. Zhou and M. Rood, National Energy Impacts of Heavy Electric Truck Adoption for Freight. 

Submitted to Electric Vehicle Symposium 32, May, 2019, Lyon, France. 
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Project Introduction 
This study considers multi-modal shifts, especially for the last-mile portion of freight delivery, using 
data obtained from the United Parcel Service (UPS) depot near Columbus, Ohio, and focuses on the 
potential for energy savings by incorporating these shifts in both vehicle type and routing 
configuration within the city of Columbus. A freight delivery demand estimation model was developed 
using socioeconomic, business, and land use data from the Mid-Ohio Regional Planning Commission 
(MORPC). A tour-based freight model was used to develop several scenarios to compare various 
modal and technology shifts to compare energy usage in kilowatt-hour estimates. Innovative means 
of freight delivery were considered for the alternative scenarios and included: electric class six 
trucks, electric delivery vans, parcel delivery lockers, drones, and the use of electric passenger 
vehicles for en-route deliveries. These alternatives were compared with the baseline scenario using a 
traditional petroleum-fueled, class six, delivery truck. Initial findings suggest that electric trucks 
paired with parcel delivery lockers reduce energy usage, especially in suburban neighborhoods. This 
study aims at providing decision makers, both in the private and public sector, with information to 
consider when determining suitable alternatives for energy efficient freight transport. 

Objectives 
This study is funded by the DOE through SMART Mobility and is a collaboration with the Oak Ridge 
National Laboratory (ORNL), Idaho National Laboratory (INL), the National Renewable Energy 
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Laboratory (NREL), UPS, and MORPC. Columbus is the Department of Transportation (DOT)’s Smart 
City Challenge winner and was chosen as the focus area for this study to develop methods for 
evaluating innovative means of delivering intra-city freight.  

UPS and MORPC collaborated with ORNL, NREL, and INL and provided the necessary data for model 
development. The products of this study are intended to be used to evaluate multi-modal shifts in 
freight transport, especially for the last-mile portion of delivery. A freight delivery demand estimation 
model was developed to provide a means by which other cities can replicate this study in the 
absence of data from UPS or another parcel delivery company. The methodology for incorporating 
the use of tour-based models using innovative methods of freight transport and delivery was also 
developed.  

Approach 
The methodology developed, and the two, initial model types developed in this study: a freight 
delivery demand estimation model (in ArcGIS), and a tour-based freight delivery model (in TransCAD), 
are intended to be replicable in other locations. For the models, the Columbus UPS depot provided 
GPS data from a portion of their fleet. GPS data from 20, class six, delivery trucks were obtained by 
researchers at NREL during July 2017. Locational information, data on acceleration and vehicle 
performance were also included in the data logs. Extraneous data points were excluded, resulting in 
assumed delivery stops per vehicle. Once all of the assumed stops were obtained for each vehicle, 
the data points were manually processed to obtain average number of stops per vehicle per day, 
average starting and ending times, and so forth. Total delivery stop counts per Traffic Analysis Zone 
(TAZ) were tabulated, to be used in the estimation model. An estimation model was needed to create 
additional scenarios for areas of Columbus and Franklin County where data were lacking (Figure 
IV.4.1). Because this is a transportation study, data for the model were evaluated at the Traffic 
Analysis Zone (TAZ)-level, as TAZs are the typical unit of geographic analysis in transportation 
studies.  

 
Figure IV.4.1 TAZs with actual GPS stop counts (upper left), TAZs with estimated counts from model (upper right), and all 

TAZs within Franklin County, Ohio with stop counts (center) (in ArcGIS) 

TransCAD software was primarily used to model the baseline scenario and develop alternative multi-modal 
scenarios. The baseline scenario is the tour (depot to intermediate stops, returning back to depot) that a 
standard, class six, petroleum-fueled, delivery truck takes from the Columbus depot location, making all stops, 



Energy Efficient Mobility Systems 

166     IV  SMART Mobility - Multimodal Transportation (MM) 

and returning back to the depot. It was determined that the shortest path routing function in TransCAD would 
be used for the modeling. 

Several alternative scenarios were then developed to compare with the baseline case using the standard, class 
six (14 feet long, weighing four tons), petroleum-fueled, delivery truck. These initial alternative scenarios were 
developed to provide representative cases to compare energy usage by incorporating innovative freight 
delivery modes. For the initial alternative scenarios, the following modes were considered: fully-electric, class 
six, delivery trucks, fully-electric delivery vans, parcel delivery lockers at optimal locations relative to stops, 
electric drones, and fully-electric passenger vehicles using an en-route delivery system. Determination of 
energy estimates in kilowatt-hour were simply based on total mileage. 

INL performed an initial round of testing using a Matrice 600 Pro hex-copter carrying different levels of 
weights and performing different types of delivery components (Figure IV.4.2). For each of the flight scenarios 
the logs of energy used by each motor was recorded, as well as the reported battery levels. When the testing 
was completed, the total energy needed to re-charge the battery was also recorded to provide an estimate of 
total true energy consumption. These scenarios allowed researchers to isolate and quantify which portions of 
the flight pattern were impacted by each component of a freight delivery: weight, hovering, flying, and speed. 
Figure IV.4.3 shows the total energy consumption that was needed for different parts of a one-minute hover 
test for different weights as recorded by the motors. For comparison, the energy record by testing of a Nissan 
Leaf is also included. The recorded components demonstrated that higher weights increased the total energy 
use in a relatively linear fashion until the weights approached the maximum weight for the drone. The greatest 
impact on total energy was observed to be the total time in flight so the faster speeds and lower flight heights 
(resulting in decreased time to rise to the proper elevation) decreased the total energy needed.  

 Figure IV.4.2  Energy consumption for different portions of a one-minute hover test reflect higher energy use as weights 
and flight times increase 
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Figure IV.4.3 -Energy consumption at one-minute flight test with different speeds and weights.  

 

Larger packages are comparable in energy use to an electric passenger car 

Based on the observations, researchers were able to predict the total energy for each of the components of a 
flight pattern. The observations have demonstrated that the use of drones for delivery would have a significant 
energy use which may increase the overall total energy needed for delivery in comparison to conventional 
vehicles. The scenarios for how the drones will be used is significant in how the energy would be utilized and 
how it might benefit other aspects of the delivery business model.  

Initially, the baseline and alternative scenarios were modeled in three tour configurations: 1) a tour from the 
depot to a single, urban TAZ with actual UPS GPS data points located near the city center; 2) a full tour from 
the depot, making all stops within multiple TAZs, and returning back to the depot; and lastly, 3) a tour from 
the depot to a single, suburban TAZ with estimated delivery stops based on the estimation model, and 
returning back to the depot. These three configurations were chosen to evaluate the energy saving potential for 
the different scenarios in different locations within the study area.  

Results 
The initial results from the model (Table IV.4.1 and Figure IV.4.4) with the tour configuration using the single, 
urban TAZ is not representative of the energy usage involved in completion of a full vehicle tour. However, it 
is exemplary of the potential reduction in energy usage made by incorporating the use of class six EV trucks in 
that the majority of the truck’s mileage is within the stem portion of the route, or the distance from the depot to 
the TAZ. Because the TAZ chosen for the configuration is in a densely-developed, urban area, with through-
streets and connectivity, the majority of mileage is in the stem, rather than in the distance traversed during 
deliveries. It is also evident that incorporating the use of lockers only results in a minimal reduction in energy 
usage. This is also due to the fact that the TAZ is densely-developed and there is connectivity within the street 
network. Thus, the overall distance traveled by the truck as it makes deliveries is not significantly reduced by 
incorporating a locker. 
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Table IV.4.1 Energy estimates for baseline and alternative scenarios 

Scenario Mode Energy Usage 
(kWh/mile) 

Total Energy 
Usage (single, 

urban TAZ) 

Total Energy 
Usage (full, 
urban tour) 

Total Energy 
Usage 
(single, 

suburban 
TAZ) 

Baseline – Class 6 
truck makes deliveries 

from depot 
Class 6 truck 4.29 69.11 128.96 114.46 

Alternative – EV class 6 
truck makes deliveries 

from depot 
Class 6 EV truck 1 16.11 30.06 26.68 

Alternative – Class 6 
truck makes deliveries 
to UPS; EV van makes 

deliveries 

EV Van (eNV200) .56 71.13 78.21 89.24 

Alternative – Class 6 
truck makes deliveries 

to lockers 
Class 6 truck 4.29 66.67 66.67 98.46 

Alternative – EV class 6 
truck makes deliveries 

to lockers 
Class 6 EV truck 1 15.54 15.54 22.95 

Alternative – Class 6 
truck makes deliveries 

by drones 
Drone .1 67.15 112.03 99.08 

Alternative – Class 6 
truck makes deliveries 

to UPS; passenger 
vehicle makes 

deliveries en-route 

Passenger 
vehicle (Nissan 

Leaf) 
.34 69.13 71.28 86.61 
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Figure IV.4.4 Energy consumption rate (kwh/mile) for baseline and alternative scenarios 

 

The results from the model (Figure IV.4.5)  using the full tour (from depot to all stops within the tour), 
are such that scenario three, using the class six EV truck, making deliveries to an optimal or 
centralized locker location, results in significantly lower energy usage than the remaining scenarios. 
Both scenarios involving the use of the class six EV truck resulted in substantially lower energy 
usage. This is not surprising, considering that the kwh/mile estimates are approximately one, 
compared with approximately 4.3 kwh/mile for the baseline.  



Energy Efficient Mobility Systems 

170     IV  SMART Mobility - Multimodal Transportation (MM) 

 
Figure IV.4.5 Energy consumption at one-minute flight test with different speeds and weights. Larger packages are 

comparable in energy use to an electric passenger car 

The two scenarios incorporating the use of the EV delivery van and the passenger EV are similar in energy 
usage estimates, as both vehicle types have similar kwh/mile estimates. However, scenario two, involving the 
EV delivery van, would have significantly lower estimates if a class six EV truck were considered for the 
scenario. 

Lastly, it is not surprising that the energy usage estimates for scenario five, using drones to make final 
deliveries, is the second highest estimate of all of the scenarios. This is not surprising because the scenario 
requires the drone to make single deliveries (origin to destination), rather than making multiple deliveries 
before returning to the delivery truck, either at the origin location or en-route to the final delivery location. A 
more efficient use of drones would likely result in lower energy estimates.  

The results from the model using the configuration with the single, suburban TAZ, as with the single, urban 
TAZ, is not necessarily representative of the energy usage involved in completion of a full tour. However, it is 
representative of the potential reduction in energy usage by incorporating the use of class six EV trucks, as the 
stem portion (distance from depot to TAZ) makes up the majority of the distance traveled by the truck. Also, it 
is representative of the potential reduction in energy usage by incorporating the use of parcel lockers. This is 
due to the fact that, in suburban areas, which typically contain subdivisions with cul-de-sacs and fewer 
through-streets, the placement of lockers at the entrance to a subdivision prevents the need for the truck to 
travel within the subdivision and avoids the need for the truck to turn around in the cul-de-sacs, which 
ultimately reduces the overall distance of the tour. By combining the usage of class six EV trucks with lockers, 
there appears to be the potential to further reduce energy usage in suburban locations. 



FY 2018 Annual Progress Report 

 

IV  SMART Mobility - Multimodal Transportation (MM)    171 

Conclusions  
Overall, it appears that fully-electric delivery trucks will significantly reduce energy usage, especially in the 
stem (long-haul) portion of tours where the truck travels a relatively greater distance to arrive at the cluster of 
TAZs to make deliveries. Parcel lockers also appear to reduce energy usage in suburban locations where there 
are fewer through-streets and more cul-de-sacs because mileage is significantly reduced. Lastly, pairing fully-
electric delivery trucks with parcel delivery lockers will also further reduce energy usage, although modes to 
lockers needs to be considered to evaluate overall energy usage. 

Additional GPS data is needed to further improve upon the models and resulting scenarios. Because this study 
was limited to using only a relatively small sample set, it is necessary to incorporate additional GPS data from 
UPS, or other parcel delivery companies, to better evaluate seasonal fluctuations in delivery demand, as well as 
other factors that influence delivery demand in TAZs.  

Refinement of the drone scenarios will likely result in more accurate energy estimates that will better reflect 
the potential for efficient parcel delivery. Additional scenarios have been developed, including the launching 
of the drones from vehicles during the delivery routine, and optimizing a delivery route to avoid additional 
miles using drones. The current testing has recorded temperature, wind speed, altitude, and flight patterns. 
Additional testing may provide more specific impacts of these components as they change.  

Although the results from this study are rather approximate, they provide insight into multi-modal freight 
delivery scenarios that can be incorporated into real-world routing examples to save energy usage. This study 
is significant in that it contributes to the current body of knowledge on tour-based freight modeling, GIS 
techniques in transportation systems engineering, and preliminary research and model development in energy 
efficient, multi-modal freight transport. 

Key Publications 
 Moore, Amy M. Optimization of Intra-City Freight Movement with New Delivery Methods. 

Transportation Research Board Annual Meeting Compendium of Papers. (January 2019).  

 Hou, Y., Moore, A., Duran, A., Walkowicz, K., and Smith, D. A Hybrid Tour-Based Model for Energy 
Analysis of Multi-Modal Intra-City Freight: A Case Study of Autonomous Electric Vehicles. 
Transportation Research Board Annual Meeting Compendium of Papers. (January 2019).
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Project Introduction  
This task supports the Urban Science pillar of the Department of Energy’s SMART Mobility effort through 
research focused on assessing the landscape of data and models in emerging smart cities. Foundational efforts 
to date, have included 1) providing a data and modeling resources report to help further integrate between 
transportation research and practice and with the growing reality that advanced transportation, mobility 
services, and infrastructure modernization are of increasing interest to cities, 2) examine data and modeling 
solutions within multiple cities, and 3) down-select on city case studies to work together on testing and scaling 
of urban science using available data and new primary data collected with inputs/validation from local city and 
regional partners. A focus is on factors that influence mobility options (e.g., travel time, costs, access to 
opportunities, and emerging mobility energy productivity metric/s) and associated energy-related impacts (e.g., 
fuel spent, vehicle miles traveled, costs to households) specific to new urban automated, connected, electric 
and shared mobility strategies developed and evaluated with partner cities. These cities comprise case 
examples where knowledge generated and coupled mobility-energy assessments can advance efforts across all 
498 U.S. urban areas. 

These efforts have placed emphasis in exploring advances in urban transportation data and modeling to 
develop, for analysis purposes, a robust, sophisticated and practical framework supporting the ultimate goal of 
providing an efficient, safe and sustainable mobility system for passenger and goods movement. 

Objectives  
This project aims to: 

• Provide objective and quantifiable data that fills key knowledge gaps, which can be used in 
modeling/analysis efforts that address questions on how SMART technologies (ACES) impacts urban 
infrastructure, travelers, and energy. 
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o A focus on the effects of Mobility as a Service (MaaS) at airports, which are unique trip generation 
sites 

• Address key research question/s, including: 
o How will ACES impact diverse urban travelers, systems, & services?  

o Long-term energy/travel impacts from changing urban environments?  

Mobility options such as shared-use, electric vehicles, micro-transit, connected and automated vehicles and 
dynamic (real-time) information are already or expected to be part of the daily activities in the near-future, but 
their effect on the overall transportation system is not yet evident. For example, the use of electric vehicles is 
expected to reduce energy intensity, but the increase of connected vehicles may or not reduce congestion 
unless there is a dedicated lane. Similarly, automated vehicles could provide first and last mile accessibility to 
transit services negating the need for park-n-ride facilities or completely change mode choices with user 
preferences shifting to Shared Automated Vehicles (SAV) from traditional fixed-route transit services. In 
addition to the technological advances on the supply side, the opportunity facing us today is making demand 
management more robust by leveraging technology, behavioral insights, new urban system integration goals, 
and institutional readiness to overcome barriers inhibiting discovering and selecting a new and efficient mode 
not used before. As such, cities around the US are fully engaged in developing surveys, reports and plans that 
may provide a blueprint to prioritize investments via exploring behavioral impacts and system performance. 

Approach 
The approach for this project includes: 

• TNC /MaaS data collection & analysis at major mobility hubs, such as airports and other key 
destinations, to characterize mobility/energy impacts using novel collection methods that will circumvent 
relying directly on TNC companies for data informing critical analysis insights. 

•  Obtaining direct access to city, regional, state databases to characterize mobility/ energy/behavioral 
impacts from EVs, AVs, other advanced tech & MaaS adoption – overcoming data gaps and obtaining 
highest possible detail & resolution for analyses to help inform a typology to national impact analysis 

•  Collaborating with industry (Strategic Vision), city networks (NLC, ACEEE) & others on Smart City 
survey/s, indicators/metrics to assess/ benchmark/predict MaaS in cities potential, adoption rates, design 
typologies and address Smart City questions at district/urban scales. 

An alignment across urban science tasks enables the research team to bring new data and modeling methods 
related to Mobility as a Service (TNCs, Car-Sharing, Ride-Sharing and others), automated vehicles and other 
emerging mobility choices that will extend existing travel demand models and be transferrable to additional 
cities and regions. This has also included considerations for development of the Mobility-Energy-Productivity 
(MEP) metric and implementation approaches for airport- behavioral models, to employer provided mobility 
optimization, & district-scale on-demand services modeling.  

Results  
Quarter 1 
• Initiated collection of airport data specific parking and TNC impacts. Full data sets were obtained for 

Denver, Portland and San Francisco. Partial data sets were gathered for another five cities. 

• Initial analysis yields consistent patterns in TNC adoption, along with parking and rental car decline. 
Information is being prepared for publication and presentation (Feb Pillar meeting call) 

• Data Use Agreement with Ohio BMV is being negotiated, issues with indemnification remain 
unresolved. 
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• Collaborated with Strategic vision in shaping its 2017 ride-hailing survey, investigating how to make it a 
market-research tool for Smart Cities, as well as contribute to SMART research. 

Quarter 2 
• Data sets obtained for eight airports and collaborations with city-university research partners to initialize 

new behavioral models that encompass and help to predict shifts in TNC, parking, transit and car rental 
demand. 

• Initial analysis yields consistent patterns in TNC adoption, along with parking and rental car decline. 
Paper accepted for publication and presentation (ITS-America 2018, Detroit, MI) 

• New registration data emerging with Ohio, New York, and next is Colorado and California. 

• Collaborated with Strategic vision in shaping its 2018 ride-hailing survey with cities, investigating how 
to make it a market-research tool with city webinar, and so to contribute to our research. 

As shown in Figure V.1.1, an airport is one of the most important assets for a region’s economic development 
and connectivity with the rest of the nation and world. Key aspects for investigation of energy efficient 
mobility at airports is ground transportation including factors ranging from the infrastructure, mobility 
services, and associated revenues. Data is critical to understand the maturity of new mobility services that can 
inform both cities and airports on how to respond, approach, manage, and adapt to the challenges, 
opportunities, and uncertainties associated with shifts in new mobility that influence human behavior, energy-
efficiency and sustainability strategies. With airport parking revenue in decline, and ride-hailing services 
rising, the shifts in revenues for ground transportation airports offers an option to explore the pace of 
transitions and adaptations in the new emerging mobility landscape, and present an opportunity to analyze how 
future adaptations could support more energy-efficient scenarios. 

 

Figure V.1.1. Airport Passengers at Four Cities of Focus (Source: NREL working paper) 

Quarter 3 
• Published initial analyses of airport data specific to parking and car rental revenue shifts associated with 

TNC impacts, transit services, and airport modernization.   

• Next analyses focused on energy and new mobility megatrends for airports and cities 

• Investigating the feasibility of initializing a behavior model, with collaborators, combining the 
information from the data collection at airports with O-D patterns, and associated socio-economic data, 
related to travel demand to airports  
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• New vehicle registration data collected for Ohio, New York. Next is Colorado and California. Analysis 
of data (in partnership with Smart Columbus) revealed that single snapshot of Ohio BMV data was 
insufficient to obtain percentage of new EVs sold, a key performance metric in Ohio. A history of 
quarterly snapshots of the Ohio BMV registrations is being collection to use differences in registrations 
to assess EV adoption, while relying on industry provided data for Smart Columbus Metrics. 

• Next analyses possible with new parking data across five U.S. campuses; and new TNC driver-side 
survey data across 11 US cities – to inform mobility energy productivity and new components to urban 
mobility and energy modeling. 

• Exploration of new approaches for occupancy measurement is in development for cities and airports 

Quarter 4 
• Published initial analyses and submitted second paper on airport data specific to parking and car rental 

revenue shifts associated with TNC impacts, transit services, and airport modernization.  Data sets being 
updated across eight airports to enable energy efficient airport-city connectivity and modeling; follow-on 
collaborations underway with airports, city to university research partners to initialize behavioral models 
that encompass and help analyze shifts in TNC, parking, transit, EV demands. 

• Information gained from airport studies is seeding collaborative with HPC for airport work for DFW 
airport. 

• Investigating the feasibility of initializing a behavior model in collaboration with US 2.2.1 and other 
SMART projects, combining information from occupancy/vehicle registration data collection to airport 
and employer-provided mobility data collection focused on O-D patterns, socio-economic data, pooling 
and travel demand shifts. 

• Mobility data collection on TNCs, Rental Car Incentive Pilots and Vehicle Registrations 

• Collecting/mapping data for NYC and NY State (with widely available open data) focused on TNCs to 
new mobility surveys focused on mode replacement 

• Continued collaboration with Strategic Vision in shaping their anticipated Ride-Hail experience survey, 
and convening Smart City stakeholders for further input. 

NREL has been in collaboration with Barbara Cohn, newly appointed Chief Data Officer for the Colorado 
Department of Transportation, and formerly with the New York State. Ms. Cohn was instrumental in NY’s 
open data initiatives which led to NY being one of the first (and still very few states) that provides access to 
vehicle registration through a web portal. Her insight is guiding NREL to develop avenues for direct access to 
registration data in Colorado – as well as other states. In Ohio, the Smart Columbus initiative and associated 
reporting activities has resulted in the Ohio DOT pledging to work directly with the Ohio BMV to 
produce quarterly summaries reflecting the adoption of advanced fuel vehicles within the state, and reported at 
appropriate geographic resolution (such as zip code or even census block) so that it can be used for analysis 
and planning. 

NREL is also collaborating with Atlas Policy, Nick Nigro, who is leading an initiative to acquire such data 
from multiple states. Atlas has achieved results with a handful of states, and is actively soliciting additional 
state partners. Strategic Vision, assisted by NREL, conducted a webinar on the potential to implement city-
level surveys of TNC drivers/use among cities identified as having interest in smart transportation. An 
outcome of this webinar was continued motivation/rationale for TNC/MaaS/RUTS annual survey in cities, 
featuring survey design that builds on more recent literature/ key gaps and breakdowns by different urban 
traveler demographics. An example of the interest in emerging alternative fuel vehicles by generation is shown 
in , derived Figure V.1.2 from Strategic Vision survey data.  
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Figure V.1.2 Comparison of Interest in Alternative Fuel Vehicles by Generation (Source: Strategic Vision, 2018) 

 

As research in this area begins to grow, the team aims to keep apprised of developments. Recent advancements 
that inform our efforts include: 

• Bruce Schaller’s New York study – (http://www.schallerconsult.com/rideservices/index.html) arguing 
that TNCs are congesting urban areas, replacing transit and generally increasing traffic volumes.   

• Regina Clewlow (formerly of UC Davis) continues to perform leading survey work. Her recent paper 
from last year (https://itspubs.ucdavis.edu/wp-content/themes/ucdavis/pubs/download_pdf.php?id=2752  
- documents the numbers of people using TNCs, the modes they are diverting from, etc.  

• Knowledge gap identified: No publication to date gets to WHY people are choosing TNCs over transit, 
walk and pedestrian specifically – at least not to any level of detail. Clewlow’s work and others 
documents avoiding parking and drunk driving for TNC use in urban areas as opposed to driving.  

• Modeling gap: Travel modelers ignore parking cost, time, and hassle for the most part – assuming a trip 
starts when a driver enters a car, and ends when the driver depart. Survey of leading cities treatment of 
parking with respect to mode choice and travel behavior is targeted in early FY19. 

Conclusions   
This task advances understanding of the current state of urban data and mobility models along with city goals 
and priorities in the smart cities-energy-mobility space. City data infrastructure and mobility modeling are 
enabling analysis and ongoing evolutions in exploring emerging mobility technology services to travel 
behaviors related to vehicle automation, connectivity, electrification, and sharing. Overall key takeaways from 
data collection, analyses, and smart city analyses include an increased need to:  

• Provide a typology across cities to inventory, integrate, visualize, and map city data and model 
environments as they transition and transform, in response to disruptive changes in mobility and cyber-
physical infrastructure 

• Harmonize approaches, both in data and modeling, by developing common methods to observe 
transitions in impacts resulting from emerging ACES mobility technology, and influences in Mobility 
Energy Productivity.  

http://www.schallerconsult.com/rideservices/index.html
https://itspubs.ucdavis.edu/wp-content/themes/ucdavis/pubs/download_pdf.php?id=2752
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• Address specific knowledge and data gaps as critical early-stage research; of particular need is to explore 
impacts and inform cities and national level understanding at the intersection of mobility and energy.  

Extending and enhancing urban transportation modeling and data environments to capture the short, mid, and 
long-term mobility benefits and energy efficiency associated with evolving city transport is critical to shape 
significant congestion, mobility, economic, affordability, accessibility, and resilience impacts. This task 
continues to develop and integrate transportation data infrastructure and modeling scenarios across cities to 
enable new technical analysis informing finalist’s city and enabling continued collaboration as relevant to 
energy-efficient mobility and key research questions (listed below), of interest to  advancing energy efficient 
mobility systems across cities, regions, and nationally, and to support economic growth, creation of new jobs, 
providing health care, ensure adequate and equitable access to food, housing and services through affordable, 
reliable, smart, resilient and modern 21st century U.S. transportation infrastructure.  

Next steps include:  

• Identifying data/key uncertainties for state of art models/scenarios 

• Co-developing MaaS behavioral economic models extended at airports + cities 

• A Journal article that fills key knowledge gaps 

• Optimization of MaaS/EVs/AVs for Urban / District services -focus on commuting 
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Project Introduction  
The Energy Efficient Mobility Systems (EEMS) program conducts research to identify and develop system-
level transportation technologies and innovations that enable an increase in mobility energy productivity. 
While energy can be objectively measured (in terms of fuel consumption, emissions, etc.), the concept of 
accessibility/mobility is more difficult to quantify as it is heavily context-based. Addressing this need, a first-
of-its-kind, high-resolution, comprehensive mobility energy productivity (MEP) metric has been developed by 
NREL. The MEP metric is defined by quantity and quality of goods, services and employment that people can 
access efficiently reach (with respect to time, cost and energy across any mode of travel). Derived from 
accessibility theory, the MEP metric advances practice by using readily available travel time data combined 
with established parameters that reflect the energy intensity and affordability of various travel modes, and 
relative frequency of activity engagement. The MEP metric is being developed with an aim to compare 
alternative futures related to technology, infrastructure investment (based on outputs from travel models), 
providing a much needed decision support tool for transportation planners, researchers, and analysts.  

Objectives  
• Develop and test a comprehensive metric that reflects energy productivity, affordability and accessibility 

of current and future mobility services 

• Develop a MEP calculation module that can be integrated into travel demand models in order to 
accurately capture the primary as well as secondary impacts of various scenarios on mobility of a region 

Approach  
• Conduct a comprehensive literature review on existing metrics that quantify accessibility/mobility and 

identify theories that help develop a comprehensive MEP metric 

• Collect travel time, land use, and energy productivity related data for multiple cities in the United States 

• Develop the MEP metric and carry out a comparative analysis across different cities (subset of 7 smart 
city finalists) and scenarios (AMDs, TNC mode shares, CAVs penetration) 

• Work with DOE labs to gain a thorough understanding of the input/output structures of BEAM and 
POLARIS models and develop a tight-knit workflow to take the output of either of these models as input 
for MEP calculation. 

mailto:venu.garikapati@nrel.gov
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Results  
From a comprehensive literature review conducted on existing accessibility/energy metrics, two key 
drawbacks were identified.  

• The academic literature on transportation efficiency metrics is rich in theory but oftentimes limited by 
data availability and computational burden for widespread application.  

• In contrast, popular industry metrics that have become readily available (and even popular with 
consumers) are mode specific and proprietary, limiting their ability to obtain a comprehensive picture of 
mobility of a region.  

The literature review has revealed the necessity for a comprehensive (including all modes), integrated 
(including accessibility, and energy efficiency of travel), open source (available for use free of cost), and data 
agnostic (can make use of readily available data sources) metric that can be applied at any geographical scale 
to quantify the quality of mobility. 

An initial version of the MEP methodology (titled MEP 1.0) was developed and shared with DOE leadership. 
The preliminary results from applying the MEP methodology in Columbus, OH were submitted for 
presentation and publication at the Transportation Research Board Annual Meeting to be held in Washington 
DC. A brief overview of the initial iteration of the MEP methodology is presented below: 

Travel Time-Weighted Cumulative Opportunities 
The MEP metric calculation starts with computing a cumulative opportunity measure (Wachs and Kumagai, 
1973; Vickerman, 1974) to quantify accessibility, by counting the number of opportunities that can be accessed 
within a certain travel time threshold. Cumulative opportunity measures (for each mode and activity type) are 
calculated for each 1 sq.km pixel (within a city or region of interest) for different travel time thresholds. The 
cut-offs for travel time thresholds are user defined. Let 𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖𝑡𝑡 denote the number of opportunities of activity 𝑗𝑗 
that can be accessed by mode 𝑘𝑘 within the travel time threshold 𝑡𝑡 from the 𝑚𝑚th pixel. As opportunities that are 
nearby can be accessed easier than the ones that are farther away, a negative exponential weighting factor is 
used to penalize the opportunities that are farther away. The travel time-weighted cumulative opportunities, 
𝑂𝑂𝑠𝑠𝑖𝑖𝑖𝑖, are calculated as following:  

𝑂𝑂𝑠𝑠𝑖𝑖𝑖𝑖 = ∑ (𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖(𝑡𝑡−10)) ∙ 𝑒𝑒𝛽𝛽𝑡𝑡𝑡𝑡      (1) 

where 𝛽𝛽 is the travel time decay factor (set to be -0.08 in this study), following Owen and Levinson (2014). 
Future efforts will explore the sensitivity of cumulative opportunities measure with varying values of the 
weighting factor 𝛽𝛽. 

Energy-Weighted Mobility 
One of the key facets of the MEP metric that sets it apart from existing accessibility metrics is accounting for 
energy efficiency of access to opportunities by different modes of travel. For example, a variety of 
opportunities can be accessed within ten minutes of travel by car, when compared to 10 minutes of travel by 
transit. However, the energy efficiency (from a fuel consumption and emissions perspective) of access to 
opportunities provided by car is lesser than that of the energy efficiency of access to opportunities provided by 
transit. Given the same travel time threshold, the opportunities that can be reached by more energy efficient 
modes such as walking, biking, and transit, are assigned a greater weight, while the opportunities that can be 
reached by less energy efficient modes, such as driving. A negative exponential weighting factor is used to 
average the travel time-weighted cumulative opportunities 𝑂𝑂𝑠𝑠𝑖𝑖𝑖𝑖 across all transportation modes. Thus, the 
energy-weighted mobility for activity 𝑗𝑗 at 𝑚𝑚th pixel, 𝑎𝑎𝑠𝑠𝑖𝑖, is formulated as below. 

𝑎𝑎𝑠𝑠𝑖𝑖 = ∑ 𝑂𝑂𝑠𝑠𝑖𝑖𝑖𝑖 ∙ 𝑒𝑒
𝛼𝛼(𝑀𝑀𝑘𝑘/min

𝑘𝑘
𝑀𝑀𝑘𝑘)

𝑖𝑖       (2) 
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where 𝛼𝛼 is the adjusting factor and equals to -0.3 based on engineering judgement, and 𝐸𝐸𝑖𝑖 is the energy use per 
passenger-mile for transportation mode 𝑘𝑘. The energy-weighted mobility, 𝑎𝑎𝑠𝑠𝑖𝑖, is then normalized to the scale 
of 0 to 100 score within each activity type by applying the min-max normalization technique. 

𝑧𝑧𝑠𝑠 = 𝑥𝑥𝑖𝑖−min (𝑋𝑋)
max(𝑋𝑋)−min (𝑋𝑋)

× 100      (3) 

where 𝑋𝑋 is the original array data {𝑀𝑀1,𝑀𝑀2, … , 𝑀𝑀𝑠𝑠} and 𝑧𝑧𝑠𝑠 is the normalized value of 𝑀𝑀𝑠𝑠. 

Activity Frequency (and Energy) Weighted Mobility 
The previous calculation provides an energy-weighted mobility score for each activity type at any given 
location. In order to provide a comprehensive metric, the score needs to be averaged by the frequency of 
activity participation. For example, work can be considered as a more regular activity than going to the bank or 
going shopping. To reflect this, scores are weighted by frequency of activity engagement across all activity 
types (data obtained from 2009 National Household Travel Survey). The final MEP metric for the 𝑚𝑚th pixel, 
𝑀𝑀𝑠𝑠, is calculated as 

𝑀𝑀𝑠𝑠 =
∑ 𝑎𝑎𝑖𝑖𝑖𝑖∙𝑓𝑓𝑖𝑖𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝑖𝑖

        (4) 

where 𝑓𝑓𝑖𝑖 is the trip frequency of activity. Figure V.2.1 below shows MEP metric applied to Columbus, OH. 

 
Based on the feedback from DOE leadership, the following key issues were identified in the methodology of 
MEP 1.0. 
 
• Scaling: Scaling between 0-100 limited MEP 1.0’s ability to accurately depict improvements in MEP  

Figure V.2.1 MEP metrics for Columbus, OH for: a) Car mode; b) Walk, Bike, and Transit modes (combined); c) All modes 
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• Affordability: MEP 1.0 is not weighted with cost/mile usage of different modes 

• Inclusion of Additional Modes: MEP 1.0 includes 4 modes namely walk, bike, transit, and car. 
Additional modes (such as TNCs, and Paratransit) were suggested for inclusion in future iterations of the 
metric 

• Spatial Aggregation: MEP 1.0 is developed as a location based metric at the resolution of 1 sq. km for 
Columbus, OH. It is suggested that an appropriate spatial aggregation mechanism be identified to 
calculate a single MEP score for a city 

The project team is currently addressing these issues and continues to enhance the metric. Figure V.2.2 shows 
an intermediate version of the metric (adressing scaling, affordability, and additional mode issues, along with a 
few methodological changes) applied to Austin, TX; Columbus, OH, and Denver, CO.  

 

Figure V.2.2 MEP 2.0 methodology applied to: a) Austin, TX; b) Columbus, OH; c) Denver, CO 
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Conclusions    
• The MEP metric is well received both within the DOE lab ecosystem as well as the broader 

transportation and energy research community 

• The metric is being utilized to quantify the impact of various scenario runs being carried out as a part of 
the DOE SMART Mobility Consortium research 

• The project continues to advance at a rapid pace with the following goals for FY2019 

o Final version of the metric by end of first quarter in FY 2019. 

o Development of a standalone MEP computation module  

o Extend the application of standalone MEP methodology to top 50 metropolitan cities in the US  
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Project Introduction  
Agencies are increasingly expected to evaluate a variety of strategies suitable to accommodate long-term 
visions and day-to-day demand variability and to increase system reliability with feasible scenarios pertaining 
to planning and management of operations posing challenges at varying degrees based on their complexity, 
diversity and timeframe for implementation. Compounding their efforts are the emerging technological 
advances and “mobile revolution” we are experiencing which are disrupting travel behavior by providing 
personalized and contextually relevant traveler mobility options and information. Mobility options such as 
shared-use, electric vehicles, micro-transit, connected and autonomous vehicles and dynamic (real-time) 
information are already or expected to be part of the daily activities in the near-future, but their effect on the 
overall transportation system is not yet evident.  

Autonomous vehicles could provide first and last mile accessibility to transit services negating the need for 
park-n-ride facilities (AV pilot deployments are under way in various states including Texas) or completely 
change mode choices with user preferences shifting to Shared Autonomous Vehicles (SAV) from traditional 
transit services, as indicated in recent modeling research from the University of Texas at Austin9. In addition to 
the system changes, technology and data are influencing and supporting traveler behavior, with disseminating 
information transitioning from static to dynamic with mobile platforms leveraging personalization, behavior, 
and system goals to deliver temporally, spatially, and contextually relevant mobility options to the user. 
Federal Highway Administration’s (FHWA) Active Transportation Demand Management (ATDM) program 
embraces tools and platforms that manage travelers behavior in real-time to achieve operational objectives. 
The notion of dynamically managing traveler behavior across the trip chain is the ultimate vision of ATDM10. 
A partner in this project, Metropia11 utilizes a platform, powered by proprietary algorithms, data analytics and 
behavioral economics, is an example of such a multidimensional ADM framework (route, departure time and 
mode). As such, cities around the US are fully engaged in developing reports and plans that could provide a 
blueprint to prioritize investments and better understand what the impacts on travel behavior and system 
operations may be. The City of Columbus has grouped recommended activities under three (3) overreaching 
themes named Enabling Technologies, Enhanced Human Services and Emerging Technologies, while the City 
of Austin has grouped recommended actions under five (5) areas named Shared-Use Mobility Services, 

                                                      
9 Jun Liu, Kara M. Kockelman, Patrick M. Boesch & Francesco Ciari, Tracking a system of shared autonomous vehicles across the Austin, 
Texas network using agent-based simulation. 
10 Meenakshy Vasudevan and Karl Wunderlich, Analysis, Modeling, and Simulation (AMS) Testbed Preliminary Evaluation Plan for Active 
Transportation and Demand Management (ATDM) Program, November 2013. 
11 www.metropia.com 
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Autonomous Vehicles, Electric Vehicles & Infrastructure, Data &Technology and Land-Use & Infrastructure. 
The challenge the transportation agencies are facing is balancing the evaluation of transportation related 
strategies, policies and projects based on what they have been accustomed to while also incorporating elements 
that are on the horizon but where knowledge of their impact is limited or unknown. 

These competing needs have placed emphasis in exploring advances in transportation modeling to develop, for 
analysis purposes, a robust, sophisticated and practical framework supporting the ultimate goal of providing an 
efficient, safe and sustainable transportation system for both passenger and goods movement. 

Objectives  
This project aims to: 

• Bring new data and modeling methods related to Mobility as a Service (TNCs, Car-Sharing, Ride-
Sharing & other), automated vehicles and other emerging mobility choices that will extend existing 
travel demand models and be transferrable to additional cities and regions. 

• Highlight considerations for development and implementation approaches for employer provided 
mobility, AMD special generator and/or TNC use   

Mobility options such as shared-use, electric vehicles, micro-transit, connected and autonomous vehicles and 
dynamic (real-time) information are already or expected to be part of the daily activities in the near-future, but 
their effect on the overall transportation system is not yet evident. For example, the use of electric vehicles is 
expected to reduce energy intensity, but the increase of connected vehicles may or not reduce congestion 
unless there is a dedicated lane12. Similarly, autonomous vehicles could provide first and last mile accessibility 
to transit services negating the need for park-n-ride facilities (AV pilot deployments are under way in various 
states including Texas) or completely change mode choices with user preferences shifting to Shared 
Autonomous Vehicles (SAV) from traditional transit services, as indicated in recent modeling research from 
the University of Texas at Austin13. In addition to the technological advances on the supply side, the 
opportunity facing us today is making demand management more robust by leveraging technology, 
psychology, personalization, system goals, and institutional readiness to overcome barriers inhibiting 
discovering and selecting a new and efficient mode not used before. As such, cities around the US are fully 
engaged in developing reports and plans that could provide a blueprint to prioritize investments and better 
understand what the impacts on travel behavior and system operations may be.  

Approach 
The approach for this project includes: 

• Working directly with a mid-size case city and technical partners using existing travel demand model 
and associated data.  

• Extending model incrementally to include impacts of SMART Mobility, documenting methods with 
existing DTA with conventional trip generation practice. 

• Estimating mobility & energy impacts of ACES within an existing / established modeling framework as 
a case study for other cities. 

The two cities of focus, Austin TX and Columbus OH are sites of actively emergent new mobility 
technologies. The City of Columbus has grouped recommended activities under three (3) overreaching themes 

                                                      
12 Modeling the Impacts of Automated and Connected Vehicles in a Complex Congested Urban Setting, Texas A&M Transportation Institute, 
September 2016. 
13 Jun Liu, Kara M. Kockelman, Patrick M. Boesch & Francesco Ciari, Tracking a system of shared autonomous vehicles across the Austin, 
Texas network using agent-based simulation. 
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named Enabling Technologies, Enhanced Human Services and Emerging Technologies, while the City of 
Austin has grouped recommended actions under five (5) areas named Shared-Use Mobility Services, 
Autonomous Vehicles, Electric Vehicles & Infrastructure, Data &Technology and Land-Use & Infrastructure..  

In the context of SMART Mobility, exploring advances in transportation modeling to develop a robust, 
sophisticated and practical framework enhance d is a pre-requisite in order to better manage and predict 
transportation operations, and to integrate the flexibility to include future options as they appear.  

Each city acknowledges the limitations of available city and regional models and anticipates expanding current 
modeling capabilities to include new transportation technologies and practices. The past year has shown 
growing developments in mobility as a service (MaaS) in the focus cities and nationally, as well as new 
practices, such as employer-provided mobility, and a reexamination of parking and curb space practices. 

Results  
Overview: Austin, TX 
City agencies affiliated with transportation, housing, and business development in Austin have taken on 
leadership roles in shaping the future of transportation in the city. The Pecan Street development is actively 
experimenting with deployments of MaaS first/last mile shuttle service connecting users to transit stations 
within a focused area, concentrating on providing better access to transit from adjacent residential areas. The 
Pecan Street development is also a unique opportunity for modeling and experimentation, with a high 
concentration of EV owners who are engaged with data collection efforts. In addition to leveraging advances 
on the supply side, Austin is making demand management more robust by leveraging technology to discover 
and engage on efficient mobility options. The Central Texas Regional Mobility Authority (CTRMA) deployed 
Metropia’s platform to manage demand during the construction of the Express Lanes on the Mopac 
Expressway. Metropia’s platform, powered by AI-based algorithms, data analytics and behavioral economics, 
provides a multidimensional demand management framework to support transportation system congestion-
management strategies and policies. 

Austin is also committed to providing improved mobility options to low-income communities and to providing 
access to employment. The employer-provided mobility concept that has emerged in other places, notably in 
the Seattle area and in Silicon Valley, is a potential model for implementation in Austin. The research team 
will continue to explore how employer-provided mobility options could contribute to improved mobility 
access, with the capacity to reduce energy expenditure.  

The research team has also developed recommendations for the CAMPO travel demand model development to 
balance the desire for a robust set of models with the need to have a set of models that fit within the region’s 
strategy and plans for travel demand analyses as a whole. Minimally, enhancement recommendations bring 
sensitivity for Smart Mobility trends of CAV/SAV, TNC and automated mobility districts to multiple 
components of the CAMPO travel models. At the next level, recommendations would result in sensitivity 
among multiple components both on an individual basis and through linkages among components. Ultimately, 
a change of the entire CAMPO model structure to an integrated Activity-Based Model (ABM) and Dynamic 
Traffic Assignment (DTA) framework would create sensitivity that is even more fundamental. 

Overview: Columbus, OH 
The Smart City Columbus team has been highly engaged with city agencies and collaborative local and 
regional partners, aiming to support the rapidly developing integration of emerging technologies. During the 
past year, Columbus has conducted surveys to assess the state of adoption and adoption potential for electric 
vehicles in the city, targeting early adopters within the general public and transportation network company 
(TNC) drivers. Columbus leaders have identified the need to have better modeling capabilities to understand 
electric vehicle (EV) charging needs in order to develop infrastructure to support increased purchasing and use 
of EVs.  
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In addition, Columbus is poised to be an early testbed for implementation of automated vehicles (AVs), in 
particular, automated shuttle vehicles in a public downtown circulator system, and at least one large campus-
based employer who is interested in automated shuttles.  

Employer-provided mobility is of keen interest in Columbus, with at least one large employer running a pilot 
program for employees. The impetus for the employer is to reduce the need to expand car parking capacity to 
accommodate new employees, and to recruit and retain young, highly skilled employees, many of whom are 
not interested in owning a car and the associated costs.  

Similar to Austin, the City of Columbus is exploring to leverage technology to offer citizens new mobility 
options. Recently the City of Columbus in partnership with COTA (the regional transit agency), prepared a 
Concept of Operations (ConOPs) plan outlining the development of the Multimodal Trip Planning Application 
(MMTPA) and Common Payment 190 System (CPS) and they issued a Request of Proposal (RFP) for the 
development of the MMTPA. As part of this RFP, a number of required characteristics were identified for the 
MMTPA including incorporating Artificial Intelligence (AI) and incentives.  

This modeling framework currently in place for the City of Columbus was supported by a SHRP C10 grant 
and is based on ODOT’s 3C MORPC ABM and Metropia’s DynusT/DynuStudio DTA platform. The ABM 
component incorporates a number of advanced core demand models which when combined with the unique 
features of the DynusT/DynuStudio platform could be viewed as a transitionary step to an Agent-based 
modeling and simulation (ABMS) framework. 

Common to both cities 
Both Columbus and Austin are high-profile innovation locations in terms of transportation technologies. The 
stature of these cities as drivers of new technological implementation is important, as they are mid-sized 
intercoastal cities that share characteristics with a wide range of similar U.S. cities. What is learned in these 
locations may be translated and applied in other locations. In each case, the city leadership and stakeholders in 
city agencies are well aware of their position and ability to shape and inform other cities. Both are strong 
collaborative partners who want to improve modeling approaches in order to more accurately reflect new 
modes, whether increasing numbers of EVs, AVs, e-scooters, or other technologies still over the horizon. The 
willingness to partner with SMART Mobility researchers is a valuable asset, through which several key 
emergent modes can be explored during FY2019. 

 

Figure V.3.1 ODOT/MORPC ABM-DTA Modeled Network (Source: Ohio Department of Transportation) 
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Figure V.3.2 Current Mobility Challenges in Austin (Source: Austin Smart Mobility Report) 

 

Conclusions   
Both cities of focus, Columbus and Austin, are at the forefront of implementation of emerging transportation 
technologies and practices, and each is actively working toward improving the capabilities to model traffic 
flows. City staff are engaged in attempting to provide a better picture of the impacts of rapidly changing 
practices in order to more accurately anticipate the future of mobility. Continued interaction and collaboration 
with these cities is likely to further identify strategies in how best to inform similar cities facing many of the 
same challenges, and to contribute toward building a foundation of  transferring findings from SMART 
Mobility efforts to practitioners who can use outcomes to improve practices.  

The ongoing objectives of this task are to integrate findings from the cities of focus to: 

• Enable reuse and augmentation of existing calibrated models within cities, extended to capture SMART 
technology impact of such things as: AMD, TNCs, Employer Provided Mobility and others. 

• Provide case study for additional Smart Cities (with similar model maturity as case city) to capture 
energy and mobility impacts of various SMART models 

Key Publications    
Deliverable 5.1:  

 Austin Data and Modeling Environment Report 

 Columbus Transportation and Modeling Report 

Deliverable 5.2: Smart Mobility Austin – CAMPO Model Capabilities and Enhancements 

Deliverable 5.3: Brief Project Forum Report 
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Project Introduction 
Conceptually the purpose of this project is to provide travel demand and traffic modelers – both within the 
SMART Mobility Consortium as well as in the transportation technology research community at large – with a 
more defensible point of departure for studying scenarios of future mobility. Most of the vehicle technologies 
studied by the Consortium are years if not decades away from fruition, and it is not realistic to expect the rest 
of society to sit idly by in the meantime. Any credible attempt to model the impact of future mobility 
technology must take into account the changes in land use, demographics, and real estate markets that are sure 
to have significantly altered our urban landscapes by the time the first fully electrified fleet of CAVs hits the 
road. 

Integrated urban models of transportation and land use have long been the gold standard of regional planning, 
yet in practice would be more aptly described as the Holy Grail or philosopher’s stone -- rarely, if ever, seen in 
person. Many planning agencies who claim to have an integrated model are simply handing off the results of 
30-year land use forecasts to their travel modelers and calling it good enough. The trouble with this approach is 
that interdependencies between transportation and land use exist in both directions, and yet play out on vastly 
different time scales. The goal of Task 2.2.2 is therefore to extend current state-of-the-art land use models to 
allow for tight coupling with travel models and properly account for closed-loop feedback effects. 

Objectives 
The specific objectives of Task 2.2.2 are as follows: 

• Extend UrbanSim with a travel model to allow for closed-loop feedback in simulation of land-use/urban 
infrastructure 

• Build fast models for key variables such as vehicle ownership, workplace choice, time of day, and mode 
for mandatory activities (work and school), etc. 

• Decrease computation time for extended UrbanSim using HPC or cloud resources in order to focus 
efforts on land use dynamics 

• Develop 30-year scenarios for cities in portfolio (e.g. SF, CMAP, DRCOG) and plan for executing travel 
model integration at scale 

• Run cloud scaled network flow model at metropolitan scale integrated with a long-term urban simulation 
model. 

mailto:waddell@berkeley.edu
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Approach 
Our approach involves 5 main sub-tasks: 

1. Extend UrbanSim with a travel model to allow for closed-loop feedback in simulation of land-
use/urban infrastructure. 
UrbanSim is an open-source microsimulation platform used by metropolitan planning organizations 
worldwide for modeling the growth and development of cities over long (∼30 year) time horizons. It 
is a stable and mature technology yet represents a state-of-the-art approach to land use modeling, and 
therefore serves as the basis for most of the work in this project.  

Currently, UrbanSim is often used by travel modelers to generate land use inputs for their modeling 
scenarios. For example, to estimate a model of travel demand in the year 2040, a modeler would first 
run an UrbanSim simulation out to the year 2040 and then use these static outputs as the starting point 
for their travel model. This one-way coupling completely disregards the way in which travel demand 
and land use are known to co-evolve. 

Our aim is to develop a modular software architecture for a tight, closed-loop coupling between 
UrbanSim and a variety of different travel models whether they be agent based, four-step, or 
otherwise. The tight coupling would be based on a series of automated handoffs between the inputs 
and outputs of the land use, activity demand, and traffic assignment (TA) models, occurring during 
intermediate iterations of a given iteration. An UrbanSim simulation typically uses iterations of 1 or 5 
years. For a year 2040 scenario with a base year of 2015, then, the tightly coupled travel model might 
get triggered at the end of each simulation year for a total of 25 cycles, or every five years for a total 
of 5 cycles (Figure V.4.1), and so on. 

2. Build fast models for key variables such as vehicle ownership, workplace choice, time of day, and 
mode for mandatory activities (work and school), etc. 
ActivitySim is an agent-based modeling (ABM) platform for modeling travel demand. It is built on 
much of the same open source code base as UrbanSim and therefore provides a natural linkage for 
closing the gap between our land use models and TA scenarios. In our proposed integrated modeling 
workflow, these lightweight activity models are adjusted by the urban dynamics models at a yearly 
time scale, providing the OD travel demand data for the network flow algorithms and TA. ActivitySim 
is under active development by a consortium of MPOs, transportation engineers, and other industry 
practitioners, with an official 1.0 release scheduled for 2018. Our work here will primarily involve 

Figure V.4.1 Schematic of tightly coupled land use and travel models using 5-year cycles. 
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thoroughly calibrating, validating, and benchmarking ActivitySim in its current state, and developing 
a workflow for integrating its operation with UrbanSim outputs and TA inputs. 

3. Decrease computation time for extended UrbanSim using HPC or cloud resources in order to focus 
efforts on land use dynamics. 
In our tests, a single UrbanSim iteration for a synthetic population of 2.6M households and 6.9M 
individuals completed in just under 11 minutes of wall clock time on a Ubuntu Linux machine with 24 
Intel Xeon X5690 3.47GHz CPUs. Extrapolating to the typical 30-year scenario, a complete 
UrbanSim run will take 5.5 hours using one-year intervals or 1.1 hours using a five-year interval. 
Many/most travel models take orders of magnitude longer than this to generate travel demand and 
solve a single day’s worth of TA. It is likely that these steps will be the limiting factors in terms of the 
temporal granularity at which we can integrate land use and travel models. Thus we intend to focus 
our efforts on exploring the use of HPC and/or distributed cloud infrastructure to achieve the 
computational performance required to run 30 year scenarios in an “integrated” way. 

4. Develop 30-year scenarios for cities in portfolio (e.g. SF, CMAP, DRCOG) and plan for executing 
travel model integration at scale. 
Together with our travel modeling colleagues we will develop a suite of scenarios. The scenarios will 
be designed to meet the stated goals of the SMART Consortium, as well as to provide us with a 
method for assessing the impact of a tightly integrated modeling workflow relative to one-way 
integrations or completely un-integrated models. 

5. Run cloud scaled network flow model at metropolitan scale integrated with a long-term urban 
simulation model. 
We aim to leverage the results of the HPC/cloud-enabled network flow model described above to 
achieve a preliminary implementation of a tightly coupled simulation platform for modeling land use 
and transportation changes over 30-year time horizons.  

Results 
The key results from our FY18 work are as follows: 

UrbanSim templates 
We extended and abstracted the UrbanSim modeling framework around a modular design that we call model 
“templates”. The template based structure enables the modeler(s) to maintain a single microsimulation instance 
or environment while allowing individual models or sub-components of a modeling workflow to be swapped 
in/out or substituted with those developed by other groups or researchers working in tandem. 

Activity demand 
We identified ActivitySim and its underdeveloped and underperforming models as the biggest obstacle 
preventing the closed-loop integration of land use and travel models. These models include workplace location 
choice, school location choice, auto-ownership, mode choice, mandatory + discretionary trip generation, and 
trip scheduling. We completed the process of overhauling the long term choice models like workplace and 
school location choice and have incorporated them into UrbanSim proper, resulting in dramatically improved 
runtimes (~16x). We have begun development on a codebase we are calling ActivitySynth to re-implement the 
remaining ActivitySim models necessary for generating activity demand. We completed a first pass of 
generating a full day's worth of OD trips and departure times based on the outputs of our household location 
choice, workplace location choice, auto-ownership, and primary mode choice models. We developed a 
workflow and data schema for passing these OD trips between UrbanSim/ActivitySynth and BEAM and are 
working to automate this process. 

Traffic Assignment 
We tested a static user equilibrium (SUE)-based traffic assignment algorithm on our tertiary network of 31,000 
edges and 66,000 nodes. Performance was good enough that we opted not to implement on HPC in order to be 
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able scale up on cloud infrastructure in the future. We have continued the development of our GPU-based 
traffic microsimulation, both as a benchmark against the SUE approach as well as a novel solution for fast 
traffic assignment in its own right. We identified a major bottleneck in the traffic microsimulation in its 
implementation of Johnson’s all-pairs shortest path algorithm, and began a phase of benchmarking it against 
other algorithms, including our SUE implementation. 

Integrated simulations 
As noted above, computational constraints and incompleteness of the ActivitySim model prevented full end-to-
end simulation of scenarios. However, we were able to run each component and manually pass the outputs 
from one to the other. Computational performance bottlenecks and algorithm limitations were clearly 
identified and used to motivate the key tasks proposed for FY19. 

Conclusions 
In FY18 we achieved the following: 

• A thorough evaluation of existing activity demand generation technologies through experimentation 
and benchmarking 

• Identification of underperforming or otherwise weak linkages preventing the closed-loop integration 
of land use and travel models, including workplace location choice, auto-ownership, mode choice, 
mandatory + discretionary trip generation and scheduling.  

• Development of a modular software architecture (Figure V.4.2) capable of accommodating a) the 
integration of UrbanSim with a variety of different travel models; and b) the continued innovation of 
the individual sub-models determined during our evaluation phase to be underperforming. 

 

Figure V.4.2 
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Key Publications 
 Waddell, Paul, et al. "Architecture for Modular Microsimulation of Real Estate Markets and 

Transportation." arXiv preprint arXiv:1807.01148 (2018). Presented at the Symposium on Applied 
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 Waddell, Paul, et al. “Urban Modeling Without Zones: A Metropolitan Graph-Based Microsimulation of 
Real Estate Markets and Transportation”. Presented at the American Collegiate Schools of Planning 
Annual Conference in Buffalo, New York. October 25, 2018 
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Project Introduction 
Automated mobility is becoming a reality as new technologies emerge to provide automated vehicles and 
associated infrastructure. The ability to respond to unanticipated events is an important aspect of developing 
and maintaining engineered systems that may be subject to unexpected disruptions that can disable or degrade 
system performance. In support of the anticipated deployment of automated mobility systems, we examine 
resilience concepts and propose an approach for characterizing and understanding resilience. While we focused 
our initial study on simple closed-loop systems, our approach enables development of concepts, models, and 
analyses that can be extended to more general situations. A modeling approach, Statistical Planning for 
Resilience in Next Generation Systems (SPRINGS), is proposed to provide tools for resilience assessment. The 
SPRINGS resilience modeling approach is intended to support distributional analyses of a variety of mobility 
systems and associated infrastructure ranging from specific automated transit systems such as closed loop 
trolley systems to associated infrastructure such as charging stations for electric vehicles.  

Objectives 
The overall objective of Task 2.3.3 is to develop a statistical approach for resilience of Smart City technologies 
such as Electric Vehicles (EV), Automated Vehicles (AV), and Connected Vehicles (CV) that can be used to 
explore the distributional behavior of systems under normal, stressed, and extreme conditions. This task 
incorporates expertise in statistical analysis and modeling, socio-technological analysis of infrastructure 
disruptions, and modeling and simulation of transportation systems. Resilience assessment should address the 
need for robust systems that can respond to abnormal and extreme conditions such as large public events, 
disasters, and evacuations and which can address the needs of citizens, including underserved populations. 
Ultimately, this approach is intended to aid planning and mitigation actions to address extreme conditions such 
as special events, natural disasters, and other emergency situations. 

Specific goals that were established include the following: 

mailto:David.Anderson@ee.doe.gov
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• Use socio-technological principles to develop a conceptual model. 

• Investigate statistical methods for characterizing distributional behavior of systems under normal, 
stressed, and extreme conditions. 

• Model impact of disruptions to normal operating conditions and resilience of system response as 
abnormal conditions subside. 

• Model the resilience of charging systems for electrified vehicles and transportations services in AMDs. 

• Demonstrate use of resilience modeling to enable development of systems that can respond quickly to 
unusual or unanticipated events. 

Approach 
The SPRINGS approach involves development of a conceptual model, development and application of 
statistical methods for characterizing systems under normal, stressed, and extreme conditions, and 
demonstration of these methods using simulated data.  

Resilience is increasingly recognized as a key factor in the ability to maintain functionality of complex, critical 
infrastructure systems in the face of a range of possible attacks, natural disaster impacts, and anomalous travel 
scenarios, such as mass evacuations (Sims 2011). We define resilience as the resistant characteristics and 
adaptive capacities of a system that enable it to respond to disruption with lower probability of failure, shorter 
time to recovery, and/or reduced level of negative impacts (Sims and Brelsford 2011). As this definition 
suggests, resilience encompasses multiple related phenomena, including the ability of a system to resist any 
impact whatsoever from a disturbance, the ability of a system to adapt and reconfigure in order to maintain full 
functionality during a disturbance, and how quickly a system can recover following a disruption that actually 
does degrade its functionality (see Holling 1996). The scope of analysis of resilience also varies, from inherent 
resilient capacities of a system in isolation, to multi-system views that encompass repair services, 
organizational capacities, and economic resources (Cox et al. 2011). 

Researchers have proposed a variety of ways of breaking down these multiple aspects of resilience. For 
example, Bruneau et al. (2003), in a formulation that has been widely cited, describe resilience in terms of “4 
Rs”: robustness, the “strength” or ability of a system to resist breakdown; rapidity, the speed with which 
functionality can be restored after a breakdown occurs; redundancy, the degree to which components of the 
system can substitute for one another; and resourcefulness, the capacity of social systems to set priorities, 
make decisions, and mobilize resources in non-standard ways. In a similar formulation, Cox et al. (2011), 
following work by ecologist C.S. Holling (2001) describe resilience in terms of vulnerability, analogous to 
robustness above; availability of resources to respond to change; and flexibility, or ability to control and 
reconfigure elements of a system.  

These aspects of resilience suggest a number of strategies that might be applied to transportation systems to 
increase their resiliency, including: 

• Adding redundancy, for example by building networks that afford multiple access paths to each node. 

• Maintaining excess capacity, for example by keeping a reserve stock of vehicles on hand to respond to 
unusual circumstances 

• Adding flexibility, for example by incorporating on-demand transportation solutions that enable system 
reconfiguration on the fly without disruption to passenger access (see Cox et al. 2011 and Madni and 
Jackson 2009 for additional examples). 
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These strategies each have strengths and weaknesses in relation to different modes of transportation system 
disruption, including: 

• Point failures, such as removal of isolated tracks, road segments, or stations from service 

• Global capacity degradation, for example from a snow storm that reduces vehicle speed across an entire 
transportation system 

• Demand surges, for example from large numbers of people trying to get to or evacuate from a particular 
area 

• Logistical failures, such as breakdowns in control systems that optimize vehicle flow through a 
transportation system 

These failure modes and resilience strategies suggest a number of different scenarios that we can use as a basis 
for modeling and assessing resilience of transportation systems.  

There are a number of considerations that are important for understanding resilience for Smart Mobility 
Systems. Autonomous/adaptive transportation systems will have fewer fixed elements in their operating 
configurations. This makes it more difficult to define a single optimal operational state, and provides many 
more control options, although in practice centralized control may become more difficult. Although these 
systems may have the potential to be far more resilient than conventional transit systems, they also create 
challenges for analysis and control that could negatively affect system resilience (see Perrow 1999). 

The current stock of private vehicles sits unused between trips, representing a huge excess vehicle capacity that 
is assumed to be available for exceptional situations like evacuations. (Although lack of ownership of private 
vehicles is increasingly recognized as a barrier to evacuation, and road capacity becomes a constraint at some 
point.) A completely on-demand transportation system could theoretically operate much closer to its maximum 
capacity, leaving limited excess capacity in the system to respond to exceptional circumstances.  

The most efficient smart transportation systems may be those that combine traditional, fixed-configuration 
transit systems, such as light rail, with flexible, on-demand feeder systems such as shared-ride vans. In order to 
model these systems, it may be necessary to draw on and integrate existing modeling approaches and data sets 
that cover private vehicle traffic, taxi and ride-sharing services, and traditional transit systems.  

There are numerous examples of closed-loop mobility systems. Situations where this type of system is used 
include the Dallas Fort Worth Airport SkyLink train that connects different terminals and gates, the airport 
rental car shuttle system at the Albuquerque Sunport, and various university campus bus systems. Our work is 
motivated in part by the Kansas City Trolley system which consists of a 2 mile Trolley Track with 16 stops. 
Another example of a downtown closed-loop system is the Detroit People Mover, a 3 mile single track system 
with 13 stops. 

To provide a mathematical environment for studying resilience, we developed a trolley simulation based on a 
simplified mathematical representation that includes selected attributes of a mobility system that can be used to 
investigate resilience properties. We define a simple closed-loop mobility system S as a set of vehicles V_i that 
move along a simple closed path P consisting of a series of n stops. Transit occurs as a vehicle moves along a 
route on the path from one stop to the next. Movement along the route can be represented as travel along a 
connected path in either a uni-directional or bi-directional manner, with the different segments being 
associated with either deterministic or random travel times. More simply, the travel can be viewed as a series 
of transitions, where a transition is associated with movement from a given stop s_i to an adjacent stop s_j. 

Our simulation modeling approach involves generating distributions of riders and travel segments or 
transitions, and potentially other quantities that can impact the resilience of a mobility system. The number of 
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riders can be modeled using the Poisson distribution which has a parameter lambda corresponding to the 
number of events in a specified time interval. 

Travel times can be modeled with various distributions, such as the log-normal which concentrates most of the 
distribution in a focused area but allows for a long right tail corresponding to infrequent long travel times. To 
avoid unrealistically long values, truncated versions of distributions can be invoked. 

Wait times are determined by the arrival rates of riders at each of the stops as well as the travel times between 
stops. The distributions of the riders and travel times will induce a distribution on the wait times. 

A variety of metrics can be defined for quantifying various aspects of resilience. For example, various 
summary statistics (mean, median, standard deviation, min, max) can be calculated to examine the location and 
dispersion of system variables. Some quantities that might be of interest include the total number of passengers 
on board available vehicle(s), total number of passengers waiting, number of passengers waiting at individual 
stations, and average wait time across the system. One might also take a more comprehensive approach and 
look at the waiting time distributions at individual stops rather than focusing on averages. Various summary 
statistics can be used individually or combined into user-defined quantities that attempt to capture system 
performance measures important to resilience assessment, such as Average Wait Time/Target Wait Time, 
Average Queue Length/Car Capacity, etc. In addition, it is important to consider sources of uncertainty 
throughout the modeling process and how these uncertainties can propagate and impact decision-making. 

A simulation was developed using the mathematical framework described above for a simple closed-loop 
trolley system with one 50-passenger trolley car and 5 stops. For simplicity, rather than having distributions of 
travel times, equal time steps were used to represent movement of the trolley between stops. Riders were 
drawn from Poisson distributions with varying values for the parameter lambda to generate different 
distributions of passengers entering and exiting the system at the different stops. 

The simulation begins by initializing the system with 0 riders on the trolley and empty queues at each of the 
stops. As the simulation begins, the number of riders at each stop is drawn from a Poisson distribution with a 
lambda value specific to that stop. At each time step, new passengers arrive at each stop and line up to board 
the trolley. Passengers in the queue at the stop where the trolley car is located are allowed to board until the car 
is filled. The trolley car then advances to the next stop, allows a stop-specific Poisson generated sample of 
riders to exit and then allows new passengers from the queue at the current stop to board. The trolley car 
proceeds around the loop dropping off passengers and picking up new passengers up to the trolley car capacity. 
By running the simulation over a period of many steps, we are able to examine the ability of the system to 
handle the passenger loads arriving at the different stops. 

The simulation allows tracking of the progress of the simulation over time as the 50-passenger trolley car picks 
up and drops off passengers. Simulation outputs provide the number of passengers in the trolley car as well as 
the number of passengers waiting at each stop at a series of time steps. Varying the capacity of the trolley car 
provides system information in the presence of hanging system behavior. 

With a 50-passenger trolley car, the car frequently fills up and passengers are left standing in their queues for 
multiple circuits of the trolley car. As the size of the car is increased, the ability of the trolley system to handle 
the passenger load improves. With a 60-passenger trolley car, the system only fills to capacity occasionally, 
while the 70-passenger trolley car is generally able to accommodate all passengers. A variety of diagnostic 
plots can be generated to investigate the distributional behavior system-wide as well as at individual stops.  

Histograms of the trolley car load and queue lengths are generated at the individual stops across the simulation 
for 50-, 60-, and 70-passenger trolley cars. These plots give a sense of the distributional attributes associated 
with the varying capacity trolley cars. 
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Once a simulated system or a model of real data is available, a variety of studies are possible in which factors 
such as the passenger flow can be altered at the different stations simultaneously or at varying rates over time. 
If there is an unexpected increase in the passenger flow, a system can become overloaded, similar to the 
situation that arose with the 50-passenger trolley car simulation. If the flow increases beyond system capacity, 
the system will eventually be overwhelmed. Once the flow decreases, the system should be able to return to 
normal conditions. The rate at which the system recovers is one aspect of resiliency. 

The quantitative process for resilience assessment based on the trolley simulation described above led to the 
development of a set of metrics and distributional summary statistics to address different aspects of resilience, 
such as the location and dispersion of system variables and calculation of combined quantities important to the 
particular system under study. 

Results 
Implementation of the approach described above led to the following results: 

• Specification of a conceptual foundation for resilience assessment that integrates socio-technological 
modeling concepts with mathematical rigor 

• Development of the SPRINGS model based on statistical distributions to characterize and assess normal, 
stressed, and extreme conditions  

• Exploration and identification of potential data sources 

• Construction of a simulation for simple closed loop systems to enable development of resilience 
assessment methodology. 

• Implementation of resilience concepts for simulated data 

• Development of metrics and techniques for quantifying different aspects of resilience 

Results were documented and disseminated in a variety of venues including a project report, programmatic 
progress and review presentations, and poster presentations at two professional conferences. A research 
manuscript is in preparation. Further details may be found in the Key References Section. 

Conclusions 
This project has developed a statistical approach, SPRINGS, for characterizing resilience. The approach has 
been demonstrated for a simulated closed-loop transit simulation inspired by the Kansas City Streetcar. Future 
research on the mathematical methods would draw upon statistical concepts from extreme value theory, 
mixture models, computer experiments, and integration of heterogeneous data. Further development of this 
approach would be enhanced by collaborative interactions with experts in specific aspects of mobility such as 
transportation network companies, charging infrastructure, and dynamic systems models for adoption of 
automated mobility technologies. Ultimately, this approach would enable timely analysis and characterization 
of resilience, and proactive planning for mobility systems and associated infrastructure that can respond to 
changing conditions and return to normal operation as quickly as possible. Our approach is intended to 
encourage active probing of systems and examination of flows as different interventions are introduced, 
allowing the system manager the opportunity to experiment with different strategies and see the impacts on 
different variables and metrics associated with understanding resilience.  

Key Publications 
 Wendelberger, Joanne and Sims, Benjamin, “A Preliminary Framework for Investigating Resilience,” 

technical report, Los Alamos National Laboratory, LA-UR-18-21002. 
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 Wendelberger, Joanne and Sims, Benjamin, “Resiliency Modeling for Automated Mobility,” Los 
Alamos National Laboratory, LA-UR-18-22441, poster presented at the Smart Cities Connect 
Conference, Kansas City, Missouri, March 26-29, 2018. 

 Wendelberger, Joanne and Sims, Benjamin, “Resilience for Electrified Vehicles and Automated Mobility 
Districts,” presentation for All-Pillar Call, March 27, 2018, Los Alamos National Laboratory, LA-UR-
18-22557. 

 Wendelberger, Joanne and Sims, Benjamin, “Statistical Resilience Model - SPRINGS,” Los Alamos 
National Laboratory, LA-UR-18-23460, discussion of statistical resilience for the SMART Mobility 
Model Review held at Argonne National Laboratory, April 24-25, 2018. 

 Wendelberger, Joanne and Sims, Benjamin, “Resiliency Modeling for Automated Mobility,” Los 
Alamos National Laboratory, LA-UR-18-22441, poster presented at the Joint Research Conference on 
Statistics in Quality, Industry, and Technology, June 11-14, Santa Fe, New Mexico. 

 Wendelberger, Joanne and Sims, Benjamin, “Resiliency Analysis for Automated Mobility Systems,” Los 
Alamos National Laboratory, LA-UR-18-23459, poster presented at the 2018 EERE Vehicle 
Technologies Office Annual Merit Review, Arlington, VA, June 18-21. 
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Project Introduction 
This joint project between NREL and ANL aims to explore the mobility and energy impact potential of 
infrastructure spatial sensing (such as LiDAR) at critical intersections by enabling connected and automated 
vehicle (CAV) applications such as eco-approach and departure, reducing traffic accidents through increased 
safety, and obtaining vehicle dynamic data at higher resolution than was previously possible. The team has 
built a network of collaborators who are all pursuing this concept in parallel (the University of Nevada at 
Reno, Continental, MioVision, and the University of Tennessee at Chattanooga, to name a few). The 
University of Nevada at Reno (UNR) is collecting data live at an intersection using two overlapping LiDAR 
sensors, and directing the high-bandwidth sensor feed to their data processing research lab. ANL had 
developed a proof-of-concept portable awareness system, which is an exploratory platform with multiple 
sensors (LiDAR, infrared camera, and video) for spatial sensing data collection and future research. NREL is 
also researching and developing the energy equivalence of safety improvements and crash avoidance.  

Objectives  
• Assess the mobility/energy impact potential of spatial sensing (such as LIDAR, RADAR, and 

video/image processing) at critical intersections, through more efficient vehicle/signal coordination, 
greatly enhanced safety, and significantly strengthen observability of all modes and objects.  

• Establish the energy equivalence of safety at signalized intersections. 
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Approach 
• Work with partners to assess the maturity of existing LIDAR/RADAR/image technology (limits and 

future capabilities) to support roadside deployment, object detection, abstraction, and communication.  

• Estimate the energy impact of foreseen enhancements on safety, such as the energy equivalency of 
improved safety from crash prevention, near-misses detection, and prevention. 

Results 
• Assess the maturity of existing infrastructure spatial sensing (LIDAR/RADAR/image) technology and 

partners from academia and industry. When NREL and ANL began this research at the beginning of 
year, the research team was aware of only two initiatives within industry to promote this concept, one 
with the University of Nevada, Reno, and the other with Continental Corp. Over the course of the past 
year, approaches to intersection spatial sensing has blossomed into several industry players, with initial 
deployments. The list of known activity is outlined below, most of which the research team is actively in 
communication with. 

o Academic 

o University of Nevada Reno [1], [2] (MOU with UNR is under legal process at NREL) 

o Sensor Manufacturers (specific to intersections) 

o MioVision (https://miovision.com/) [3] 

o GridSmart (https://gridsmart.com/) 

o Traffic Vision (http://www.trafficvision.com/) 

o System Integration / Demonstration 

o Continental – 2019 demonstration in Columbus [4] 

o Honda - 2018 Marysville, Ohio [5] 

• Additionally, the research team under the leadership of ANL developed an exploratory portable 
awareness system using LiDAR, IR imagery and low-light camera 

o Argonne National Laboratory proof of concept exploratory portable awareness system and data 
collection 

o Platform with multiple various sensors (LiDAR, IR camera, etc.) 

o Exploratory for data collection 

  

https://miovision.com/
https://gridsmart.com/
http://www.trafficvision.com/
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Energy equivalency of improved safety:  Intersections present some of the highest conflict zones and are thus 
highly represented in crash statistics. Improvements at intersections are motivated primarily by safety and 
mobility efficiency. The research team lead by NREL undertook an initiative to bring better understanding of 
the energy consequences of vehicle crashes, including fatal, injury and property-damage only. This paper, 
currently in draft, builds on previous work that estimates the economic impacts. This energy equivalency of 
safety paper (“Explore First Order Approximation of Energy Equivalence of Safety at Intersections”) was 
submitted to ASCE International Conference on Transportation & Development (ICTD 2019) and continues to 
be refined with collaborator input. 

• Energy equivalence of safety at signalized intersections for direct impacts of each crash type: 

o Fatal crash equivalent cost of 87,459 gallons of gasoline 

o Injury crash equivalent cost 2,351 gallons of gasoline 

o PDO crash equivalent cost 388 gallons of gasoline 

Details are illustrated in the table below (DRAFT) 

Table V.6.1 Energy equivalence of safety summary – DRAFT ESTIMATES/RESULTS 

All Roads 

  Fatal Collision Injury Collision PDO 

# of crashes on all roads 30,296  2,969,963 10,565,514 

# of person/vehicles on all roads 
(*) 

32,999  8,504,771 18,508,632 

Total direct cost ($) (**)  $     46,163,000,000   $     124,344,000,000  $71,480,000,000  

Direct cost ($) per crash  $              1,523,733   $                    41,867   $               6,765  

Direct GGE per crash                      87,462                           2,403                       388  

Total indirect cost ($) (***)  $    255,646,000,000   $     338,159,000,000   $                    -    

Indirect cost ($) per crash  $              8,438,276   $                  113,860   $                    -    

Indirect GGE per crash                    484,357                           6,536                         -    

Total GGE per crash 571,819 8,939 388 

Figure V.6.1 Argonne National Laboratory proof of concept exploratory portable awareness system 
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Intersections 

# of person/vehicles of crashes 8,682 4,829,008 10,127,014 

# of crashes equivalence                        7,971                    1,686,345              5,780,930  

% of crashes at intersections 26% 57% 55% 

Total direct cost ($)  $     12,145,000,000   $       69,080,000,000   $ 39,111,000,000  

Direct cost ($) per crash  $              1,523,678   $                    40,964   $               6,766  

Direct GGE per crash                      87,459                          2,351                       388  

Total indirect cost ($)  $     67,261,000,000   $     183,717,000,000   $                    -    

Indirect cost ($) per crash  $              8,438,379   $                  108,944   $                    -    

Indirect GGE per crash                    484,363                           6,253                         -    

Total GGE per crash 571,822 8,604                      388 
 *: For fatal and injury collisions, # of people in crashes; for PDO, # of vehicles in crashes 
 **:  Direct cost includes medical expenses, legal and court costs, emergency service costs, insurance administration costs, 

congestion costs, property damage, losses of productivity, and workplace losses 
 ***: Indirect cost means loss of quality-of-life 
 Gasoline gallon equivalent (GGE) is used to equal the energy quantity of one liquid gallon of gasoline 

 

Conclusions 
• The maturity of existing infrastructure spatial sensing (LIDAR/RADAR/image) technology is quickly 

advancing, much faster than originally anticipated twelve months ago. Initial product offerings from at 
least two companies (MioVision and GridSmart) are showing initial capability. Partners and 
collaborators from academia and industry are publishing results. As an example, both University of 
Nevada, Reno and MioVision have classified ‘near-misses’ from their respect sensor suites, indicating 
ability to spatially assess position and movement of vehicles within field of view. More and more 
companies and universities/institutes are pouring resources into this area.  

• Energy equivalency of improved safety:  Just as a production vehicles have both direct (fuel expended) 
and indirect (included in life-cycle energy analysis) aspects of energy efficiency, so also vehicle crashes 
have both immediate impacts (delay and congestion), direct and long-lasting impacts (loss of 
work/productivity), as well as broader societal impact. Energy equivalence of safety at signalized 
intersections for each crash type have been estimated using economic studies as a basis. Although 
assumptions and equivalencies between economic parameters such and GDP and total US energy 
expenditure are first order estimated, nonetheless, even with large uncertainties, this analysis indicates 
that long term consequences from crashes related to loss of productivity are significant, dwarfing 
immediate concerns of congestion and delay. Gasoline gallon equivalent (GGE) is calculated by the 
national level GDP energy ratio (Conversion ratio = Total energy in BTUs expended during the year / 
National GDP) and then converting it from BTUs to GGE. The research team is currently consulting 
with economic and safety experts related to the validity of the assumptions and equivalencies used in this 
initial effort. 

Key Publications 
 Zhu, Lei, Stanley Young, “Explore First Order Approximation of Energy Equivalence of Safety at 

Intersections,” ASCE ICTD 2019. (IN DRAFT)  
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Project Introduction  
Connected and automated vehicles (CAVs) are increasingly being discussed as the basis for shared mobility 
and on-demand services to replace privately owned vehicles. The rapid growth of Transportation Networking 
Companies (TNCs) and their increasing investment in automated vehicle (AV) technologies attests to this. 
Combining the concepts of TNCs, with AV and on-demand transit services, the term “automated mobility 
district” (AMD) describes a district-scale implementation of CAV technology to realize the full benefits of a 
shared, fully automated vehicle service within a confined region. Figure V.7.1 presents a conceptual depiction 
of the AMD concept.  

Objectives  
• The primary objective of this task is to develop a modeling architecture to quantify the mobility and 

energy benefits of AMDs.  

• In FY18 the focus was primarily on 

o Exploring various simulation packages that would serve the needs of AMD toolkit development 

o Developing intra-district AMD simulation capabilities 

o Reaching out to AMD deployment partners and soliciting data from field deployments 

• The focus of FY19 efforts will be  

o Exercising the AMD toolkit to help inform operations in real-world AMD field tests 

o Development of a module for fleet and route optimization for AMD deployment 

o Integrating AMD toolkit with a regional model to assess inter-regional impacts of shared 
automated vehicles 

 

mailto:venu.garikapati@nrel.gov
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Approach  
Model Description 
The proposed automated mobility district (AMD) modeling and simulation toolkit builds on the Simulation of 
Urban Mobility (SUMO) ―a microscopic traffic simulation suite, and integrates the Future Automotive 
Systems Technology Simulator FASTSim, a vehicle/powertrain simulation tool. In tandem, the toolkit is able 
to provide the AMD’s fuel/energy and mobility impacts of AMDs under various travel demand scenarios. The 
workflow of the AMD simulation toolkit is shown in Figure V.7.2 

Figure V.7.1 Conceptual depiction of AMDs 



Energy Efficient Mobility Systems 

208     V  SMART Mobility - Urban Science (US) 

Using the AMD toolkit developed in FY18, experimental scenarios were tested with different combinations of 
operational variables to provide insights on energy and mobility gains that can be realized in AMDs. 

A hypothetical network containing 13 nodes and 48 links is generated in SUMO to test several AMD 
deployment scenarios (shown in Figure V.7.3). Four Automated Electric Shuttle (AES) vehicles operate “on-
demand” in the hypothetical AMD. This means an AES will be dispatched to pick up a passenger when a trip 
request is made by the passenger (analogous to most elevator controls). Once an AES is dispatched, it will pick 
up and drop off the passenger at the designated AES stop nearest to the traveler’s destination. The AES will 
then wait at that destination stop until another request is made for pickup by another traveler. Two AESs 
operate in the clockwise direction of the loop, while the other two serve the demand in the counter-clockwise 
direction. In this study, the AES seat capacity is one, which means each AES can only take one passenger at a 
time. 

 

 
For the hypothetical network, simulation is carried out for a demand of 300 trips distributed across the 13 
origin-destination (OD) pairs. Within this district simulation, all ODs are within feasible walkable distances, 
and the walk mode is for door-to-door trip completion. The choice set of travel modes encompasses 1) 

Figure V.7.2 AMD Toolkit – Workflow 

Figure V.7.3 (a) A hypothetical AMD network in SUMO and (b) A zoom in on the network to show signals, sidewalk 
lanes and vehicles. [Green lines  Car mode; Yellow lines  Pedestrian mode; Red lines  AES mode] 
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passenger car, 2) AES, 3) walking. Traffic demand is distributed according to a bimodal distribution reflecting 
a morning and afternoon peak hour during a typical day. 

Assumptions 
The following assumptions were made for the preliminary AMD analysis: 

Network: A hypothetical trapezoidal network (shown in Figure V.7.3) is generated in SUMO.  

Travel Demand: The travel demand in the network is exogenous to the model (calculated or determined 
outside the simulation toolkit). For the preliminary analysis, hypothetical traffic demand is generated and 
distributed across the 13 origin-destination (O-D) pairs in the network.  

Mode Share: This initial study intends to understand the mobility and energy impacts of an AMD, so the mode 
shares are “assumed” as shown in Table V.7.1. For a real-world AMD deployment, the mode shares would 
reflect observed data once the shuttles run for a few months in the field.  

 

Table V.7.1  Travel Mode Share of All Scenarios 
Scenarios Car mode Walk mode Automated shuttle mode 

Baseline 70% 30% 0% 

Transitional 60% 20% 20% 

Optimistic 50% 10% 40% 

 

AES Fleet: A total of four automated electric shuttles serve the designated demand in the AMD. This is not a 
limiting factor for the analysis, and the number and seating capacity of shuttles can be increased to cater to 
additional demand as required.  

Vehicle Characteristics: The characteristics of the privately driven cars in the simulation are set to match a 
standard midsize sedan such as the Toyota Camry. This was the most popular sedan by sales volume in the 
United States in the year 2016, and thus representative of an average car. This vehicle has an EPA-rated fuel 
economy of 25 MPG. For the automated shuttle, both a gasoline and an electric powertrain are considered. For 
simplicity, the 2016 Camry is also taken to represent the potential automated gasoline shuttle. The 2016 Nissan 
Leaf is selected to represent the performance of the potential automated electric shuttle. 

Results  
Simulation results for the three AMD scenario runs are illustrated in Table V.7.2.  

Table V.7.2 The Simulation Results for AMD Network Performance. 

Scenario VMT 
(miles) 

VATT 
(seconds) 

VATD 
(miles) 

FC (gal) [gasoline/ 
BEV shuttle case] 

Baseline 128.8 86.5 0.6 5.9 

Transitional 153.8 124.3 0.8 7.0/5.3 

Optimistic 175.7 168.5 1.1 8.0/4.5 
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The reported performance metrics for the AMD include:  

• Vehicle Miles Traveled (VMT)―the sum of all private vehicle and automated shuttle mileage for the 
scenario 

• Vehicle Average Travel Time (VATT)―the average time of travel in vehicle, (does not include 
walking), averaged across private vehicles and automated shuttle trips 

• Vehicle Average Travel Distance (VATD)―the average travel distance (excluding any pedestrian links), 
averaged across private vehicle and automated shuttle trips. 

• Fuel Consumption (FC) in gallons of gasoline across the entire system. 

From the table, it can be observed that compared to the baseline scenario, the transitional and optimistic 
scenarios exhibit an increase in VMT, VATT, and VATD. VMT of transitional and optimistic scenarios 
increase by about 19% and 36% respectively compared to baseline, which can be attributed to automated 
shuttles traveling to the departure stop to pick up a passenger (referred to as overheading), along with the 
assumed travel shifts from walking to automated shuttle mode. Additional empty vehicle deadheading after a 
passenger trip does not contribute to VMT in this analysis as the automated shuttles park at the passenger drop 
off location and wait there until summoned for the next trip. VATT and VATD also see an increase in 
transitional and optimistic scenarios, again due to overheading and reduced proportion of walking mode. For 
the gasoline automated shuttle case, total gasoline consumption increases along with total VMT, but for the 
AES case, the transitional and optimistic scenarios see fuel consumption decrease by 10% and 26% 
respectively. 

Conclusions    
As we move into the era of CAVs, vehicle electrification, and shared mobility in transportation, it is critical to 
identify and explore the optimal confluence of these technologies that maximize mobility while minimizing 
energy consumption. One such idea is that of AMDs which is a district-scale implementation of AV 
technology to realize the full benefits of an on-demand shared automated mobility service within a confined 
geographic region. 

This year’s efforts focused on developing an AMD modeling and simulation toolkit and reports on the 
preliminary analysis results for hypothetical AMD deployment, exercising the toolkit with three scenarios. The 
AMD toolkit is capable of simulating detailed vehicle movements for various operational configurations of 
automated shuttle services including fixed route, on-demand, and mixed services to quantify the mobility and 

Figure V.7.4 A depiction of Greenville AMD network in SUMO  
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energy benefits of AMDs. Work is underway to incorporate the Greenville travel demand and network data 
into SUMO software in order to simulate and inform the operations in Greenville AMD deployments.  

Future research will focus on enhancing the toolkit to integrate and implement different operational 
configurations of AMDs and define and quantify various performance metrics for AMDs, as well as for the 
traditional modes in the simulation (vehicles, pedestrians, as well as buses and other traditional mass transit). 
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Project Focus in FY 2018 
The advances in connected and automated vehicle technologies can be leveraged to efficiently control the 
signalized intersection in an urban environment. Connected and automated environment provides an 
unprecedented environment for traffic state observability in real-time and the connectivity among vehicles and 
infrastructure components such as signal controllers allow the development of data-driven traffic flow control 
schemes. Our focus in FY18 was to utilize the connectivity between vehicles and signal controllers, and the 
data sensing (e.g., Basic Safety Message—BSM and Signal Phase and Timing—SPaT) for developing signal 
control algorithms with mobility and energy goals. This is directly tied with the overarching goals of the 
project: (a) How will traffic signals and sensors shape command and control infrastructure to improve SMART 
mobility? (b) What are the potential gains—mobility and energy—from optimal sensing and control, increased 
observability from CAVs and improved sensor technology? Data-rich environment with connected vehicles 
provides an excellent avenue for executing machine learning based traffic control such as reinforcement 
learning (RL). RL-based techniques are well suited for dynamic environment like the road traffic networks. A 
major advantage can be gained in terms of computational complexity because no optimization is necessary in 
real-time. Further, we also approached the signal control problem from a stochastic distribution control theory 
perspective. The key idea is to use stochastic distribution control theory to develop signal timing control so 
that the traffic flow distribution over a concerned area as uniform as possible, this realizes smooth traffic flow 
over an urban area with minimized energy consumption. The input is the signal timing settings for an 
intersection, and the output is the probability density function (PDF) of the queue length. The controller uses 
the output queue length PDF as a feedback signal and compares it with the target PDF (which is narrowly 
distributed Gaussian with minimum mean value), using such an error and the control algorithm to obtain signal 
timing for the intersection.  

Objectives for FY 2018 
Our objectives for FY 2018 were: (a) to develop signal control algorithms that leverage the connectivity and 
data in an ACES environment to minimize energy consumption from urban signalized transportation networks, 
To execute the algorithms in a simulated environment of real-world signalized corridor and to demonstrate the 
energy reduction benefits, (b) to understand the impact of the market share of CAVs in a mixed traffic 
environment on the performance of the developed algorithms through sensitivity analysis, (c) to identify 
potential sensor technologies that enables the data and communication environment for real-world 

mailto:azizh@ornl.gov
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implementation. These objectives will help us to provide an assessment of the impact of signal control 
optimization in an ACES environment in terms of energy minimization, and mobility improvement and to 
estimate the impact of CAV market-share on signal system performance. 

Approach  
Reinforcement learning based control:  
We have developed reinforcement learning (RL) based algorithms where the signal controllers learn to 
optimize over time through observing the transition of traffic states resulting from exploring and exploiting 
controller settings such as adjusting phase sequences and green durations. The stochastic nature of traffic flow 
in a transportation network makes it particularly suitable for RL-based approach where the solution technique 
does not need any prior information on the system. Compared to actuated and adaptive control schemes, the 
solutions from a RL-based technique can be theoretically proven to be optimal. Further, we integrated energy 
goals into the control objective. Explicit energy minimization objectives are often discouraged in signal 
optimization algorithms due to its negative impact on mobility performance. One potential direction to solve 
this problem is to provide a balanced objective function to achieve desired mobility with minimized energy 
consumption. This research developed a RL-based control with reward functions considering energy and 
mobility in a joint manner--a penalty function is introduced for number of stops. Further, we proposed a 
clustering-based technique to make the state-space finite which is critical for a tractable implementation of the 
RL algorithm. An RL-based algorithm requires essential components--state, action, and reward--to be defined 
specific to the problem at hand. This research developed a decentralized architecture where each agent capable 
of controlling the traffic signal individually without any central supervising agent. Using vehicle to 
infrastructure (V2I) communication, an agent equipped with roadside unit (RSU) collects all the basic safety 
messages (BSM) from approaching equipped vehicles. Next, the agent collects information about the traffic 
states of neighboring intersections using infrastructure to infrastructure (I2I) communication. Finally, the agent 
determines state, action and rewards of the proposed RL algorithm and signal control decisions are made based 
on reward evaluations. 

Stochastic distribution control:  
Traffic flow modeling and control for one-signal corridor based on the stochastic distribution control theory 
are investigated to achieve smooth and uniform traffic flow distribution in the traffic network. In this context, 
we develop static and linear dynamic stochastic distribution traffic queue models to formulate probability 
density function of traffic queue. Stochastic distribution control algorithms are designed to control probability 
density function of traffic queue provided by the stochastic distribution traffic queue model such that it is as 
narrow and as left as possible. And, we propose a recursive input-output traffic queue model which is data-
driven and dynamic in nature to calculate real-time traffic queue using traffic signal timings and loop-detector 
data. MATLAB-based simulations are conducted to support our traffic flow models and control algorithms. 
We developed a stochastic distribution traffic queue model and control for one-signal corridor. We describe 
our stochastic model in terms of probability density function of traffic queue as the output (i.e. traffic flow 
distribution) and ratio of green signal interval to total signal interval as the input (i.e. traffic signal timing). 
This stochastic model can use the real-time data generated by our input-output model so that it can work in 
real-time as well.  

Results  
Results from reinforcement learning based control:  
We implemented the algorithm in a calibrated NG-SIM network within a traffic micro-simulator--PTV 
VISSIM. At first, the calibrated Lankershim Boulevard arterial was trained for 450 times using different 
random seeds. The simulation period for each of these runs was 15 minutes. The rewards and other 
performance metrics were obtained directly from VISSIM. Finally, the Q-table was updated after the 
implementation of the random action. After initial training of the Q-table, the authors explored the network for 
additional 50 runs, each having 15 minutes simulation period. Finally, the Q-table was updated based on the 
rewards obtained from VISSIM. We compared three strategies: A. control delay minimization, B. energy (fuel 
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consumption) minimization, C. Energy minimization with penalty for number of stops made by the vehicles. 
The developed RL algorithm with a flexible penalty function in the reward is expected to achieve desired 
energy goals for a network of signalized intersections without compromising on the mobility performance. The 

normalized reward function is defined as: 𝑅𝑅𝑀𝑀𝐶𝐶−𝐷𝐷𝐷𝐷 = 𝑅𝑅𝑀𝑀𝐶𝐶 − 𝛤𝛤(𝑘𝑘) = 𝑅𝑅𝑀𝑀𝐶𝐶 − 𝜇𝜇 × 𝛾𝛾 exp(𝛿𝛿𝑘𝑘). Where, 𝑅𝑅𝑀𝑀𝐶𝐶 =  
Energy consumption, 𝛤𝛤(𝑘𝑘): exponential penalty as a function of number of stops 𝑘𝑘. 𝜇𝜇 = 23.5,   𝛾𝛾 ∈ [0.1,7.5], 
and 𝛿𝛿 = 0.0486. Figure V.8.1 shows the trends of trade-off between mobility and energy performance metrics 
for the Lankershim Boulevard network. With higher value of  𝛾𝛾, the mobility performance improves.  
Further, we conducted statistical tests to justify the findings using a sample of 33 VISSIM simulation instances 
each with a different random seed. The mean values of travel delay, stopped delay, travel time, system-level 
travel time, and number of stops are reported at 95% confidence interval assuming Student t distribution with 
unknown standard deviation for the tests. Figure V.8.1 reports the results and range of the metrics. 

Table V.8.1 Statistical Verification of Results 

Figure V.8.1 Trade-off between Mobility and Energy for Different Penalty Values 

Performance Metrics Strategy-A Strategy-B Strategy-C 

Average delay* 
(seconds) 

Mean 42.47 81.97 59.58 

Range 41.6 < 𝜇𝜇 < 43.4 70.3 < 𝜇𝜇 < 93.7 55.1 < 𝜇𝜇 < 64.1 

Completed trips* 
Mean 918.09 488.09 849.73 

Range 912.6 < 𝜇𝜇 < 923.6 451.5 < 𝜇𝜇 < 524.7 833.7 < 𝜇𝜇 < 865.8 

Number of stops** 
Mean 1914.64 2332.64 2260.48 

Range 1877.2 < 𝜇𝜇 < 1952.1 2041.5 < 𝜇𝜇 < 2623.8 2147.0 < 𝜇𝜇 < 2373.9 
Average queue 

time** 
(seconds) 

Mean 28.56 118.48 51.85 

Range 27.9 < 𝜇𝜇 < 29.3 108.2 < 𝜇𝜇 < 128.8 46.9 < 𝜇𝜇 < 56.8 

System travel 
time** 

(seconds) 

Mean 73558.85 124355.56 95392.92 

Range 72690.3 < 𝜇𝜇 < 74427.4 119117.3 < 𝜇𝜇 < 129593.8 90511.7 < 𝜇𝜇 < 100274.1 

Fuel-cons** 
(gallons) 

Mean 11.12 5.33 9.39 

Range 11.0 < 𝜇𝜇 < 11.3 4.9 < 𝜇𝜇 < 5.72 9.2 < 𝜇𝜇 < 9.5 

* for all the completed trips; **for all vehicles including the remaining vehicle in the network  
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Preliminary results from stochastic distribution control: 
Based upon the stochastic control framework and using the equivalent transfer function model for the queue 
length with the input signal as the ratio of the green light for a fixed cycle case, a B-spline stochastic 
distribution model has been formulated using data generated from the transfer function model. Both static and 
dynamic models have been obtained and closed loop simulation for a single intersection has been carried out, 
where the purpose is to control the signal timing so that the probability density function (PDF) of the queue 
length (as a random process) is made to follow a target PDF shape. For the static model, an equivalent B-spline 
function model that approximates the queue length PDF has been obtained. For these purpose, 20 weights have 
been selected and their trained values are listed in the following table. These weights illustrate how the input 
signal timing (i.e., the green light ratio) is related to different degree of impact onto the queue length PDF [3], 
where for different input green signal period from 20 secs to 29 secs the corresponding row is the weights 
related to the B-spline function approximation.  

Table V.8.2 The Weights Matrix for the Static B-spline Queue Length PDF Model 

 
Using these weights to represent the queue length PDF for the static model, an optimal green light ratio has 
been obtained and used to control the signal timing at the concerned intersection. The simulated intersection on 
the approaching queue length PDF responses are given in Figure V.8.2, where the top figure shows the target 

Figure V.8.2 Target and Actual Queue Length PDFs for Static B-spline Model Based Control 
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queue length PDF and the bottom figure gives the actually controlled queue length PDF. It can be seen that 
desired results have been obtained as the queue length PDFs are dynamically approach to a narrowly 
distributed uniform distribution along with the progress of the time. As for the dynamic B-spline model, the 
method in stochastic distribution control theory has been used to establish the required closed loop control 
algorithm and the closed loop simulation results are given in the following figure, where it can be seen again 
that a desired results have been obtained (More details can be found in [4]). 

Preliminary results for collaborative fault tolerant control for non-signalized intersection with 100 CAVs 
Fault diagnosis and collaborative tolerant control has also been preliminarily developed for 100% CAVs 
penetration. Indeed, with the potential of increased penetration of connected autonomous vehicles (CAVs) in 
the future, intersectional signal control faces new challenges in terms of its operation and implementation. One 
possibility is to fully make use of the communication capabilities of CAVs so that intersectional signal control 
can be realized by CAVs alone – this leads to non-signalized intersection operation for traffic networks.  
In this part, the collaborative fault tolerance functionality has been developed at CAVs operational level in 
response to possible individual vehicle faults, where the research question is how other healthy CAVs can be 

Figure V.8.4 Fault Diagnosis Results and the Guarantee of Safe Distance between Any Two CAVs 

Figure V.8.3  Response Plot of the Queue Length Dynamics for a Single Intersection Control 
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controlled to smoothly and safely pass through the concerned intersection when there is a fault a CAV. In this 
work, a detailed modeling using multi-agent-based approach has been formulated together with the 
construction of fast fault diagnosis and tolerant control algorithms. A nonlinear optimization problem has been 
formulated that can maximize the passing through speed of other healthy CAVs under a set of constraints on 
the minimum distance safety requirement. Figure V.8.4 show the preliminary results on single intersection 
collaborative fault tolerant control, where the desired fault diagnosis result has been obtained and the safe 
distance of any two CAVs can be always guaranteed during the control of the CAVs set-point on positions and 
speed (more details can be found in [5] and [6]). 

Conclusions 
To summarize, the achievements in FY 2018 are: 

C. We have developed a reinforcement learning algorithm to minimize energy consumption from 
signalized intersections leveraging data availability in a CV environment, a multi-reward learning 
approach to account for the trade-off between mobility and energy performances at signalized 
intersections. With the balanced reward function accounting for energy and mobility, it is possible 
to achieve desired traffic state with minimal energy and maximized mobility.  

iii.  The algorithm is tested in a simulation environment with calibrated real-world signalized 
intersections to assess the mobility and energy impacts 

iv. The data-rich CV environment provides the suitable platform to implement learning-based 
algorithms that would be well suited for a stochastic traffic environment. The ability to learn 
from transitions in traffic states makes RL-based control more flexible and efficient 
compared to existing fixed, semi-adaptive, and actuated control schemes. 

D. We developed the data-driven and dynamic recursive input/output traffic queue model to calculate 
real-time traffic queue specifically during red, green, and yellow signal periods. In this model, we 
make use of traffic signal timings and data from pair of loop-detectors such as number of vehicles 
entering and leaving the corridor along with their speeds.  

v. We also designed the proportional controller along with actuator and saturation to control 
the input-output model such that the traffic queue vector can be maintained at an appropriate 
reference queue.  

vi. Further we developed the stochastic control algorithms to control static and linear dynamic 
versions of stochastic distribution traffic queue model such that the probability density 
function is as narrow and as left as possible. Our MATLAB simulation results confirm this 
convergence of actual probability density function using control algorithms. 

Key Publications    
 SMA B. Al Islam, H. M. A. Aziz, H. Wang, and S. Young, “Minimizing energy consumption from 

connected signalized intersections by reinforcement learning” Accepted in IEEE ITSC 2018 conference, 
Maui, Hi, November 4-7, 2018.  

 SMA B. Al Islam, Ali Hajbabaie, H. M. A. Aziz. A Real-time Network-level Traffic Signal Control 
Methodology With Partial Vehicle Information. Accepted for presentation in the 2019 Transportation 
Research Board Annual Meeting. Paper no. 19-02829 

 Wang, Hong, H. M. Aziz, Stanley E. Young, and Sagar Patil. "Control of networked traffic flow 
distribution: a stochastic distribution system perspective." In Proceedings of the 1st International 
Conference on Internet of Things and Machine Learning, p. 37. ACM, 2017. 

 Wang, Hong, H. M. Aziz, Stanley E. Young, and Sagar Patil, Optimal operational control for signalized 
intersections for smooth traffic flow with minimized energy   consumption, podium at ASCE 
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International Conference on Transportation and Development, Podium Presentation, Pittsburgh, July 
2018. 

 Wang, Hong., H. M. A. Aziz and S. Young, Non-Signalized Intersections Control – a Collaborative 
Fault Tolerant Control Perspective, ASCE International Conference on Transportation and Development, 
Podium Presentation, Pittsburgh, July 2018. 

 Wang, Hong., Keynote presentation, Collaborative fault tolerant control for complex systems, IFAC Safe 
process August, 2018, Poland, 2018 (this is the largest conference on fault diagnosis and tolerant control 
organized by International Federation on Automatic Control taking place once every three years) 
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Project Introduction 
The US roadways are critical to meeting the mobility and economic needs of the nation. The United States uses 
28% of its energy in moving goods and people, with approximately 60% of that used by cars, light trucks, and 
motorcycles. Thus, improved transportation efficiency is vital to America’s economic progress. The increasing 
congestion and energy resource requirements of transportation systems for metropolitan areas require research 
in methods to improve and optimize control methods. Coordinating and optimizing traffic in urban areas might 
introduce hundreds of thousands of vehicles and traffic management systems, which can require high-
performance computing (HPC) resources to model and manage. In this work, we seek to use machine learning, 
computer vision, and HPC to improve the energy efficiency aspects of traffic control by leveraging 
GRIDSMART traffic cameras as sensors for adaptive traffic control, with a sensitivity to the fuel consumption 
characteristics of the traffic in the camera’s visual field. Traffic control use cases using reinforcement learning 
have been published and achieved good results. Surveys from DOE national laboratories estimate that the fuel 
cost of idling is six billion gallons wasted annually [1]. GRIDSMART cameras—an existing, fielded 
commercial product—sense the presence of vehicles at intersections and replace more conventional sensors 
(such as inductive loops) to issue calls to traffic control. These cameras, which have horizon-to-horizon view, 
offer the potential for an improved view of the traffic environment, which can be used to generate better 
control algorithms. 

Objectives  
There are two primary objectives in this project. The first is to develop algorithms that essentially teach 
GRIDSMART cameras to estimate fuel consumption of vehicles in their visual field. The second is to use this 
capability to improve energy efficiency by changing timing and phasing of traffic lights, while minimizing 
penalties to throughput and mobility. HPC can play a role in both objectives by allowing more complete 
exploration of the machine learning architectures, parameters, and methods that enable the capability to 
determine vehicle types. HPC-based simulations that model traffic and capture the performance of 
GRIDSMART cameras in estimating the visual field (extrapolated from real data using developed algorithms 
and models) serve as training and testing data for reinforcement learning algorithms that learn policies for 
traffic camera control. The key outcome of this work will be control strategies generated through a novel 
reinforcement learning framework, with performance measured through simulations and validation data and 
oriented toward the GRIDSMART sensing capability. Other important outcomes include projections of the 
required sensing capabilities to achieve these control strategies. This will pave the way for future research to 
expand the number of studied intersections, investigate the potential of wide-range coordinated control, add 
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naturalistic driving study data for higher resolution and simulation detail, extend sensing capabilities to other 
technologies such as RFID/cellular and/or connected vehicle technology, and incorporate direct vehicle 
emissions sensing to minimize cumulative emissions measured. 

Approach 
The GRIDSMART cameras will be trained to estimate fuel consumption by using a ground-based camera 
system located under a GRIDSMART instrumented intersection. ORNL has three GRIDSMART cameras on 
site, and these will be used to collect data. The simultaneous capture of the ground-based camera image with 
the GRIDSMART camera image will allow a view from the “GRIDSMART perspective” along with a view 
from the ground camera. The latter will then be classified into a vehicle class (i.e., make and model), ideally 
using a commercial application procured for this purpose. ORNL will leverage an existing, ongoing project 
that is collecting data on the reservation as part of another project. The data used here will allow the creation of 
a training set of images—from the unique GRIDSMART view—that will be used to create a machine-learning 
model to classify vehicle make and model and therefore estimate fuel consumption. There are contingencies 
built into this process. First, there could be better methods to estimate the fuel consumption that simply 
estimating the make and model, and these approaches will be explored. Second, if sufficient data is not 
collected, an estimate will be made using ground data from existing data sets [2]. Finally, we will also attempt 
to leverage coarse statistics such as vehicle size to determine whether there can be a reasonable substitute for 
true vehicle classification. The approach is shown in Figure VI.1.1. 

 
The GRIDSMART cameras will be trained to control timing and phasing for improved fuel efficiency by 
reinforcement learning and simulations (on HPC). The HPC simulations will create derived training, 
validation, and testing data to explore control strategies based on reinforcement learning (RL) with automated 
vehicle identification algorithms at varying resolution using the Participant video data. The control strategies 
development will start with single intersections and expand to multiple intersections with studies on scalability 
and impact. The HPC simulations will be performed on HPC, but with a goal of producing control strategies 
that can be deployed in environments with a small computational footprint such as a distributed network of 
GRIDSMART cameras. RL finds solutions to problems where an actor or set of actors learn to respond to 
dynamic environmental conditions to achieve an overall optimized solution such as winning a game or 

Figure VI.1.1 Data collection to estimate fuel consumption using GRIDSMART cameras. GRIDSMART 
installations at ORNL will be used in conjunction with a ground imaging system under development for 

another project. The simultaneous captures will be used to produce a library of images suitable for training 
a machine learning algorithm to estimate fuel consumption. 
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controlling a process. In this collaboration, the actions are the activation of one or more traffic signals in 
response to sensed vehicle types (and corresponding fuel economy metrics), vehicle dynamics, and throughput 
objectives. The optimization goal is a combination of throughput and energy efficiency. The huge input space 
(combinations of vehicle types, vehicular dynamics, and multiple signal lights) represents a large dimensional 
problem that will require HPC for simulations and deep RL for solutions. Our initial planned approach is to 
develop a custom simulation environment for the vehicle simulation, given the scope of the proposed work, as 
a simple proof of concept. 

Results  
We created algorithms and a process to capture simultaneous GRIDSMART images and ground imager system 
images, align them, and label them. GRIDSMART data at the ORNL locations must be captured using a USB 
hard drive plugged into the controller. GRIDSMART personnel helped ORNL confirm the method for this 
capture and also helped ensure the controllers were time synchronized, which was critical to use timing data to 
correlate the ground imager captures with the GRIDSMART data. Computer vision algorithms were developed 
to segment the vehicles from the background using a process similar to GRIDSMARTs implementation. In 
Figure VI.1.2 a simultaneous capture with the GRIDSMART imager and the ground truth imager is shown. 
The commercial application labeled this ground capture as a “Ford Transit Connect,” which is inserted into the 
image for illustration in the upper left corner. Multiple images such as these have been collected and will 
continue to be collected into 2019. As of the end of September 2018, approximately 12,600 vehicles have been 
collected. We note that a percentage of these have ground truth labels spanning 474 classifications. Although 
this is substantial, more data is needed to create deep learning models for effective classification, so continuous 
collections are ongoing to expand the set. 

Given that more data is needed to effectively create a model for vehicle classification from the GRIDSMART 
view, we used two contingencies to estimate vehicle classification performance for our simulations. First, we 
used a table of vehicle types and the length and width estimates of the vehicles to try and estimate vehicle fuel 
efficiency using a linear regression model. Second, we used an open-source database of vehicle images to 
estimate classification performance and its impact on fuel efficiency estimation. (Note that for our initial 
analysis we did not include large commercial trucks, which will have a definite impact on the system 
performance when we are able to include them.) The estimated fuel economy with this model and perfect 
measurements is RMS error of 2.85 MPG, but conversations with GRIDSMART indicated that there can be 
substantial error in such a measurement from any computer vision platform. We found that the regression 
model rapidly degrades with small measurement error; even a 500 mm mean error creates an RMS error of 
approximately 5.8 MPG. Therefore, we believe the utility of a measurement-based system will largely be 
found in discriminating commercial trucks (particularly “18 wheelers”) from passenger vehicles. 

Our second effort used the dataset from [2]. Although this was taken from the “ground view,” we believe it 
serves as a good estimate for what might be possible with a full data set from the GRIDSMART vantage. We 
retrained a convolutional neural network based on the Alexnet topology [3] to act as a vehicle make/model 
classifier. This was inspired by the example of [2], which served as a good baseline for the exercise. We 
trained using 70% training data, 15% validation data, and 15% testing data and evaluated our performance on 
the test data set aside. We also degraded the image resolution to simulate actual degradation of the image 
quality from the GRIDSMART imager at ORNL, at ranges of 0 m, 20 m, 40 m, and 60 m. Finally, we used the 
classifier to estimate fuel efficiency visually by assuming if we successfully identified the make and model of 
the vehicle, our error was 0 MPG; otherwise, we used the erroneous classification as the MPG and measured 
the RMS error between this estimate and the actual value. The results are summarized in Table VI.1.1. An 
example of a tracked vehicle from 60 m to the stop light is shown in Figure VI.1.3. 
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Table VI.1.1 Estimates of Fuel Economy using CNN Baseline Model 
Range to Vehicle (m) Classifier Accuracy (%) RMS MPG Error 

0 33 3.5 

20 16 5.1 

40 3 6.7 

60 1 10.0 

 

  

Figure VI.1.2 GRIDSMART capture (overview) with simultaneous ground imager collection (bottom left). The 
commercial application labeled the ground imager data as a “Ford Transit Connect,” which has an 
estimated fuel efficiency of 28 MPG. The bottom right depicts an image of the same vehicle, found 

independently, confirming this labeling. Using this and many more captures we can begin to teach the 
GRIDSMART cameras how to estimate vehicle fuel consumption. 
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Given the error based on the make and model, we are interested in determining whether there are better 
methods for vehicle classification that can be more robust to RMS estimates. These include estimating the 
length and width with convolutional neural networks (CNNs) and developing a topology that focuses on 
improving the overall MPG estimates. At the end of September 2018 we used the MENNDL processing engine 
[4] on ORNL’s Titan supercomputer to attempt to evolve a better topology for fuel efficiency estimates. Those 
initial results were indeterminate, but we plan to continue this effort in FY 2019, leading to a role for HPC in 
the actual first objective for the project. 

Conclusions  
In this period of performance, we have identified data sources at ORNL and successfully collected camera 
images with the assistance of GRIDSMART. The data has been correlated with ground-level collections, and 
we have used a commercial application to classify the vehicles, allowing us to begin building a data set for our 
first objective. We have developed and deployed computer vision algorithms to segment vehicles from the 
background, which allows us to capture a view of the identified vehicle type from multiple ranges from the 
camera. Vehicle collections are ongoing and are expected to continue through the duration of the work with 
weekly data pulls. Given the limited scope of the project, we took the approach of having contingencies for our 
estimation method. Estimates based on vehicle size for passenger vehicles can produce a good estimate of fuel 
consumption characteristics, with RMS error under 3 MPG, but these estimates are susceptible to error. We 
believe relying on vehicle size estimates will still be beneficial when we consider commercial vehicles, which 
are typically larger and much less fuel efficient. We have also elected to project an estimate of classification 
performance using an open-source data set, with an estimated RMS error in fuel consumption of 3.5 MPG for 
noncommercial, passenger vehicles at close range with degradation as the range increases. We used the 
MENNDL HPC algorithms to attempt to improve the CNNs that estimate fuel consumption, with limited 

Figure VI.1.3 Example of an actual tracked vehicle from the ORNL GRIDSMART camera. The image 
degradation due to resolution and the fish-eye lens is profound at longer distances and degrades 

classifier performance, as shown in Table I.1.1. 
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success in this performance period but with more work to be attempted in FY 2019. Finally, our simulation 
efforts will be our primary focus in FY 2019, with three potential approaches: a cell transmission model, an 
open-source traffic simulator, and a simplified custom simulator. 

Key Publications  
None to date. 
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Project Introduction 
Traffic planners often use some instantiation of a static traffic assignment problem to estimate traffic states in 
their cities. To accommodate changes in the demand profile over an entire day, the problem might be broken 
up into time slots of interest and static traffic assignment solutions are run for each slot. Example time slots are 
early morning, morning rush hour, mid-day, evening rush hour, late evening. Because of the complexity of the 
network and the scale of the demand, these models often take many hours or perhaps even days to run.  

The purpose of this project is twofold: 1) leverage High Performance Computing capabilities to reduce the 
computing time associated with running these models on urban scale problems, and 2) examine the energy 
impact of urban-scale traffic by developing and implementing a scalable assignment model that optimizes for 
fuel consumption. The energy optimization function can then be compared to the typical travel time 
optimization that is traditionally used in traffic assignment models to determine real-world impact of 
considering fuel consumption in system level traffic control. The City of Los Angeles, CalTrans and the UCB 
Connected Corridor Program are providing the modeling expertise and feedback for this effort. HERE 
Technologies is providing urban-scale GPS device data to inform our modeling approach. 

This work will contribute to LBNL’s efforts to develop new processes, analytical tools, program designs, and 
business models to advance the state of the art in next-generation sustainable transportation solutions. 

Objectives 
The work proposed for this project will provide a simple but ambitious proof of concept that traffic assignment 
and optimization models can be efficiently implemented on HPC platforms. The goal of the project is to 
provide a computational framework capable of ingesting urban-scale demand data and produce an optimized 
network loading estimate from the data. The models will include traditional static user equilibrium, as well as a 
dynamic traffic assignment model capable of handling time varying components, e.g. network variations 
through the day, special events and other dynamic phenomena. The project will follow the steps outlined 
below.  

1. Formulation of a processing pipeline to handle map data and demand data in an HPC setting. This 
involves creating a common mechanism for ingesting map data at scale on distributed platforms and 
implementing distributed models with varying demand data profiles. At the end of the work, the success 

mailto:jfmacfarlane@lbl.gov
mailto:wangbin@lbl.gov
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Energy Efficient Mobility Systems 

226     VI  High Performance Computing and Big Data 

of this step can be demonstrated by swapping two different models and two different demand data types 
at very little set up cost and running both at urban scale.  

2. Implementation of at least two models at urban scale, one static (i.e. user equilibrium or game theoretic 
extension), and one dynamic (i.e. dynamic traffic assignment capable of handling network state aware 
routing). These two models will be demonstrated at scale on the entire LA Basin or a similar large-scale 
network.  

3. Derivation of an improved energy optimization function, that can be mathematically proven to 
converge with a unique solution, will be posed and integrated into the optimization code for travel 
assignment. 

4. Benchmark data scenarios. The effort will be showcased by demonstrating HPC computing 
capabilities on a suite of demand data (provided to us by SCAG and in collaboration with LA Metro). 
With these different demand data files (for example corresponding to nominal days, weekends, special 
events, perturbations such as weather, fires etc.), the HPC platform will be used to demonstrate our 
computational abilities in scenarios conceived and reviewed with LA Metro.  

Approach 
The approach was to begin with a traditional static traffic assignment model in which the routing for all origin 
and destinations are computed in parallel on high performance computing facilities. Convergence of the 
numerical methods rely on the solution of convex programs, or extensions of these. This step demonstrates the 
ability to parallelize the Frank Wolfe algorithm. Implementation of the traffic assignment problem on a large-
scale network follows this initial demonstration. Introduction of a fuel optimization focus is then integrated 
into the implementation by modifying the optimization function to include data-driven models from real-world 
chassis dynamometer test data. The final step will be to address the dynamic traffic assignment problem 
through iterative static traffic assignment solutions with high performance simulation capabilities. 

A small and well researched part of the LA Basin, known as the 
Connected Corridor, that provides detailed demand data was selected 
as the initial demonstration area for a distributed traffic assignment 
solution. The road link/intersection network for this area of interest is 
show on the left. A Frank Wolfe algorithm is used for implementing 
this particular traffic assignment problem when optimizing travel time. 
This code was further developed to include the energy optimization 
case. The proposed energy model is a combination of the CMEM fuel 
consumption model [1]. with a traditional BPR function. To ensure 
convergence, the speed – fuel consumption curve was slightly adjusted 
to make the curve convex which allows the gradient descent method to 
converge. 

This geospatial area represents 28,000 road links. A demand model of 
100,000 Origin/Destination pairs from the SCAG demand profile are 

applied to this road network. Note that a static assignment does not deal with the dynamic behavior that results 
from network dynamics, it simply assigns an O/D routing solution that minimizes travel time for all mobile 
entities so that no driver can unilaterally reduce his/her travel costs by shifting to another route. This is often 
referred to as the Nash Equilibrium. 

To extend our optimization focus further, we also included a notion of system optimization in context of these 
two different objectives. Consequently, four key cases are the subject of the investigation: 

1. Energy optimized at the system level 

2. Energy optimized selfishly at the vehicle level 

Figure VI.2.1 LA Basin road 
link/intersection network 
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3. Travel time optimized at the system level 

4. Travel time optimized selfishly at the vehicle level. 

With these four cases implemented on a small-scale network the next step it to address larger scale road 
networks and dynamic assignment models. 

In order to focus on pragmatic results that can impact city level government, existing infrastructure from 
another VTO supported program - Big Data Solutions for Mobility Planning – was leveraged and extended for 
this program. An urban scale simulation program that has been implemented on HPC, called Mobiliti, had 
previously built an infrastructure for ingesting large-scale demand models and urban-scale road networks. As a 
part of the Mobiliti simulation work an efficient network routing algorithm was also implemented. This 
ingestion infrastructure and the routing algorithms were integrated into a Frank Wolfe solution. The Mobiliti 
routing solution optimizes the compute time and is capable of identifying optimal routes through the network 
instead of approximate solutions, which are often used to reduce computational loads. With this infrastructure, 
a processing pipeline is in place for this project that provides ingestion of urban-scale demand profiles and 
networks and high-speed routing capabilities. 

Instead of optimizing the system based on the travel time, we extended existing algorithms for the traffic 
assignment problem (TAP) with new objective functions to incorporate vehicle fuel consumption. Specifically, 
we use a vehicle fuel consumption curve, i.e. fuel consumption rate vs. speed curve from the developed afore-
mentioned data-driven CMEM [1] energy models. We conducted multiple experiments to investigate the 
patterns of the four different traffic assignment methods, i.e. time-based user-equilibrium (UET), time-based 
system-optimal (SET), fuel-based user-equilibrium (UEF) and fuel-based system-optimal (SEF). Preliminary 
visualization programs were developed to perform exploratory analysis on these four different cases. The 
procedures to solve this problem on the supercomputer Cori is as follows: 

Results 
The figures below show the results of these optimizations. Links that represent the top 1000 flow values are 
shown with blue at the lower values and green/red as the higher values. Each optimization focus shows a 
variation in flow as a result of the optimization. 

Figure VI.2.2 ETAP Approach Overview and Mathematical Formulas 



Energy Efficient Mobility Systems 

228     VI  High Performance Computing and Big Data 

 

Figure VI.2.3 Flow Impact Due to Different Optimization Solutions 

Typically, cities are interested in optimizing travel time. Realizing that travel time optimizing is usually 
accomplished by selfish routing – e.g. a traveler will pick the travel time that is shortest for their own goal – 
we provide a view that is normalized to this particular perspective. The figures below show how travelers are 
impacted for each specific case in terms of distance traveled and travel time.  

 

Figure VI.2.4 Distance Impact on Travelers Due to Different Optimization Solutions:  Normalized to User Equilibrium Travel 
Time 

The peaks in Figure VI.2.4 represent travelers that experience no impact in these scenarios. The tails of the 
graphs show the percentage distance impact from their path if this were optimized for travel time only. 

Total vehicle miles traveled for each case is shown below with User Equilibrium that is optimized for fuel 
consumption results in the lowest vehicles miles traveled. 
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Figure VI.2.5 Difference in Vehicle Miles Traveled with respect to User Equilibrium Travel Time Optimization 

In addition to distance, travel time impacts were also determined and are shown in the figures below. As 
expected, travel time suffers if alternate optimization solutions are considered. 

Similar to the distance impacts, the peaks in Figure VI.2.6 represent travelers that experience no impact in 
these scenarios. The tails of the graphs show the percentage travel time impact from their path if this were 
optimized for travel time only. Clear from this analysis is the complexity of the tradeoffs in transportation 
system optimization solutions.  

 

Figure VI.2.6 Travel Time Impact with Respect to User Equilibrium Travel Time Optimization 

Our next step was to extend this model to address a much larger, urban-
scale model. A network and demand model that provides a foundation 
for research work at VTTI {ref} is being integrated into the 
infrastructure. This model is based on the HERE Technologies map that 
is a high-quality representation of the Los Angeles network. As this is 
being implemented, an alternate urban-scale network for the Bay Area 
was investigated. 

The Bay Area network has 2 million road links and the traffic demand 
includes 22 million origin-destination pairs. The preliminary 
performance results of a total solving time of 45 mins, was implemented 
on the LBNL Cori supercomputer with a single computing node and 64 
threads. Figure VI.2.7 indicates the highest flow links for a UET 
solution. An important note is that the compute time for this solution is 
significantly lower than any traffic assignment solutions at this scale. In 

Figure VI.2.7 Bay Area Network with 
highlighted highest flow links for UET 

solution 
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fact, due to the computational loads current solutions break the problems into smaller time scale solutions and 
still might, in the best case, run in a compute time on the order of many hours. The figure at the left shows top 
5000 Flow Links in a UET optimization scenario. 

To initiate a discussion of metrics associated with control of an urban-scale fleet, we also show the network 
usage for our four optimization cases. We wish to explore how optimization drives network use. This is 
important if we wish to consider how to best use our available network resources. Note that the larger scale 
urban network of the Bay Area that contains bridges and reduces the connectivity among regions significantly 
changes the direction of impact on VMT. Once again demonstrating the complexity of tradeoffs in 
transportation system planning and optimization. 

 

Figure VI.2.8 Metrics to Consider for Urban-Scale Fleet Level Optimization 

Conclusions 
The complexity of road network connectivity and demand modeling dynamics has long been the challenge for 
urban planners and urban modeling and simulation research. From a practical standpoint, first order estimates 
are currently being used to predict the energy impacts of emerging mobility solutions. For example, the impact 
of CAVs on VMT and energy footprint have been estimated based on census data and statistics of travel 
behavior. HPC, data science and advanced modeling, will allow DOE to develop the ability to perform more 
realistic and detailed computations. Such capabilities are essential, as the complexity of the transportation 
infrastructure cannot be aggregated and comprehensively modeled mathematically. As such local/regional, 
State, and Federal level will need to rely on models that can be considered at a granular level, yet still at scale. 
This initial work has shown the complexity of the tradeoffs associated with optimizing traffic assignment. 
With HPC, we are able to investigate scaled optimization scenarios with a compute time on the order of less 
than an hour of which will enable cities to reimagine their opportunities to offer their citizens and businesses 
better environments in which to live. 
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Project Introduction 
The purpose of this program is to develop the data science and HPC supported computational framework 
needed to build next-generation transportation/mobility system models and operational analytics. In order to 
represent real-world urban systems, the models and analytics must scale both in spatial and temporal 
complexity. We will build on previous work in transportation systems, electrical grid analytics, and 
atmospheric modeling that has been developed within the partnered laboratories.  

This work will focus on four key objectives that underlie critical transportation modeling challenges:  

• Develop transportation system modeling approaches that permit parallel implementation or are limited 
by computational complexity and can be implemented on HPC,   

• Develop methods for capturing and adjusting for data velocity and veracity across both temporal and 
geospatial scales,   

• Understand the appropriate role of machine learning, agent-based models, and streaming analytics 
including feedback mechanisms, extensibility, and propagation of data veracity through those systems, 
and   

• Develop mechanisms for semantically tuning lower level learning systems in order to create robust 
automated solutions. 

HERE Technologies is providing urban-scale GPS device data to inform our modeling approach. 

mailto:jfmacfarlane@lbl.gov
mailto:erask@anl.gov
mailto:David.Gotthold@pnnl.gov
mailto:David.Anderson@ee.doe.gov
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Objectives 
By leveraging high-performance computing and big data analytics we will further our understanding of 
transportation systems. Specifically, current transportation planners in urban areas do not have adequate tools 
for understanding the complex dynamics of their cities. Our objective is to focus on creating an ability to 
rapidly model urban scale transportation networks using real-world, near real-time data to optimize traffic for 
mobility, energy and productivity. Specific goals include: 

• Learn patterns in the real-world data to inform our modeling with the goal of understanding how to 
respond to transient events such as accidents, emergency response and transportation network changes 

• Investigate the drivers of those patterns and how we might impact those patterns and optimize on energy 
versus traditional throughput models 

• Develop control ideas for large-scale urban transportation networks through tractable computational 
simulations that can describe emergent behavior of vehicle dynamics 

• Provide urban scale modeling tools that can integrate into urban planning and design processes and tools. 

Approach 

Project Tasks 
 

1. Define Appropriate Role of HPC in Transportation Planning 

o Determining the best use of HPC capabilities in the Transportation Planning field. Initial focus was 
on establishing HPC projects at three labs. Follow on focus is to establish relationships with Cities 
to confirm that the activities of the project will be valued by actual planning operations. 

2. Automated Collection, Modeling and Validation of Data Using HPC 

o This task focuses on the real-world data. The data will eventually come from the Connected 
Corridor program supported by CalTrans in Los Angeles. Initial focus was to catalog available 
data, establish NDAs for data access, and send sample data sets to researchers.  

o Follow on focus:  

o Machine Learning of Geospatial Temporal Data 

o Probe Data Veracity 

o Data Fusing and Modeling 

o Semantic Modeling 

o Demand Modeling 

o Model Validation 

3. Develop HPC Network Models 

o This task focuses on the modeling of urban scale transportation networks. Initial focus was to stand 
up some agent -based models to investigate emergent behavior and traditional traffic assignment at 
scale. The goal of this work is to build models that can scale to a full urban environment. This 
means realistic vehicle volumes (e.g. 7-8 M vehicles for the Bay Area) and a full-scale link/node 
network (e.g. 2 M links and 1.1 M nodes). Our objective is to use HPC to run these simulations in 
a significantly shorter time than current tools. Our second objective is to compare modeling 
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approaches. For example, compare and cross-validate traffic assignment models, agent-based 
models and microsimulation models. Our third objective is to seek out reasonable travel demand 
models that have been validated by city governments as input to these models. Once our models 
are validated, our final objective is to evaluate the possibility of running our models on HPC and 
generating enough data to then apply machine learning to the output of the models. The successful 
completion of this step would then allow for city models to be shared that may not need HPC to 
run in a reasonable time. 

Follow on focus: 

o Traffic Assignment with Energy Optimization 

o Parallel Discrete Event Simulation 

o Machine Learning of City Models 

o Model Validation 

 
1. Couple Data Ingestion into Modeling Platform 

Define a common platform for the data ingestion and modeling tools. This includes data ingestion and 
preprocessing methods for raw data cleaning, error detection and correction, and missing data imputation  

Table VI.3.1 details the responsibilities and the staffing for each task. The machine learning (ML) activities for 
geospatial temporal data and energy modeling are collaborative efforts between ANL and LBNL. 

Table VI.3.1 Core Tasks and Associated Lab Team Responsibilities 
 LBL ANL PNNL 

Task 1: Define 
Appropriate Role of HPC 
in Transportation 
Planning 

• Identify key HPC 
Technology Gaps 
Jane Macfarlane 

  

Task 2: Automated 
Collection, Modeling and 
Validation of Data Using 
HPC 

• Define and Access CC 
data 

• Define Data Veracity 
Analytics 

• Model Validation 
• ML of Geospatial     

Data 
• Semantic Modeling 

Jane Macfarlane; Marta 
Gonzalez; Brian Gerke; 
Ling Jin; Tom Wenzel; 
Summer Intern; GSRs 

• Evaluate DCRNN/LSTM 
for ML of Geospatial 
Data 

• Semantic Modeling 

Prasanna Balaprakash; 
Eric Rask; GSRs 

• Streaming Data 
Analytics 

John Feo; Arif Khan; Vinay 
Amatya 

Task 3: Develop HPC 
Network Models 

• Parallel Discrete Event 
Simulation 

• Extended TAP 
• Energy Model* 
• ML of City Models 

• ML of City Models* 
• Energy Model* 

Prasanna Balaprakash; 
Eric Rask; GSRs 
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Alex Bayen; Jane 
Macfarlane; Cy Chan; John 
Bachan; Bin Wang; GSRs 

Task 4: Couple Data 
Ingestion into Modeling 
Platform 

TBD TBD TBD 

* Indicates new responsibilities – Energy Modeling has shifted to LBNL and ANL, and ML of City Models is a new 
task that we hope to consider as work efforts in PDES and ML of GeoData matures. 
 
Results 
Our initial activities focused on standing up the modeling efforts. Argonne National Lab took on the initial 
data modeling efforts focused on the geospatial data - specifically the inductive loop sensors that are installed 
in the Connected Corridor region. The objective of this work was to use automated machine learning on ANL 
HPC computing facilities to develop predictive models of speed and volume at the locations of the loops. 
Lawrence Berkeley National Lab took on the development of a parallel discrete event simulation and non-real-
time data veracity filters. Pacific Northwest National Laboratory took on the development of real-time data 
ingestion tools using their HPC capabilities. ORNL began evaluating energy modeling. Key accomplishments 
include: 

Data Analytics 
(ANL): Established automated machine learning that optimally designs Long Short Term Memory neural nets 
with loop detector data. For a preliminary proof-of-concept application, a stacked LSTM was applied to 
limited (2018-only) single-detector data and used to make predictions at 15/30/60 min ahead. Preliminary 
results were promising for both flow and speed predictions. 

Temporal Convolution neural networks were also considered and showed even better results with a simpler 
process. Temporal Convolutional Network (TCN) architecture elements are displayed below to provide an 
overview of the methodology [1].  

 

Figure VI.3.1 TCN Architectural Elements 

A network that integrates data from 85 geospatially distributed inductive loops was created. This integration 
converged to a hyper parameter selection much quicker due to their geospatial dependencies. The MAE was 
improved with the TCN architecture and resulted in a predictive speed MAE of less than 3.5 kph and flow 
MAE of less than 35 vehicles per hour with a prediction horizon of 60 minutes. This is a 12% improvement for 
speed and ~20% for flow prediction improvement over an LSTM approach. We believe the TCN approach is 
the appropriate architecture for dealing with geospatially distributed temporal data. The next step will be to 
determine if this will be an appropriate mechanism for learning from GPC probe data and whether there is an 
opportunity to fuse both data sources into the architecture. 

(LBNL): Established a team to develop data veracity analytics and associated remediation of incomplete or 
incorrect data. A software package for processing GPS data is being developed to identify and flag potentially 
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erroneous data. Our intent will be to open-source this package to the mobility data analytics community. The 
following taxonomy of potential data inconsistencies has been identified: 

• Duplicate timestamps: two or more points in the same trajectory having different positions but identical 
timestamps.  

• Failure to update position: latitude and longitude data are exactly the same from one timestamp to the 
next. 

• Probe confusion: trajectories for multiple different devices (probes) are mapped to a single device ID. 

• Spatial outliers: a single point lies far from the route being followed by the trajectory both prior and 
subsequent to the point.  

• Sudden changes in sampling rate: a trajectory’s timestamps have been increasing at a regular frequency, 
which is suddenly interrupted by a point having a different timestamp increment, often accompanied by 
an unrealistic velocity. 

• Unrealistic velocities not otherwise categorized: these are candidates for additional scrutiny and 
classification. 

(PNNL): Developed a code base to analyze an example transportation corridor - AMS Dallas Testbed Analysis 
that includes 

• Temporal data such as the average traffic per hour aligned with weather data.  

• Spatial information such as the approximate latitude-longitude of the closest point on the road. 

• Removal of spurious outliers of traffic volume and speed based on a learned density estimation.  

A prototype code base was developed using Open Street Map API and Road Network Analysis Tool OSMNx, 
in order to validate traffic information and generate meta information using two traffic datasets: i) Publicly 
available Wyoming CV Pilot Basic Safety Messages (BSM) and ii) Portland GPS Fleet Data. The Wyoming 
BSM dataset covers 402 miles of I-80 corridor in Wyoming. Each participating vehicle sends information 
about its speed, acceleration, etc. (total 69 features) and there are roughly 3.1 million such records each day. 

Additionally, a Portland GPS fleet data that contains GPS location, speed, acceleration, etc., every 10-15 
seconds is being evaluated. There are about 5,000 records per day. The prototype code currently checks 
validity of the data, for example, given two timestamps and distance traveled, it computes average speed and 
compares with the reported speed. The software also generates meta information, for example, given a 
location, it obtains the posted speed limit through Open Street Map API and compares with the reported speed 
in order to identify congestion. Augmenting the traffic data with weather information (NOAA) and accident 
information (DOT) is underway. 

Urban Dynamics Modeling 
(LBNL): An existing simulation designed explicitly to leverage HPC capabilities and previously used for grid 
simulation, was repurposed to model a transportation network. This new system, named Mobiliti, currently 
models the Bay Area as an initial test case. A readily available Bay Area network extracted from Open Street 
Map and transformed to a unidirectional link representation provides the model for the road network. After 
initial evaluation of several vehicle routing algorithms (e.g. Dijkstra’s algorithm and A*), a contraction 
hierarchies algorithm was selected. As a result of this update, the routing is much faster, and it is capable of 
identifying optimal routes through the network instead of approximate routes. This highly efficient routing 
algorithm enables us to study the impact of dynamic re-routing.  
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After a coordination discussion with local transportation officials from San Francisco and San Jose, a validated 
demand model consisting of 27.6M trip legs, representing the traffic demand from 7.3M residents was 

obtained from SFCTA. Of these original trip legs, 21.7M result in vehicle trips 
through the road network, while the remaining are satisfied through walking or 
cycling. Since the SFCTA model works with demand at a granularity of traffic 
analysis zones (TAZ), we adapted the model to generate node-level inputs for 
Mobiliti via random node selection within the origin and destination TAZs. Since 
demand may not be uniformly distributed among each TAZ, we are identifying 
ways to modify the resulting demand to further increase the fidelity of our 
simulation. We have additionally optimized the parallel decomposition network 
partitioning strategy for the SFCTA demand model. Excluding initialization time, 
we can simulate 21M trip legs during one simulated day in less than 30 seconds 
using 32 nodes (1,024 compute cores) of the Cori supercomputer. Intelligent 
geospatial partitioning of the dynamics shown in the figure on the left is key to the 
power of this modeling methodology as it uses the message passing power of high 
performance computing. 

Energy Modeling 
(ORNL): A modal-based approach for estimating energy consumption of EVs was investigated that allows the 
energy estimation. Autonomie is used to generate ground-truth energy consumption, and three preliminary 
steps are used to develop the modal-based approach for EV fleets. Sample EV models were established and the 
energy use of selected vehicles was generated by simulating a wide range of operating conditions. 
Classification and regression tree (CART) methods were applied to generate the energy consumption rates 
under distinct operating conditions, such as speed, acceleration and battery level. A methodology to project the 
energy consumption for trip-level traffic inputs was proposed. The CART method has been applied on the 
training set to classify various driving conditions into finite number of clusters by their fuel and electricity 
consumption. In addition, LSTMs were evaluated for use in modeling. A prediction framework where Basic 
Safety Message data from connected vehicles was considered for predicting fuel consumption. The Wyoming 
connected vehicle pilot study data and a Seattle I-405 data set were investigated.  

We have used CART to develop bin-based models and validated the results with AUTONOMIE generated 
results. The performance of CART clusters was assessed at trip level, cluster level and instantaneous level. For 
trip-level results, the total energy consumption by trip generated from Autonomie and CART clusters were 
compared using an ordinary linear regression as indicated in the figure below. For both fuel and electricity 
consumption, the predicted energy consumption is close to the ground-truth energy consumption with low 
prediction variance (represented by the shade area). The results indicated that CART clusters can predict fuel 
and electricity consumption within reasonable ranges at various levels. 

Figure VI.3.2 Bay Area Road 
Network simulation 

Figure VI.3.3 Comparison of Total energy consumption by trip generated by Autonomie and CART clusters 
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The sensitivity of CART generated clusters was assessed with respect to trip average speeds and initial SOC 
levels, and the results suggested that the CART generated clusters were sensitive to selected transportation 
parameters. 

 
Conclusions  
We have made significant progress towards our goals in the past 10 months. Our initial work to use machine 
learning to evaluate and predict the geospatial, temporal device data has shown promising results. Specifically, 
Temporal Convolution Networks had been applied and appear transferable for our initial traffic estimation 
problem. Automated hyper-parameter search and tuning has been developed and allow efficiencies that will be 
foundational to our future work. Initial efforts are underway to consider data veracity issues associated with 
big data feeds from a variety of mobile devices. Algorithms to detect and correct poor data quality are being 
developed for both ingestion at real-time and quasi real-time. Our urban simulation work has leveraged an 
existing code base for grid simulation and has allowed us to build urban-scale simulations of the Bay Area 
road network with run times on the order of minutes. We have included the SFCTA demand model that 
emulated 21.7M vehicle trips. An efficient vehicle routing algorithm has been integrated that will allow us to 
run simulations that include dynamic routing. This type of behavior is much more reflective of real-world 
urban dynamics. Energy modeling has been tied to the foundational simulation mechanisms and models fuel 
consumption using the dynamometer derived data from ANL. In addition to the initial ORNL energy modeling 
using CART, NREL has provided additional input to this initial model and an on-going improvement to this 
model is underway.  

Key Publications 

Conference presentations: 
Cy Chan presented at IEEE ITSS, Nov 4-7, 2018 in Maui, Hawaii 

Published papers: 
• IEEE ITS Nov 4-7 to be published in proceedings 
• Xu, Xiaodan, and H M A Aziz, (2019). An Advanced Modal-Based and Scalable Approach To 

Estimate Energy Consumption From Electric Vehicles. Accepted in the Transportation Research 
Board Annual Meeting, 2019. Paper no. 19-05189. 

Meetings / Conferences / Other updates and highlights 
• Large Scale Computing Workshop at IEEE ITS Conference, Nov 4-7, 2018 
• 2018 IEEE Power and Energy Society General Meeting, August 5-10, 2018 
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Project Introduction 
Modern vehicles can generate tens to hundreds of GB of data every hour. Much of the utility of connected 
vehicle technologies lies in the potential value of this vast amount of data, including vehicle internal states, 
geographic road features, traffic flow and density, and individual vehicle movements, some of which are now 
available in separated repositories. The confluence of connected mobility data and emerging big data analytics 
presents both a challenge and an opportunity. The available data is then used to better understand driver 
behavior, energy and carbon emission, and traffic dynamics. For this project, data have been collected to (1) 
develop behavioral models representing how drivers react to information they are provided, (2) validate the 
traffic flow simulation model of Ann Arbor developed in POLARIS and (3) develop new driver model for 
Autonomie (e.g., how do drivers react to traffic signal information projected on a screen).  

Another current trend in the industry is the rapid development of automated vehicle technologies. Recent 
breakthroughs in sensors, perception, and control technologies make vehicle automation much closer to reality. 
Almost all major OEMs and first tier suppliers have active programs for Connected and Automated Vehicles 
(CAVs). Many of them have aggressively target dates to bring their concepts to the market. While many 
research activities have occurred in the US over the past couple of years, the vast majority of those projects 
have been focused on safety rather than on energy and mobility. 

The University of Michigan (UM) researchers have extensive experience equipping vehicles, collecting data, 
and analyzing the data to gain insight, or build models to understand various aspects of the transportation 
systems. The UM researchers will lead the experimentation part of this project, equipping 500 vehicles with 
ODB-port dongles to collect vehicle velocity and fuel consumption information.   

The experimental data has been collected and used to develop and calibrate an open-source transportation 
network models POLARIS, which can be used in coordination with a more detailed energy simulation tool 
Autonomie to simulate the vehicles driving in the City of Ann Arbor traffic. The calibrated fuel consumption 
model has been used to develop and implement energy-saving concepts such as eco-routing, and adaptive 
traffic signal control for congestion reduction and energy saving. The learning experience can be extrapolated 
to other cities if data can be collected, model re-calibrated, and the control concepts adapted to the new 
transportation system. 

mailto:hpeng@umich.edu
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Objectives 
The objective of the project is to study the energy impacts of connected and automated vehicle technologies for 
a wide range of use cases and technology scenarios using both test data and high fidelity models. The project 
evaluates the impact of a fast emerging technology on the energy benefit of current and future vehicle 
technologies through test data currently not available and by providing guidance for future R&D directions 
(i.e., component requirements, operating conditions) through the use of simulation tools.  

Approach 
This project consists of five inter-connected tasks, involving close-collaboration between the University of 
Michigan, the Argonne National Lab, and the Idaho National Lab. The approach of these five tasks are 
described below 

• Task 1 Instrumentation and data acquisition of energy related information 

o Define candidate vehicle signals to be collected for energy purposes.   

o Outfit 500 vehicles with the ODB-II logger, validation of the system – including the backhaul – 
and maintaining operations. 

o Provide data to researchers in other Tasks of this project for model/control development 

• Task 2 Display energy related information to study its influence on the driver 

o Identify CAV user functions, co-design and prioritize signals.  

o Develop driver information display hardware and communication. 

o Design vehicle information display screen(s) and experimental cases. 

o Review human test results. Review the field performance of the designed user interface. 

• Task 3 Travel Behavior Modeling 

o Experiment and survey design for travel behavior model. 

o Model departure-time choice behavior. 

o Model route choice behavior. 

o Model travel activity pattern change. 

o Calibration of POLARIS traveler behavior model. 

• Task 4 System Model Development and Validation 

o Develop the Ann Arbor and Ypsilanti region baseline POLARIS model. 

o Determine data needs for further model development. 

o Query, collect and process data from the connected vehicle fleet. 

o Implement traveler and CAV agent behavior rules. 
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• Task 5 Adaptive Signal Control 

o Build and calibrate the traffic simulation environment for the adaptive traffic signal control. 

o Develop the adaptive signal control algorithm. 

o Deploy and conduct field experiment at MCity and the Plymouth Road corridor. 

o Evaluate the energy saving of adaptive signal control. 

Results 
The most notable results of this project are summarized below 

• Task 1 Instrumentation and data acquisition of energy related information 

o Collected data using the OBD-port dongles from > 500 vehicles 

o The collected data is from > 750k trips, 7.1M miles 

o Data shared within the research team, EPA, and selected UM students for research. 

o ANL researchers analyzed and used the data for their Polaris model development. 

•  Task 2 Display energy related information to study its influence on the driver 

o Designed human participant experiment  

o Completed all experimental data collection from 32 participants, reduced driving data by using 
geo-fences and conducted analysis on user acceptance and behavior measures. 

o Analysis results used to develop human driver behavior models under advisory CAV functions. 

• Task 3 Travel Behavior Modeling 

o Modeled baseline activity patterns of Ann Arbor using collected vehicle trip information 

o Conducted analysis of the impact of CAVs on traffic and energy consumption 

o Studied the potential of using CAV fleet to serve the mobility of multiple families using the travel 
behavior information 

• Task 4 System Model Development and Validation 

o Using the collected Ann Arbor travel data to calibrate a Polaris model that simulates mesoscopic 
traffic behavior of the city of Ann Arbor and its surroundings. 

o Embedded Energy Estimation function in POLARIS based on machine learning. 

o Simulated the energy impacts of CAV functions such as Adaptive Cruise Control, Eco-
approaching, and Eco-Routing. 

• Task 5 Adaptive Signal Control 

o Developed an algorithm to accurately estimate the traffic flow around intersections under low 
connected vehicle penetration rate 
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o Data collection from 6 intersections on Plymouth Rd, Ann Arbor. 

o Developed an adaptive signal control algorithm and confirmed its effectiveness in simulations 

o Working with several other cities including Chattanooga, TN to explore collaborative opportunities 
for field deployment. 

Conclusions 
At the initiation of this project, there are a few key gaps in understanding the potential impacts of connected 
and automated vehicles (CAVs) to overall energy consumption, including the lack of real field test data, the 
lack of a high-fidelity model, and lack of real CAV functions evaluated at a large scale (e.g., for a mid-sized 
city like Ann Arbor). This success of this project fills several of the data, model and CAV function gaps: 

• Collected field data from > 500 vehicles, which provides the basis of vehicle trips (origin-destination, 
travel speed, time) and energy consumption information. At the conclusion of this project, we estimate 
the total amount of data available will be more than 8 million miles. 

• The field data is used by the Argonne National Lab to develop and calibrate their Polaris model for Ann 
Arbor. The model has shown to match the travel pattern of the City accurately. 

• By collaborating with University of Michigan researchers the travel data has also been used to develop 
and calibrate a SUMO model (an open-source traffic simulation platform).  

• Two representative CAV functions have been analyzed using the Ann Arbor data/model. The Eco-
approaching algorithm using real human driver data collected from the Plymouth Corridor of Ann Arbor 
shows very encouraging (albeit idealized) potential in reducing fuel consumption by >30%. The eco-
routing algorithm evaluated in the Ann Arbor-wide traffic simulation for 800 vehicle trips using the 
SUMO model has demonstrated 6% fuel consumption reduction. 

While the work by the team over the last three years has addressed a few key gaps, many more challenges 
remain to explore the full potential of CAVs. 
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Project Introduction 
This project introduces novel anticipative car following and lane selection schemes for Connected and 
Automated Vehicles (CAVs). Our control schemes benefit from collaboration and information exchange 
between CAVs to save energy, reduce braking, and harmonize traffic. The proposed schemes will be 
implemented in traffic microsimulations at different levels of CAV penetration to analyze energy saving 
benefits. We will also create a Vehicle-in-the-Loop (VIL) testbed to demonstrate the benefits to real CAVs 
driven on a test-track. 

Clemson has partnered with Argonne National Laboratory to integrate the vehicle guidance algorithms with 
Autonomie, Argonne’s detailed vehicle energy utilization simulation software. Clemson has partnered with 
PTV to incorporate the proposed algorithms in their state of the art traffic micro-simulation tool, Vissim. 
Clemson also has partnered with International Transportation Innovation Center (ITIC) to conduct experiments 
for evaluating the proposed technical approach with novel co-simulations of traffic and physical automated 
vehicles on a test track in Greenville, South Carolina. 
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Objectives  
Figure VII.2.1 shows the breakdown of the project into three main objectives over the 2 YEAR period of the 
project:  

1) Developing Anticipative Vehicle Guidance Algorithms. The relevant milestones are as follows: 

• Perception and Prediction of Motion of Surrounding Vehicles: Demonstrate >50% success rate in 
anticipating the position of a vehicle within a 10-meter radius of its position, 5 seconds in advance. 

• Car following and Lane Selection Algorithm Design: Incorporate anticipation in car-following and lane 
selection strategy to demonstrate >5% efficiency gain in mixed traffic with 30% CAV penetration. 

• Custom Code Generation for PTV Vissim Traffic Microsimulation. 

2) Traffic Microsimulations. The relevant milestones are as follows: 

• Detailed Energy Evaluation: Use high-fidelity powertrain models of heterogeneous vehicles to 
demonstrate >5% (10%) average efficiency gain in mixed traffic for CAV penetration >30% (60%).  

3) Experimental testing via VIL platform. The relevant milestones are as follows: 

• One experimental CAV in VIL Testbed: Complete vehicle instrumentation, test- track communication 
setup, and integration with micro simulation environment. Demonstrate at least >5% energy efficiency. 

• Two experimental CAVs in VIL Testbed: Demonstrate stable co-simulation of 2 experimental vehicles 
and <10 virtual vehicles and document >5% average energy efficiency gain for the entire fleet. 

• VIL simulations for multi-lane scenarios: Demonstrate stable co-simulation during lane change operation 
and document >5% additional average efficiency gain resulting from collaborative driving. 

 

Approach 
Eco-Driving Algorithms 
A combined probability modeling and Model Predictive Control (MPC) system is employed to boost the energy 
efficiency of CAVs. MPC consumes a preview of disturbances and optimizes a modeled system over a finite 
time horizon. In heterogeneous traffic, CAVs using MPC communicate their intentions to other CAVs. When 

Figure VII.2.1 The project breakdown into three main objectives. 
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interacting with conventional vehicles, a CAV must predict using current and historic sensed data as shown in 
Figure VII.2.2. 
Anticipative Car Following Scheme 
In car following, the probability that the preceding vehicle (PV) 
will transition to a given acceleration state at each prediction step 
is determined by counting past observations. This model yields the 
PV’s expected acceleration commands, which in turn result in a 
position trajectory for the MPC objective. To prevent collisions 
during PV braking, a worst-case model of PV motion is used in the 
MPC constraints. Given a preview, MPC then minimizes a 
weighted sum of squared position gap error and acceleration. This 
velocity-smoothing approach improves energy efficiency. 

Experimental Prediction of Surrounding Vehicles Motions 
To verify that the proposed prediction algorithms are feasible in a 
public-road implementation, similar models were implemented 
and validated on historical bus data from the Tiger Commute 
system. Changes in velocity were predicted using a Markov model 
with direction, location, time of day, and current state as inputs. 

Anticipative Lane Selection Scheme 
The lane decision algorithm presented in [4] was modified to track a desired velocity of the ego vehicle, 
eliminating the need for a tripped lane change when the velocity moved outside of a given bound. This generated 
another issue where if there was no lane available with a reference speed equal to or higher than the ego vehicle 
desired velocity, the ego vehicle would tend to travel between lanes. To prevent this from happening an 
additional term was added to the cost function to penalize choosing multiple lanes at once and rules were added 
to the reference speed assigner to modify the ego vehicle desired velocity as well. Further improvements were 
made to the lane decision control framework. The complete framework may be found in [5]. 
Work has also occurred in implementing the MPC based lane decision framework within the traffic simulator 
Vissim. Initially a simplified MPC that tracked the center of a lane and a reference velocity using the ACADO 
toolkit [6] was implemented as an external driver model in Vissim, in order to prove the compatibility between 
the solver and Vissim. Next, progressively more complex controllers were implemented in Vissim, beginning 
with one vehicle being controlled with an obstacle avoidance controller, then one vehicle being controlled with 
the lane decision MPC, and finally multiple vehicles being controlled with the lane decision MPC.  

Custom Code Generation for PTV Vissim Traffic Microsimulation 
To study the impact of CAVs in the presence of human-driven fleets of vehicles, the traffic microsimulation 
software Vissim, is utilized. We embed physical vehicles into this environment interacting with virtually 
driven vehicles. Several steps were taken to import CAVs into Vissim: 1) Program the car-following and lane 
selection algorithms and optimization into C++ code, 2) Compile a Dynamically Linked Library (DLL), which 
binds to Vissim and gives access to our custom control code, 3) Wrap the Component Object Model (COM) 
interface for Vissim into an easily accessible library for controlling Vissim simulations and automating test 
scenarios, and 4) Conduct simulations of varying densities of traffic and varying densities of CAVs in a 
highway environment. 

Experimental Verification in Vehicle-in-the-Loop Testbed 
To validate the effectiveness of the proposed anticipative and cooperative vehicle guidance algorithms in 
realistic contexts, we have constructed a vehicle-in-the-loop testbed where two real connected automated 
vehicles interact with virtual traffic in real time. Towards this goal, two real vehicles are retrofitted into 
automated and connected vehicles. One gasoline engine car (Mazda CX-7) and one fully electric car (Nissan 
Leaf) are adapted to validate and compare the effectiveness of our algorithm on different powertrain 
configurations. These two vehicles will have the ability of communicating with each other and also can 

Figure VII.2.2 Block diagram of the major 
motion planning algorithm components. 
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communicate with virtual vehicles in the Vissim simulation to share driving information. They can drive in 
automated modes on a test track to execute the motions generated from our algorithms while communicating 
with each other and virtual vehicles. At the same time, the fuel/electricity consumption will be recorded and 
compared with the fuel/electricity consumption of human driving cycles under the same driving situations.  

Energy consumption measurement for experimental CAVs 
The energy consumption of experimental CAVs 
are currently measured via On-Board Diagnostics 
(OBD-II) port of the vehicles. A smart-phone 
iOS application, already implemented in our 
group [7], [8], can access the OBD port of both 
vehicles and estimate the real-time energy 
consumption of the vehicle. As shown in Figure 
VII.2.3 , the implemented iOS application can 
connect to commercial WiFi OBDII readers 
supporting ELM327 chip. If we find the OBD-II 
readings are insufficient we will use more 
advanced methods for recording energy 
consumption during YEAR 2. 

Analysis of propagation loss and reliability in 
wireless communication 
In CAV networks, radio wave attenuation should 
be modeled before claiming the achieved 
performance. Significant radio signal attenuation 
could happen due to the distance, multipath signal 
fading, and shadowing [1]. To realize the impact 
of path loss and fading, we use the following 
generalized equation 𝑃𝑃𝑅𝑅𝑥𝑥(𝑑𝑑) = 𝑃𝑃𝑇𝑇𝑥𝑥 + 𝐺𝐺 −
∑ 𝑃𝑃𝑃𝑃(𝑑𝑑) where, 𝑃𝑃𝑅𝑅𝑥𝑥(𝑑𝑑) is the calculated received 
power of receiver 𝑅𝑅𝑀𝑀, for distance 𝑑𝑑 from 
transmitter 𝑆𝑆𝑀𝑀; 𝐺𝐺 is the antenna gain. 𝑃𝑃𝑃𝑃(𝑑𝑑) 
contains the path loss components of large-scale 
path loss and fading, and of deterministic obstacle 
shadowing, or of stochastic fast fading. We adopt 
four different loss models: random loss model as a 
representative of abstract loss model, long distance 
loss model [3] as a representative of deterministic 
loss model, LOS (Line-of-sight)/OLOS 
(Obstructed-LOS)  loss model as a representative of empirical loss model and Friis-Nakagami [2] as a 
representative of joint deterministic and stochastic fading model. As shown in Figure VII.2.4, the vehicles are 
simulated using PTV Vissim, and the communication network is simulated by ns-3 (network simulation – 3). 
MATLAB is also used for setting up traffic parameters and setting real-time communication through TCP/IP.  

Figure VII.2.3 Functional architecture of the developed iOS 
OBD Logger App [7], [8]. 

Figure VII.2.4The wireless communication simulator. 



FY 2018 Annual Progress Report 

 

VII  Advanced Research and Development    247 

Results 
Car Following Simulations 
Anticipative eco-driving controllers were prototyped in a MATLAB-based multi-agent simulation 
environment. A velocity profile is imposed on the lead vehicle as a boundary condition and energy benefits are 
evaluated for the following vehicles. Early simulations with homogenous strings showed that the among the 
FTP, US06, and HWFET cycles, the US06 represented a middle ground for energy benefits. A more detailed 
study using mixed CAV and conventional traffic with both heavy and passenger vehicles showed 1.4 to 1.9% 
fuel economy improvement per 10 percentage point increase in CAVs (Figure VII.2.5) when the lead vehicle 
followed the US06. 

 
 

Experimental Prediction of Surrounding Vehicles Motions 
The system was evaluated on a subset of the bus data that was not used for training. 5s ahead, 85% of 
predictions were with 10 m of the ground truth. Accuracy at other time ranges is shown in Figure VII.2.6. 
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Anticipative Lane Selection Scheme 
Monte-Carlo simulations of specific scenarios were completed in 
MATLAB with one MPC vehicle and precomputed object vehicle 
trajectories. Noise was injected into the state measurements and control 
inputs of the MPC vehicle and into the measurements of the object 
vehicle. In the first simulated scenario, the ego vehicle is traveling in the 
center lane and about to pass a slower moving object vehicle 1 (OV1) on 
its right, when a faster moving OV2 passes the ego vehicle on the right 
and cuts in between. At this point the ego vehicle must evasively 
maneuver to the left lane to avoid a collision. This resulted in a 
probability of collision on the order of 10-18 and a plot of the trajectory 
and control inputs may be found in Figure VII.2.7. The second simulated 
scenario consists of a 4 lane road with 
5 OVs, not depicted here. Detailed 
information on the complete lane 
decision control framework is 
presented in [5]. There is still work to 
be done aligning the MPC and lateral 
dynamics models. Figure VII.2.8 
shows a screenshot from a Vissim 
simulation with multiple MPC agents. 

Custom Code Generation for PTV Vissim Traffic Microsimulation 
We have been successful in building the software necessary to complete CAV microsimulations in Vissim. We 
successfully followed the process of incorporating MPC car-following and lane selection algorithms into 
Vissim vehicles, vary Vissim traffic conditions, and process data into preliminary results. We found 
preliminary results in the improvement of fuel economy and space occupied on the road, given increasing 
densities of CAVs. These were consistent with our Matlab microsimulations. Our preliminary results also 
showed an increase in travel times of vehicles given an increasing density of CAVs; this suggests further 
tuning our controller to interact with human-driven vehicles. These results further motivate direction of the 
project in Year 2. 

Instrumenting and Automating the experimental CAVs 
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Figure VII.2.9 Retrofitted Vehicles by Self-Developed Robotic AutoDrive System 
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We have used the self-developed Robotic AutoDrive System to retrofit two vehicles (Mazda CX-7 and Nissan 
Leaf) and turn them into an automated-driving capable vehicles, as shown in Figure VII.2.9. An automated 
driving robot is designed for both vehicles. It utilizes a DC motor to actuate the steering wheel and another DC 
motor to actuate both the brake and the throttle pedals. The Nissan, which is supposed to drive behind the 
Mazda, is also equipped with a Quanergy M8 3D LIDAR to ensure safety. Sensor fusion has been performed 
onboard to calculate the accurate location, orientation, and speed of vehicles in real time. The control of the 
throttle and brake pedals is achieved by a combination of a calibrated response function and a PID controller. 
The calibrated response function is obtained by fitting the data collected from vehicle dyno tests. Since the 
responses of throttle and brake pedal positions to actual acceleration and deceleration are highly non-linear, 
using a PID controller within entire operating range will result in large errors, overshoots and oscillations. The 
calibrated response function adjusts the positions of throttle and brake pedals to achieve the expected speed 
and acceleration. Figure VII.2.10 shows the performance of the speed controller on the Nissan Leaf. The speed 
tracking performance is sufficient for our tests and the velocity tracking error is about ±0.1m/s.  

A trajectory tracking controller has been designed and implemented to make the vehicle track a desired 
trajectory. A bicycle vehicle model and a pure pursuit controller  [10] are employed to enable the controller to 
generate the desired vehicle speed and steering based on the vehicle velocity and heading feedback from the 
fusion of onboard sensors and location information from the RTK-GPS. The speed control is realized using the 
throttle and brake controller and the steering control is realized using a low-level PID controller. Figure 
VII.2.10(c) shows that the trajectory tracking controller follows the desired trajectories well. 

We’ve also finished the instrumentation of the second vehicle and started the tuning of its robotic control 
system. We’ve finished the throttle and brake pedal control calibration through dyno tests. We will soon take 
the second vehicle to the test track for further testing and tuning. 

Vehicle-in-the-Loop Simulation Setup 
Vehicle in the loop test with virtual vehicle generated by 
Vissim has been conducted. The physical vehicle was 
able to respond to the virtual surrounding vehicles 
generated by Vissim correctly and Vissim could visualize 
the physical vehicle in the simulation environment and 
react to it. Figure VII.2.11 shows an example 
visualization. 

OBD-based Energy Consumption Measurement and Data Logging 
We’ve also managed to read out energy consumption through OBD port and the reporting rate is 2Hz. Our 
developed iOS application explained in the previous section was originally compatible with 29-bit CAN 
protocol (ISO 15765-4) and, now, it is extended to read and collect 11-bit CAN protocol needed for this 

a. IM240 cycle speed tracking b. Car following control speed tracking 

Figure VII.2.10 Performance of (a-b) speed tracking and (c) trajectory tracking controllers 

c. Waypoint tracking performance 

Figure VII.2.11 Physical vehicle embedded in virtual 
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project. The OBD Log iOS Application is also improved to read the OBD port of our battery electric 
experimental CAV (Nissan Leaf 2011). Unlike our combustion test vehicle, the specification of the packets 
sent to the OBD port of our electric vehicle are not published by the vehicle manufacturer. The reason is that 
the electric car manufacturers have not yet established a standard for messages exchanged in CAN bus [9]. 

Vehicle-in-the-loop (VIL) Communication Setup 
Communication between the physical vehicle and the computer 
that runs Vissim simulation has been tested using both cellular 
and Wi-Fi connections. The cellular communication is stable. 
Although the Wi-Fi connection also works, its stability still 
needs to be improved due to the large communication range. 
These two communication methods will be used as alternatives 
before the DSRC system is completely ready for use. We send 
and receive the information through a User-Datagram Protocol 
or UDP unconnected datagram sockets. We serialize the data, 
using Google Protocol Buffers. The data exchanged between 
our physical vehicles and Vissim lies in four categories: 1) 
Subscription/Unsubscription Message, 2) Vehicle to Vissim 
Message, 3) Vissim to Vehcile Message, and 4) Vehicle to 
Vehicle Message. 

ITIC negotiated with the equipment and service providers and made a final decision to implement 2 DSRC 
radios on the testbed. The DSRC road-side units (RSUs) are solar-powered, as shown in Figure VII.2.12 (a-b). 
In this configuration, the DSRC radios are connected to the secure ITIC network via directional antennas 
shown in Figure VII.2.12(c). 

Impact of path loss on Communication Packet Delivery Ratio (PDR) and Reliability  
The performance has been realized both by the network-level metric, such as packet delivery ratio (PDR) and 
application-level metric, such as T-window reliability. PDR is the ratio of the number of received packets to 
the expected received packets in a given range. T-window reliability is the probability of successfully 
receiving at least one packet from a certain transmitter to a certain receiver within a time window, T-window. 

Figure VII.2.13 and Figure VII.2.14 show with no-loss model, PDR is the maximum. PDR starts dropping only 
after 600m communication distance. However, this is not the case, while path loss model is considered. The 
Random loss model has around 38% more packet drops than no-loss model. PDRs of long distance loss model 
and Friis-Nakgami have the identical results (around 50% more packet drops than no-loss model). However, 
LOS/OLOS model has the maximum PDR drops. With 400m communication range, LOS/OLOS model has 
the 72%, 56%, 46%, and 47% more packet drops than respectively, no-loss model, random loss model, long 
distance model, and Friis-Nakagami model. These results reflect that without considering a realistic path loss 
model, the claimed performance is superficial and may provide inconsistent results. A similar performance 
difference is also observed for the T-window reliability measurement. Increasing T-window, yields the same 
PDR but increases the reliability for all the approaches (Figure VII.2.14 ). 

 

(a)         (b)                  (c) 

Figure VII.2.12 (a) Our road-side unit (RSU) for 
DSRC (b) the RSU box powered by solar panels 

at test track (c) the direct antenna 
communicating with the RSUs at the test track. 
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Figure VII.2.14 Impact of path loss on PDR and reliability for T-window=300msec. 

Figure VII.2.13 Impact of path loss model on PDR and reliability with T-window=1sec. 
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Impact of path loss model on latency 
Figure VII.2.15 shows the latency for per received packet/instance. Clearly, while considering the received 
packets, the latency is negligible (around 2 msec). However, for received instances, the latency increases. 
Under different T-window values, no-loss model has the lowest latency and LOS/OLOS model has the highest 
latency. However, the maximum latency with the LOS/OLOS model under T-window value is below 30 msec, 
which is well below the latency requirement for VSC applications (100 msec). 

For some time-sensitive safety applications (e.g., T-window=300 msec), the achieved T-window reliability is 
as low as 50% under LOS/OLOS model with the current DSRC based broadcasting, which is not satisfactory 
at all. Hence, there is an urge to improve the reliability. One possible way to improve the PDR and reliability is 
using opportunistic vehicle-assisted or dedicated RSU-assisted selective relaying.  

Conclusions    
Prediction results using Tiger Commute bus data and early control simulation results in MATLAB meet our 
milestones. Our work will continue to finalize the implementation of the lane decision MPC within Vissim and 
obtain fuel efficiency results from simulations with different penetrations of CAVs. We successfully followed 
the process of incorporating MPC car-following algorithms into Vissim vehicles. A workflow has been 
established to use results from Vissim micro-simulation as inputs to Autonomie. This process, which uses 
distributed computing techniques, allows to quickly generate accurate energy consumption results for 
particular scenarios. The retrofitting of the Nissan Leaf is finished, and it has been tested together with Vissim 
simulation. The Nissan Leaf is ready for energy efficiency test. The retrofitting of the Mazda CX-7 has 
progressed as planned. It will be ready soon for fuel efficiency experiments. Our iOS application is now 
capable of collecting data from OBD ports of our experimental CAVs. The energy consumption of the electric 
test vehicle will be measured using the OBD data of the battery. We have studied the impact of path loss 
models in radio propagation in urban connected and automated vehicle (CAV) networks. The impact has been 
realized by both the network-level and application-level performance metrics.  

Key Publications   
 R. Austin Dollar, and Ardalan Vahidi. "Quantifying the impact of limited information and control 

robustness on connected automated platoons." In Intelligent Transportation Systems (ITSC), 2017 IEEE 
20th International Conference on, pp. 1-7. IEEE, 2017 

 R. Austin Dollar, and Ardalan Vahidi. "Efficient and Collision-Free Anticipative Cruise Control in 
Randomly Mixed Strings." In print, IEEE Transactions on Intelligent Vehicles (2018). 

Figure VII.2.15 Per received packet/instance latency. 



FY 2018 Annual Progress Report 

 

VII  Advanced Research and Development    253 

 

 

 

 

R. Austin Dollar, and Ardalan Vahidi. “Predictively Coordinated Vehicle Acceleration and Lane 
Selection Using Mixed Integer Programming." In Proceedings of the ASME DSCC, 2018. 

X. Wang, L. Guo and Y. Jia, “Human Intervention Detection on a Retrofit Steering Actuation System in 
Autonomous Vehicles,” SAE Technical Paper, 2018. (Trevor O. Jones Outstanding Paper Award) 

X. Wang, L. Guo and Y. Jia, "Online Sensing of Human Steering Intervention Torque for Autonomous 
Driving Actuation Systems," IEEE Sensors Journal, vol. 18, no. 8, pp. 3444-3453, 2018. 

G. G. Md Nawaz Ali, and Beshah Ayalew, “Analysis of propagation loss and reliability in urban/sub-
urban vehicular cyber-physical system”, in progress. 

References 
 G. G. M. N. Ali, M. Noor-A-Rahim, P. H. J. Chong, and Y. L. Guan, “Analysis and Improvement of 

Reliability Through Coding for Safety Message Broadcasting in Urban Vehicular Networks,” IEEE 
Trans. Veh. Technol., vol. 67, no. 8, pp. 6774–6787, Aug. 2018. 

 M. NAKAGAMI, “The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading,” 
in Statistical Methods in Radio Wave Propagation, 1960. 

 V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, and R. Bianchi, 
“Empirically based path loss model for wireless channels in suburban environments,” IEEE J. Sel. Areas 
Commun., 1999. 

 Q. Wang, B. Ayalew, and T. Weiskircher, “Optimal assigner decisions in a hybrid predictive control of 
an autonomous vehicle in public traffic,” in 2016 American Control Conference (ACC), 2016, vol. 
2016–July, pp. 3468–3473. 

 N. Goulet, A. Hunde, B. Ayalew, and Q. Wang, “Predictive Lane Decisions for an Autonomous 
Vehicle,” in American Control Conference, 2019. 

 R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating microsecond solvers for nonlinear 
MPC: A tutorial using ACADO integrators,” Optim. Control Appl. Methods, vol. 36, no. 5, pp. 685–704, 
Sep. 2015. 

 S. A. Fayazi, and A. Vahidi, ''Vehicle-in-the-loop (VIL) Verification of a Smart City Intersection Control 
Scheme for Autonomous Vehicles,'' in Proc. of IEEE Control Technology and Applications (CCTA), pp. 
1575–1580, Aug. 2017. 

 

 OBD Log iOS Application introduction, available online:  https://youtu.be/7zWhUk7hEZQ  

Tseng, Chien-Ming, et al. "Data extraction from electric vehicles through OBD and application of carbon 
footprint evaluation." Proceedings of the Workshop on Electric Vehicle Systems, Data, and 
Applications. ACM, 2016. 

 Coulter, R. Craig. Implementation of the pure pursuit path tracking algorithm. No. CMU-RI-TR-92-01. 
Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992. 

 
 

https://youtu.be/7zWhUk7hEZQ


Energy Efficient Mobility Systems 

254     VII  Advanced Research and Development 

 

VII.3 Developing an Eco-Cooperative Automated Control System 
(Eco-CAC) 

Hesham Rakha, Principal Investigator 
Virginia Tech Transportation Institute 
3500 Transportation Research Plaza (0536) 
Blacksburg, VA 24061 
E-mail: hrakha@vt.edu 
 
Kyoungho Ahn, Co-Principal Investigator 
Virginia Tech Transportation Institute 
3500 Transportation Research Plaza (0536) 
Blacksburg, VA 24061 
E-mail: kahn@vt.edu 
 
David Anderson, DOE Program Manager 
U.S. Department of Energy 
E-mail: david.anderson@ee.doe.gov 
 
Start Date: October 1, 2017 End Date: June 30, 2019  
Project Funding: $1,675,265 DOE share: $1,507,197 Non-DOE share: $168,068 
 

Project Introduction  
The transportation sector accounts for 69% of the nation’s petroleum consumption and 33% of the nation’s 
CO2 emissions. Consequently, any reductions in the energy consumed by the transportation sector will have 
significant environmental benefits. Connected Vehicle (CV) systems comprise sets of applications that connect 
vehicles to each other and to the roadway infrastructure using vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications, collectively known as V2X. While Automated Vehicles (AVs) offer 
enhanced operation of individual vehicles, CVs produce cooperative, network-wide benefits through the 
exchange of information. These new technological advancements have the potential to drastically improve the 
efficiency and sustainability of our transportation system. We are taking a revolutionary approach to 
developing a next-generation, vehicle dynamics (VD) Connected Automated Vehicle (CAV) system that builds 
on existing CAV technologies to reduce the energy/fuel consumption of internal combustion engine vehicles 
(ICEVs), battery-only electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric 
vehicles (HEVs).  

Objectives 
The main project objective is to substantially reduce vehicle fuel/energy consumption by integrating vehicle 
control strategies with CAV applications. Specifically, are developing a novel integrated control system that 
(1) routes vehicles in a fuel/energy-efficient manner and balances the flow of traffic entering congested 
regions, (2) selects vehicle speeds based on anticipated traffic network evolution to avoid or delay the 
breakdown of a sub-region, (3) minimizes local fluctuations in vehicle speeds (also known as speed volatility), 
and (4) enhances the fuel/energy efficiency of ICEVs, BEVs, HEVs, and PHEVs.  

Approach  
We are taking a revolutionary approach to developing a next-generation CAV system (Figure VII.3.1) that 
builds on existing CAV technologies to reduce the energy/fuel consumption of ICEVs, BEVs, HEVs, and 
PHEVs. The development of the Eco-Cooperative Automated Control System (Eco-CAC) system will involve 
the following key steps and components: 
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1. Develop a CV eco-routing controller that can be used for various vehicle types. This unique eco-
router will use a dynamic feedback controller, employ key link parameters that capture the entire 
drive cycle, compute vehicle-specific link energy functions using these link parameters, and 
compute user- and system-optimum routings. 

2. Develop a speed harmonization (SPD-HARM) controller that regulates the flow of traffic 
approaching network bottlenecks identified using the Network Fundamental Diagram (NFD). This 
controller will be fully integrated with the vehicle router, resulting in a unique strategic controller 
that can route traffic away from congested areas and regulate the flow of traffic entering 
congested areas using gating techniques. 

3. Develop a multi-modal (ICEV, BEV, PHEV, and HEV) Eco-CACC-I controller that computes 
and implements optimum vehicle trajectories (ICEVs, BEVs, PHEVs, and HEVs) along multi-
intersection roadways within CAVs considering dynamic vehicle queue predictions. 

4. Develop an Eco-CACC-U controller that provides local longitudinal energy-optimal control in 
consideration of homogenous and non-homogeneous vehicle platooning of ICEVs, BEVs, 
PHEVs, and HEVs. 

 

At the upper level, the strategic controller (eco-router and strategic speed controller) will compute the 
energy/fuel-optimum route and vehicle optimum speeds (upper and lower bounds) required to regulate the 
flow of traffic approaching downstream sub-networks and/or bottlenecks, thus preventing or delaying the 
breakdown of traffic flow and mitigating traffic congestion. This strategic controller will extend traditional 
eco-routing and SPD-HARM systems beyond the currently used isolated control to a fully integrated, network-
wide controller. The eco-router within the strategic controller will develop optimum eco-routes using a 
feedback linear programming optimization controller. Unlike a predictive controller, a feedback controller 
does not require a link-specific analytical fuel consumption function, which is typically difficult to develop, 
inaccurate, and not vehicle-specific. Instead, the eco-router controller uses information shared by other CVs. In 
addition, an SPD-HARM controller will be developed and integrated with the eco-router to regulate the traffic 
flow approaching transportation bottlenecks using a bi-level and reinforced learning controller. At the lower 
level, a VD controller will operate along the routes and within the speeds recommended by the strategic 
controller to compute energy-efficient vehicle speeds based on local conditions using two local controllers: an 
Eco-CACC-I and an Eco-CACC-U controller. The Eco-CACC-I controller will compute energy-optimum 
vehicle trajectories through signalized intersections (i.e., interrupted flow conditions) using traffic count and 

Figure VII.3.1 Proposed Eco-CAC system  
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signal phase and timing (SPaT) data. The Eco-CACC-U controller will develop fuel/energy efficient 
platooning strategies along uninterrupted road facilities. The VD lower-level controller will use the planned 
vehicle routes and trajectories to anticipate the vehicle operational mode and compute the optimum VD 
strategies. The fully functional Eco-CAC system will be implemented in a traffic simulation environment so 
that it can be tested at a network level. The proposed CAV applications, testing parameters, and validation 
methods will be used to quantify the Eco-CAC system benefits.  

Results  
For Task 1, the team developed a new power-based microscopic HEV fuel/energy consumption model that can 
be incorporated in various transportation applications, including microscopic traffic simulation models, in-
vehicle and mobile eco-driving apps, and CV applications. The developed HEV model will be utilized for Eco-
CAC applications. The model estimates the energy consumption based on driving dynamics using 
instantaneous vehicle speed, acceleration, and roadway grade levels, and does not rely on engine efficiency 
maps. Figure VII.3.2 illustrates the test vehicle’s measured and estimated instantaneous fuel consumption rate 
for four different driving cycles. As illustrated in the figure, the results clearly demonstrate a good agreement 
between the instantaneous fuel consumption estimates and laboratory measurements. 

 

 

 

 

 

 

 
 
 
 
 
 

 

For Task 2, the team developed and tested an NFD-based Proportional Integral (PI) speed controller. 
Procedures to estimate the NFD from CAV data were also developed. The controller was implemented on a 
grid network representative of a typical downtown area. Gating on the edges of the protected network in 
combination with fixed-time traffic signal control was compared to a base non-gated protected control 
considering a fixed plan, phase split traffic signal control, and phase split with cycle length optimization. The 
results show substantial improvement in terms of travel time, delay reduction, and fuel consumption. 
Specifically, on average, a 12.3% reduction in travel time, a 22.17% reduction in delay, and a 9.06% reduction 
in fuel consumption levels was observed.  

Figure VII.3.2 HEV fuel consumption estimation  
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The team tested the NFD for a selected network. The results indicate that fixed plan, phase split, phase split 
with cycle length optimization were unable to prevent congestion from occurring. In particular, these controls 
create delay and increase travel time. On the other hand, activating the proposed gating controller resulted in a 
noticeable difference. The network is prevented from entering the congested regime and remains operating at 
capacity (i.e., the highest possible throughput of the network), as illustrated in Figure VII.3.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For Task 3, the team developed a preliminary BEV Eco-CACC-I controller for a single signalized intersection 
without the consideration of queue impacts. The optimal solutions were analyzed by testing the proposed BEV 
Eco-CACC-I controller using electric vehicles with different engine power ratings under various speed limits, 
signal timings, and road grades. Figure VII.3.4 illustrates sample simulation results for a 3% uphill road 
section using the BEV controller. The study found that the optimal solutions for BEV and ICE vehicles are 
very different. For a downhill roadway, the BEV requires longer deceleration time to accumulate more 
regenerative power to minimize the overall energy consumption in traversing the intersection. Alternatively, 
the ICE vehicle needs the opposite, requiring a maximum deceleration level (minimum deceleration time) to 
minimize the overall energy consumption. For the uphill direction, the BEV needs the minimum deceleration 
time to traverse the approach stop line at maximum speed, allowing it to save a lot of energy consumption 
while accelerating back to the roadway speed limit downstream of the intersection. Alternatively, the optimum 
ICE vehicle deceleration level to minimize the overall energy consumption is typically in the mid-range. The 
comparison results indicate the energy-optimum solution for BEVs is different from the solution for ICE 
vehicles, due to the fact that different types of vehicles use different approaches to consume energy. The 
findings in the case study also prove that previous studies, which only considered the optimization of 
acceleration/deceleration and ignored the specific vehicle energy model, cannot correctly compute the energy-
optimal eco-driving solution for different types of vehicles. 

Figure VII.3.3 NFD for the protected network — fixed plan (FT), phase split (PS), phase split with cycle length (PSC), gating 
(G) 
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Finally for Task 4, the team developed an eco-predictive control system for BEVs that integrates a BEV 
energy consumption model and vehicle powertrain model to save fuel while maintaining the vehicle speed 
within a user-specified speed range. The developed control will be used as the lead vehicle controller in the 
Eco-CACC-U controller. The study tested the eco-predictive control on an 18 km section of I-81 and found 
that the proposed system saved 6.12% and 11.16% of energy on uphill road and downhill road sections, 
respectively. This study demonstrated that regenerative energy in BEVs is a critical factor in energy efficiency 
and the proposed eco-predictive control significantly improved the energy efficiency for BEVs using a given 
road topography in a predictive manner. Figure VII.3.5 shows the sample result of the proposed eco-predictive 
control system. Additionally, a proportional derivative platooning algorithm of the proposed Eco-CACC-U 
system was developed to deal with multi-vehicle platoons. The proposed control approach uses information 
from both the immediate predecessor and the platoon’s leader to update the speeds of the different following 
vehicles within the platoon. Even though that results in a more complex controller, making the followers 
cooperative with the first vehicle in the platoon is deemed essential in order to ensure the overall stability and 
efficiency of the Eco-CACC-U system. 

 
 
 
 
 
 
 
 
 
 
 

Conclusions  
This project develops a novel Eco-CAC system that integrates VD control with CAV applications. The project 
includes eight primary tasks and their associated sub-tasks. The research team is currently working on tasks 1 
through 4. The tasks include (1) eco-routing system development, (2) strategic control algorithm development, 
(3) Eco-CACC-I algorithm development, and (4) Eco-CACC-U algorithm development. Currently, the team is 
developing (1) a new simple power-based microscopic HEV fuel consumption model that can be implemented 
in various CV and eco-driving applications, (2) the eco-routing algorithm for BEVs, (3) the NFD and gating 
algorithm to reduce network congestion, (4) a preliminary BEV Eco-CACC-I controller for a single signalized 

Figure VII.3.4 BEV Eco-CACC-I results at 40 mph  

Figure VII.3.5 Energy consumption of the eco-predictive control on Interstate-81  
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intersection, (5) the acceleration and deceleration control strategies for the Eco-CACC-U controller, and (6) a 
predictive eco-driving control system for BEVs that generates an optimal speed control using roadway grade 
information.  
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 Chen H. and Rakha H.A., “Developing a Traffic Signal Eco-Cooperative Adaptive Cruise Control 

System for Battery Electric Vehicles,” Submitted to the Transportation Research Board (TRB) 98th 
Annual Meeting, Washington DC, January 13-17, 2019. 

 Elbery A. and Rakha H.A., “City-wide Modeling of Mobility and Communication System Interactions: 
An Eco-routing Case Study,” Submitted to the Transportation Research Board (TRB) 98th Annual 
Meeting, Washington DC, January 2019. 

 Ahn K. and Rakha H.A., “A Simple Hybrid Electric Vehicle Fuel Consumption Model Based on 
Instantaneous Vehicle Speed and Power Levels,” Submitted to the Transportation Research Board (TRB) 
98th Annual Meeting, Washington DC, January 2019. 

 Du J. and Rakha H.A., “Constructing a Network Fundamental Diagram: A Synthetic Origin-Destination 
Approach,” Submitted to the Transportation Research Board (TRB) 98th Annual Meeting, Washington 
DC, January 2019. 

References    
 Davis, Stacy C., Susan W. Diegel, and Robert G. Boundy. "Transportation Energy Data Book: Edition 

34." Oak Ridge National Laboratory, 2015. 

 U.S. Environmental Protection Agency. "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-
2007." Washington D.C., 2009. 

 

 



Energy Efficient Mobility Systems 

260     VII  Advanced Research and Development 

VII.4 Evaluating Energy Efficiency Opportunities from Connected and 
Automated Vehicle Deployments Coupled with Shared Mobility 
in California (UCR/NREL) 

Matthew Barth, Principal Investigator  
University of California, Riverside – CE-CERT  
1084 Columbia Ave 
Riverside, 92507 
E-mail: barth@cert.ucr.edu 
 

David Anderson, DOE Program Manager 
U.S. Department of Energy 
E-mail: david.anderson@ee.doe.gov 
 
Start Date: October 1, 2017 End Date: September 30, 2019  
Project Funding (FY18): $407,000 DOE share: $297,000 Non-DOE share: $110,000 
 

Project Introduction 
With the rapid growth of information and communication technologies, Connected and Automated Vehicles 
(CAVs) are deemed to be disruptive with the potential to significantly improve overall transportation system 
efficiency, however may increase (vehicle miles traveled) VMT. Further, shared mobility systems are another 
disruptive force that is reshaping our travel patterns, with the potential to reduce VMT. The goal of this project 
is to extensively collect data from vehicles and associated infrastructure equipped with CAV technologies from 
both real-world experiments and simulation studies mainly deployed in California, and develop a 
comprehensive framework for evaluating energy efficiency opportunities from large-scale (e.g., statewide) 
introduction of CAVs and wide deployment of shared mobility systems under a variety of scenarios. 

Objectives 
As a complement to existing studies on nationwide evaluation of CAVs’ energy impacts, this project is 
focusing on data collection efforts and CAV applications under congested traffic environments that are 
frequently experienced on a massive scale across the major metropolitan areas in California. Another key 
component of this project is to consider the interaction between different CAV technologies and the compound 
effect on energy efficiency. The outcomes from this project are expected to help close the knowledge gap on 
recognizing the potential energy impacts of a broad (regional or statewide) deployment of CAV technologies 
across a wide range of roadway infrastructure with varying levels of congestion and different penetration of 
shared mobility systems. In addition, the results from this project will support policymakers in steering CAV 
development and deployment, coupled with shared vehicle systems, in an energy favorable direction. To 
realize these outcomes, the specific objectives of this project are: 

• To collect data from both real-world implementations (including experiments, demonstrations, and early 
deployments) and simulation studies of CAV technologies, potentially coupled with shared mobility, 
mainly in California. The real-world data will be used to model the energy efficiency from each 
individual CAV technology with a small fleet of equipped vehicles, while simulation data will facilitate 
the analysis of aggregated effects on traffic with multiple CAV technologies concurrently deployed. 

• To implement models for quantifying the impacts of CAV technologies on energy intensity (e.g., energy 
consumption per unit distance for different driving conditions) and for quantifying the amount of driving 
(measured by vehicle miles traveled or VMT) represented by each driving condition. The models will 
include the consideration of vehicle class, roadway type, level of traffic, and level of vehicle automation. 
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• To construct a regional or statewide energy inventory under various CAV technology deployment 
scenarios by incorporating datasets and models for predicting vehicle market share and vehicle usage, 
which are tightly associated with the penetration of shared mobility systems, including transportation 
network companies (TNCs), ride-sharing, carsharing, ride sourcing, etc. 

Approach 
This research project has been divided into three phases: 

Phase I – Data collection and processing (complete) 
The data collected from existing CAV and shared mobility applications is the foundation of model 
implementation and energy efficiency evaluation. For the CAV-impacted traffic, the energy intensity profiles 
have to be recalibrated in term of the penetration of CAVs. Shared mobility applications, especially those are 
coupled with CAV technologies (e.g. autonomous taxis), remarkably change the traffic demand and VMT of 
the current transportation system. Both CAV and shared mobility models need a large amount of real world 
and simulation data to estimate the impact of the new mobility solutions. 

During this phase, the real-world data were collected from multiple sources, e.g. on-road test vehicle and 
testbed, Dynamometer-in-the-Loop (DIL) platform, and published data from existing experiments. Below is a 
selection of the experiments the research group have conducted to collected new data.  

Connected Eco-driving at Riverside Innovative District:  
New field experiments were conducted along the University Avenue corridor between UC Riverside and 
downtown Riverside, CA. As a key part of the Riverside Innovative Corridor, broadcasting-enabled signal 
controllers along with DSRC roadside units have been deployed at each main intersection. A research test 
vehicle has been set up for the field test. It is equipped with a Dedicated Short-Range Communication (DSRC) 
onboard unit and a real-time automotive radar system. The on-board system receives position information via 
GPS, and vehicle dynamics information through on-board diagnostics (OBD). The GPS traces, Signal Phase 
and Time (SPaT) information and vehicle dynamic states from on-board diagnostics devices were archived 
during the test.  

Dynamometer-in-the-Loop (DIL) test for Connected Eco-bus:  
We have collected partial automated heavy-duty CAV data under the ARPA-E NextCAR Connected Eco-bus 
project, in which part of the DIL test will performed by the vehicle controller. In this test, a high-fidelity traffic 
simulator provides inputs to both the vehicle longitudinal and powertrain control modules, as well as the 
dynamometer controls. There are four major blocks in the system: microscopic traffic simulation tool, vehicle 
dynamics optimization, powertrain control optimization and a plug-in hybrid electric vehicle (PHEB) on 
Heavy-Duty Chassis Dynamometer (HDCD). This DIL platform provides an ideal virtual reality environment 
to support comprehensive evaluation of the Connected Eco-PHEB Prototype under a variety of testing 
scenarios. 

Truck Eco-Drive around Port of LA: 
In Eco-FRATIS project, 20 trucks are being deployed with connected eco-driving system to traverse connected 
intersections under eco-speed advisory. Fifteen intersections from LA County near the port are being equipped 
with SPaT-broadcasting enabled controllers and 4G routers for communication. The Truck Eco-Drive system 
has multiple innovative features which are adaptive to the large-scale deployment of connected vehicles, such 
as 4G network-based communication, tablet-based onboard system, and Mobileye-based preceding vehicle 
warning system. 

Vehicle trajectory output from advanced traffic simulation models is another key source of CAV data. The 
research team have developed and implemented multiple CAV applications, such as EAD, Eco-Cooperative 
Adaptive Cruise Control, eco-speed harmonization, in the traffic simulators Paramics and VISSIM. The 
simulation datasets provide a substantial supplement to the field data in evaluating the energy efficiency 
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impact of CAV applications. The research team have also collected more simulation data from ongoing 
projects, such as the data Cooperative Adaptive Cruise Control (CACC)-enabled Eco-Approach and Departure 
(EAD) in VISSIM, and CAV Applications Effectiveness Analysis in VISSIM. In parallel with the field data 
collection from Connected Eco-bus and Truck Eco-Drive project, the same road network is also coded in 
VISSIM to cross-validate the real-world performance of CAV applications. 

Phase II – Model Implementation (ongoing) 
The system architecture and methodology in the model implementation phase is summarized in Figure VII.4.1. 

In the proposed framework, there are three levels and six key components, as shown in Figure VII.4.1. 

The travel behavior level shows how travelers evaluate different travel cost factors and choose the travel 
mode, including: 1) travelers and trips: Demographic information and trip purposes distribution provided by 
census data and regional transportation planning model (e.g. SCAG model); 2) travel cost: The average value 
of travel cost attributes (e.g. travel time, service accessibility, fuel/charging cost, etc.) for specific origin-
destination (OD) under certain scenarios; and 3) travel mode: The decision to make a trip or not, and the mode 
options the traveler may take. This decision process can be informed by data collected through the DOE 
SMART Mobility WholeTraveler project. 

To develop the behavior model, the research team reviewed the literature related to mode choice modeling in 
order to evaluate the impacts of CAVs and shared mobility on travelers’ mode choice decisions. Based on 
literature review, tour-based mode choice modeling framework was selected for model development, given its 
advantage of realistically representing the constraints of time and space, and the linkages among activities. 
Among methodologies that were commonly used for mode choice modeling, the nested logit model does not 
suffer from the limitations caused by the Independence of Irrelevant Alternatives property and has the 
flexibility of combining the stated preference and revealed preference data. Therefore, the nested logit model is 
chosen for later modeling process.  

The Shared Electric Connected and Automated (SECA) operation level shows future traffic scenarios (in 
terms of market penetration, automation level, etc.) and the corresponding operation performance. We identify 
future transportation system scenarios in terms of different SECA penetration and development levels and 
employ a mesoscopic simulation platform to accommodate all major SECA applications. The real-world data 
and micro-simulation data collected from CAV applications are used to calibrate the parameters in the 
platform, e.g. link capacity and energy efficiency. Findings from the DOE SMART Mobility and 

Figure VII.4.1 Model Framework 
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WholeTraveler project will assist in identifying likely SECA penetration levels in future scenarios at a 
population scale. 

As the key component of the model framework, the mesoscopic platform is the playground where all 
operations of CAV and shared mobility are simulated and analyzed with varying application and scenarios. 
After comparison with other mesoscopic agent-based traffic simulator (e.g. MATSIM, Polaris), the research 
team selected BEAM as the main simulation platform due to its support to TNC modeling, effectiveness on 
large-scale network and possible synergy with its previous and ongoing work in California. 

At the transportation system level, impact analysis is conducted on mobility and energy-efficiency. The 
factors that affect the performance of the transportation system, such as travel demand, vehicle occupancy and 
adoption of CAV applications are integrated to analyze the impact of the new technologies on mobility, e.g. 
congestion level, VMT change and speed distribution. The VMT and speed bin information are then applied to 
the energy-intensity model which is calibrated from a large set of real-world drive cycles simulated in 
FASTSim. In this way, we evaluate the state-level energy-intensity impact of CAV technology coupled with 
shared mobility. We then review and evaluate the policies, e.g. occupancy or parking-based pricing, to mitigate 
the potentially increased traffic congestion and energy consumption due to the induced travel demand and 
VMT. 

Phase III – Energy Impact Evaluation (starting soon) 
Based on the model framework developed in Figure VII.4.1, a California regional or statewide energy 
inventory will be constructed from the integration of CAV-induced impact factors with relevant datasets and 
models to evaluate the energy efficiency opportunities from CAV deployment coupled with shared mobility in 
California. Sensitivity analysis on some key factors (e.g., penetration rate, automation level) will also be 
conducted. 

Results 

 
Figure VII.4.2 Datasets and major scenarios of CAV applications and experiments 
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By the end of the first year, the research team has completed the data collection task in Phase I. Real-world and 
simulation data from light-duty vehicles (LDVs), heavy-duty vehicles (HDVs), and infrastructure equipped 
with a set of CAV technologies are identified, collected and processed. The datasets we have collected are 
summarized in Figure VII.4.2. To collect and process sufficient and diverse data that satisfy the need of a 
comprehensive impact analysis, we first define five major scenarios that would cover almost all CAV 
applications and experiments in Figure VII.4.2: 1) Single CAV with no other vehicles; 2) Single CAV in 
mixed connected traffic; 3) Multiple CAVs in fully connected traffic; 4) Multiple CAVs in mixed connected 
traffic; and 5) Other CAV applications. This partition would address many CAV-related factors that would 
impact traffic energy efficiency, including traffic demand, CAV penetration, automation level and vehicle type 
distribution.  

We then group the existing CAV datasets from previous field and simulation experiments into those 5 
categories, showing their names using black font color. The real-world experiments are highlighted using bold 
font. This figure clearly shows that the previous experiments (especially the field test) placed more emphasis 
on ideal cases with single vehicle and fully connected environment. The scenarios with multiple CAVs and 
mixed connected traffic need more experiments and data (from both equipped CAVs and other conventional 
vehicles) to support the CAV impact analysis. Therefore, the data collection phase of this project included 
designing and implementing new experiments (highlighted in red font color) that are highly focused on 
multiple (and cooperative) CAVs and mixed connected traffic, which is more realistic in the transportation 
system of the near future. As shown in the diagram, heavy-duty vehicles, such as buses and trucks, are another 
emphasis in new datasets collected in this project.  

Based on the field experiment and simulation data, we evaluate the performance of different CAV applications 
under diverse traffic demand, signal type, market penetration rate, etc. As an example, Table VII.4.1 shows a 
selection of the Eco-Approach and Departure (EAD) field tests in which the UC Riverside team has 
participated, along with the test location, communication type and performance of each eco-driving 
application. As shown in the table, the energy saving of the vehicle equipped with EAD system vary from 
2.5% to 28% in comparison with the baseline vehicle operated by an uninformed driver.  

Table VII.4.1 Connected Vehicles based eco-driving field test 

Technology Location Communication Energy 
Savings Ref 

 
EAD with Fixed Signals 

Richmond, CA 4G/LTE 14% [1] 

Riverside, CA DSRC 11%-28% [2] 

McLean, VA DSRC 2.5%-18% [2] 

EAD with Actuated Signals 
Riverside, CA DSRC 5-25% [3] 

Palo Alto, CA DSRC 7% [4] 

GlidePath (HMI-assisted) McLean, VA DSRC 5% [5] 

GlidePath (Automated) McLean, VA DSRC 17% [5] 

Although field experiments would better validate the proposed algorithm by the practical results from the real-
world traffic, micro-simulation is still necessary in some cases if the designed scenario is difficult to 
implement in the real world. For example, the CACC-enabled EAD study in VISSIM provide a comprehensive 
analysis of this technology under different traffic congestion levels and market penetration rates. The study site 
is along State Highway 105 (SH-105), Conroe, TX. running coordinated actuated signal control (with 
Econolite ASC3 controllers). There are three lanes in both directions of SH-105, with the speed limit of 55 
mph. The simulation model was calibrated against a typical weekday during the morning peak hour. The traffic 
volumes of SH-105 EB and SH-105 WB are 2045 vehicles per hour (vph) and 1082 vph, respectively. Under 
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the calibrated traffic congestion level, various scenarios with different market penetration rate (MPR) of 
equipped vehicles, i.e., 0% (baseline), 20%, 40%, 60%, 80%, and 100%. Table VII.4.2 presents the 
environmental benefits that equipped vehicles may bring out to the system. The reduction in CO2 emission and 
energy consumption may vary from 1.4% - 6.5%. 

Table VII.4.2 Environmental Impacts of CACC-enabled EAD 

Penetration CO2(g/mile) CO2(% of reduction) Energy(kJ/mile) Energy (% of 
saving) 

Baseline 16.9 - 234.8 - 

20% 16.6 1.78 231.6 1.36 

40% 16.5 2.37 229.8 2,13 

60% 16.4 2.96 227.5 3.11 

80% 16.1 4.73 224.2 4.51 

100% 15.8 6.51 220.0 6.30 

 
The research team is also working on the model implementation phase, with a focus on the simulation of CAV 
and shared mobility impacted traffic in BEAM. Figure VII.4.3 shows the simulation network of City of 
Riverside in BEAM. The population activity is the key input for the model. It defines the travel schedules of 
all the virtual population in the simulated area, which should be generated by the local agent based 
microscopic travel demand model. The Southern California Association of Government offers us their SCAG 
travel demand model which can output aggregated travel demand in a mesoscopic resolution (TAZ level OD 
pairs). To obtain the agent-based activates from the OD table, an activity generation algorithm is then 
developed to produce schedule. The census block population distribution data is utilized in this algorithm. 
With these inputs, the preliminary BEAM simulation environment is built and the BEAM model is ready to 
work. The next scope of work is to analyze the output of the simulation and calibrate the model in terms of 
CAV and share mobility scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.4.3 Simulation network of City of Riverside in BEAM 
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Conclusions 
In this project, extensive real-world data collection supplemented with simulation studies to cover a variety of 
scenarios, including different vehicle types and fuel/powertrain technologies, combination of CAV 
applications, various levels of automation, roadway characteristics, and traffic conditions. The outcomes from 
this project are expected to help close the knowledge gap on recognizing the potential performance and energy 
impacts of a broad deployment of CAV technologies across a wide range of roadway infrastructure with 
varying levels of congestion. This will: 1) support policymakers in steering CAV development and deployment 
in an energy favorable direction; 2) increase the confidence of CAV technology investors both on the 
infrastructure side (i.e., transportation agencies) and on the vehicle side (i.e., OEMs); and 3) expedite the 
deployment of promising CAV and shared mobility applications.  

Key Publications 
 At this point in the project, there are no publications to report. We are working on a paper regarding the 

data collection effort and BEAM modeling.  
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Project Introduction 
This work utilizes a mix of novel on-road, on-track, and in-laboratory experimentation supplemented with 
targeted prototype system experiments and long-term in-field data collection and seeks to support DOE’s 
EEMS work by adding to the state-of-knowledge, in-filling highlighted data gaps, and providing experimental 
results and justifications for promising eco-Connected and Automated Vehicle (CAV) technology and 
operational concepts.  

Objectives 
• Investigation of vehicle-following aerodynamic impacts related to following distance and speed for 2

light-duty vehicles through application of novel direct tractive force measurement and refined
experimental procedures.

• Collection and analysis of real-world behavior and utilization for a range of production Adaptive Cruise
Control (ACC) systems

• Integration of CAV capabilities in the dynamometer laboratory environment for robustly evaluating
current and emerging CAV concepts and supporting researchers though Hardware/Software/Vehicle-in-
the-loop capabilities and data collection.

• Investigation of expanded sensing and awareness capabilities of emerging CAV technologies and how to
leverage these “vehicle-as-a-sensor” concepts for improved efficiency and mobility.
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Approach 
Vehicle Following Aerodynamic Impacts 
Building on previous Argonne developed instrumentation and experimental capabilities, this work sought to 
directly measure the aerodynamic load improvements associated with vehicle following for a range of speeds 
and following distances. To this end, track testing as described in the figure below was performed at several 
speeds and following distances (including a control “alone” reference point). Direct axle torque measurements 
were used to measure the road load forces associated with a particular gap/speed configuration allowing for a 
direct estimate of aerodynamic road load force reduction. This is in contrast to other methods that investigate 
pressure differentials or fuel rate differences across the range of desired speed and gap configurations.  

 

Figure VIII.1.1 Experimental Setup for 2-Vehicle Aerodynamic Following Impacts Assessment 

On-Road Data Collection and Analysis of Adaptive Cruise Control Equipped Vehicles  
In order to better understand the real-world behaviors and outcomes of Adaptive Cruise Control operation (as a 
starting point for more complex CAV behaviors), a range of commercial ACC equipped vehicles were 
evaluated under a mix of real-world routes and conditions with and without the ACC system active. As 
described in the figure below, a mix of driving styles (routes) as well as vehicle and powertrain types were 
assessed providing real-world usage and benefits related to ACC operation.  

 

Figure VIII.1.2 Highlighted On-Road Driving Routes (left) and On-Road Experimental Vehicles (right)  
[clockwise from upper-left – BMW i3 ReX, Honda Accord PHEV, Toyota Prius PRIME PHEV, Ford Taurus IC vehicle] 

 

CAV Laboratory Development and Experimentation  
While the concept of a CAV laboratory can be relatively far reaching, this year’s focus was on emulating the 
vehicle-centric aspects of a CAV operating environment in a laboratory setting. More specifically: 1) 
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emulating the “driver” of a vehicle in an automated situation either via a robotic driver, man-in-the-middle 
CAN override, or human driver following a modified drive-trace and 2) modifying the traction environment 
emulated by the dynamometer (tractive force at a given speed/”location”/operational-situation) to be more 
representative of the true on-road tractive loads (i.e. close following aero. impacts or grade).  

Vehicle-as-a-Sensor Examination 
In parallel to the On-road Data Collection task mentioned above, the on-road data is also used to inform this 
effort seeking to investigate additional and alternative uses for the new streams of data and information coming 
from Connected and Automated Vehicles. By leveraging a vehicle’s collision avoidance sensors, ACC system, 
and GPS location, promising research possibilities begin to open up regarding extracting new information 
about roadway, traffic and other related conditions. To better illustrate the type of data collected in this 
preliminary investigation, the figure below highlights the radar and imaging data for a single location and point 
in time from the vehicle-as-a-sensor platform used during data collection. 

 

 

Figure VIII.1.3 Highlighted Radar and Video Images from Vehicle-as-a-Sensor Preliminary Data Collection 

Results 
The following sections provide some highlighted conclusions from the tasks describe above. Many additional 
data, analysis and conclusions have arisen from this work and are out of the scope for this abbreviated 
overview. 
Vehicle Following Aerodynamic Impacts 
The plot below summarizes the results from the two-vehicle following aerodynamic impact study for a range 
of following time-gaps and two speeds. From the figure below, it can be seen that aerodynamic benefits 
increase significantly as the gap between vehicles decreases to roughly 0.4-0.5s, but closer following appears 
to actually provide slightly diminished benefits. These findings are in line with other previous vehicle 
following research and suggest that intelligent vehicle following may be beneficial versus a constant push for 
the closest possible following distance/time gap. Additionally, overlaying approximate bands for various 
automated following technologies (CACC, ACC, etc.) indicates that additional technical improvements beyond 
recent CACC vehicles will be necessary to achieve the expected benefits seen in very close following.   
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Figure VIII.1.4 Highlighted Road-Load Force Reduction for Varying Vehicle Time Gaps and Speeds for 2-Vehicle Experiments 

 
On-Road Data Collection and Analysis of Adaptive Cruise Control Equipped Vehicles 
As discussed above, a range of ACC vehicles were operated under real-world driving conditions over a series 
of prescribed driving locations to provide a mix of usage while retaining some degree of consistency in terms 
of day-to-day variations. This information was used for a variety of insights related to this initial step into the 
future of vehicle automation. For example, by aggregating ACC operating points from in-field, one can begin 
to see operational differences between different ACC implementations. The figure below highlights the 
observed ACC operational envelope for two vehicles. It is clear from the observed usage data that the Prius 
Prime (left) has the capability of low-speed ACC operation as well an expanded envelope of acceleration 
capabilities. This data and analysis provides evidence that ACC systems themselves differ in terms of their 
implementation, utilization, and capabilities, thus their expected in-field impacts related to fuel consumption, 
traffic flow, and many other items will likely differ and necessitate in-field data collection and 
experimentation. 

Figure VIII.1.5 Observed ACC Operational Envelopes for Two Select Study Vehicles 

Relatedly, this information can be used to characterize an ACC system’s behavior such that a vehicle’s ACC 
strategy can be used to establish modified drive cycles to evaluate the impact of a particular 
smoothing/following strategy.  
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CAV Laboratory Development and Experimentation 
While many refinements were added to Argonne’s laboratory, instrumentation and experimental capabilities 
within this fiscal year, two highlights include: 1) upgraded robotic driver capable of handling CAV type 
behaviors and 2) Man-in-the-Middle CAN override capabilities used to operate a production ACC system 
within a laboratory environment. 
 
As summarized in the figure below, the laboratory’s robotic driver was modified for a range of CAV relevant 
input/outputs and used for two specific, high-impact use cases. More specifically, the system was adapted to 
provide highly repeatable acceleration and deceleration trajectories used in a range of eco-launch/stop studies. 
The increased reliability and repeatedly provided by the robot versus a human driver is imperative for 
examining a range of possible strategies with sufficient statistical robustness. Secondly, the driver was also 
modified to provide an ACC “driver” for vehicles not equipped with ACC. This was particularly useful since 
experiments regarding a particular ACC strategy could be consistently applied over a range of vehicles without 
requiring that the experimental vehicles have a stock ACC system. Looking forward, these modifications will 
be a key part of the future of automated vehicle laboratory testing in support of DOE’s EEMS and SMART 
efforts.  

 

Figure VIII.1.6 Highlighted Robotic Driver Use Modifications and Use Cases 

In addition to the robotic driver capabilities, a man-in-the-middle (MiM) CAN override approach was also 
demonstrated for a Prius Prime research vehicle. This override allowed a lead vehicle to be emulated within a 
following vehicle’s ACC system, thus allowing the vehicle’s true behavior to be replicated in a dynamometer 
laboratory environment. This has a variety of beneficial impacts, including more repeatability, more 
experimental control, the ability to push the vehicle into atypical scenarios as well as other benefits associated 
with laboratory testing over on-road data collection. One of the most interesting and powerful capabilities of 
this MiM technique is that specific control parameters (such as following gap time target versus vehicle speed 
as shown below) as well as specific maneuvers can be explicitly probed in a controllable and high-fidelity 
laboratory environment. The data below was generated by emulating a steady-state vehicle ahead of the test 
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subject and observing the emulated gap distance (and thus time) at which the following vehicle’s speed 
stabilized around the targeted speed. 

 

Figure VIII.1.7 Prius Prime ACC Target Following Time versus Vehicle Speed 

As mentioned above, another use for the CAN MiM override is that production ACC systems can be operated 
in a laboratory environment (thus affording the benefits of a laboratory while retaining the new CAV 
operational functionality). Shown below is driving data from the US06 cycle with the ACC system active (and 
running with the MiM active) as well as from a conventional “manually” driven drive cycle. Smoothing due to 
the ACC system can be observed in contrast to the nearly overlaid match between lead and following vehicle 
for the manually driven case. While the ACC results themselves are relevant, this also proves the concept that 
CAV functionality can be incorporated in the laboratory, laying the groundwork for continued research and 
development related to operating a range of CAV behaviors and technologies in a laboratory environment.  

 

Figure VIII.1.8 Laboratory Experiment Driving US06 with ACC MiM Active and Emulating a Lead Vehicle Following Prescribed 
Drive Trace 

 

Vehicle-as-a-Sensor Examination 
The figure below highlights one important aspect of a vehicle-as-sensor concept. Showing the reported 
instantaneous gap distance reported by the vehicles ACC system overlaid with the vehicle speed, one can 
quickly see that the system provides information regarding the traffic dynamics that include the slowing of 
vehicles as gaps decrease. Even with a single vehicle, this information provides a robust (minimal large step 
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changes or unrealistic readings) estimate of basic roadway information. In fact, more advanced processing of 
the ACC system’s radar outputs allows a single vehicle to sense multiple gaps within its line of (radar) sight. 
This reinforces the concept that the additional sensing afforded by CAVs vehicle needs combined with GPS 
location information will open up many new possibilities for improved real-time sensing and predictions 
related to roadway conditions and beyond. 
 

 

Figure VIII.1.9 Example Vehicle Speed and Sensed Gap Distances for Single Highway Run (from Argonne to Downtown 
Chicago) 

Conclusions 
A wide range of CAV-relevant results, analysis and data have been developed by these efforts. More 
specifically, this work has provided: 

• Improved estimates of vehicle aerodynamics at a range of following distances and speeds while 
developing and refining novel methods for direct tractive load assessment. 

• On-road data collection for a range of current ACC equipped vehicles providing critical information 
regarding the current state-of-the-art as well as providing a foundation onto which new CAV behaviors 
and analysis can be incorporated. 

• Laboratory adaptations to evolve dynamometer laboratory testing into a suite of capabilities and methods 
that can handle the wider needs of CAV behavior emulation while retaining the robustness, safety, and 
repeatability benefits associated with laboratory testing.  

• Information and sensing required by CAVs for automated driving has many additional possibilities for 
usage that can further inform decisions to improve the efficiency and productivity associated with a 
given transportation system. Preliminary results are promising in that expected and stable behaviors 
appear, thus continued research into how a vehicle itself can become a sensor within the wider 
transportation environment is of continued research interest. 
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VIII.2.1 Maintenance 
Project Introduction 
Autonomie is a plug-and-play powertrain and vehicle model architecture and development environment that 
supports the rapid evaluation of new powertrain/propulsion technologies to improve fuel economy through 
virtual design and analysis in a math-based simulation environment. Autonomie has an open architecture to 
support the rapid integration and analysis of powertrain/propulsion systems and technologies. This architecture 
allows rapid technology sorting and evaluation of fuel economy under dynamic/transient testing conditions. 

To better support the U.S. Department of Energy (DOE) and its user community, several new features have 
been implemented in Autonomie. Some of the most significant accomplishments are described in this report. 

Objectives 
• Allow VTO to use similar tools as OEMs to get consistent results related to state-of-the-art software for 

energy consumption, performance, cost and mobility analysis 

• Support large user community (>250 companies worldwide) including OEMs, National Laboratories, 
suppliers… 

• Upgrade AMBER, Autonomie, RoadRunner, SVTrip and POLARIS to continue to work with the latest 
releases of third party tools (e.g., Matlab/Simulink, Microsoft .NET) 

• Integrate models, data, use cases funded by DOE 

• Support any unplanned specific DOE request, including component technology, requirements, analysis 

mailto:David.Anderson@ee.doe.gov
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Results  
Over 800 support requests from OEMs, suppliers, universities and national laboratories were answered this 
year showing the level of interest in Autonomie. During this fiscal year, three releases of Autonomie were 
made: REV16, REV16SP1 and REV16SPS2.  

REV16 included thirteen new Medium and Heavy Duty vehicles, which included ISG, PHEV, and BEV 
variants for transit bus. It also includes the Prius Prime and the 2nd generation Voltec. There were also new 
multimode and hybrid DCT powertrains. A generic thermal configuration along with a new configuration 
supporting 48-volt systems was also included in this release. All of these configurations were developed to 
support studies. 

The REV16SP1 release was based on REV16 just with several bug fixes and enhancements. These were 
provided by OEMs. The two main issues were handling and building models with a very large number of 
signals and allowing the solver options to be parameterized. Linux support on clusters was also verified and 
several distributed computing issues dealing with the new project options and propagating the project options 
to the workers were resolved in the Matlab backend. These were critical in supporting our OEM users. 

Finally, in the fourth quarter, there was the REV16SP2 release, which had several minor updates to the 
Autonomie dictionary, which is shared with AMBER. The default libraries and repositories were also 
reorganized and repackaged in a way more compatible with AMBER. 

 
VIII.2.2 Core Modeling Tools 
Project Introduction 
The concept of workflows is part of the design philosophy of Autonomie, and Autonomie has had great 
success in supporting user-defined workflows for a single vehicle. Under MBSE, many workflows exist, such 
as model verification and validation, Design of Failure Modes Analysis (DFMEA) analysis, vehicle validation 
and correlation, test data quality assurance, system based hardware-in-the-loop, system based software-in-the-
loop, system based model-in-the-loop, large-scale study, and large-scale data analysis. Numerous OEMs and 
even other government entities have used these workflows and would benefit if they were supported in 
Autonomie. This project addresses these additional workflows by modifying the framework of Autonomie to 
support customized workflows that do not directly involve loading a single vehicle and running a simulation. 
Before addressing these other workflows, compatibility with the current workflow must be maintained and 
demonstrated. This new framework is referred to as the Advanced Model Based Engineering Resource or 
AMBER. 

Objectives 
• Support a much larger number of MBSE workflows within the user interface 

• Develop a new system integration platform that support Smart Mobility activities 

• Develop new workflows that support Smart Mobility activities 

Results  
AMBER has succeeded in creating a flexible platform on which DOE can build its research tools. As shown in 
Figure VIII.2.2.1, the intent is to build a tool that encompasses the full suite of energy for transportation 
simulation tools. This will allow DOE to provide answers to some of the most relevant questions about 
intelligent transportation affecting our nation's energy consumption. 
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Figure VIII.2.2.1 The Energy for Transportation Workflow 

 
Early in the year, there was an AMBER 1.0 Public Beta release to gather OEM feedback. We received and 
incorporated their feedback into the tool. Some of the requested improvements include single click-- cycle, 
model, and configuration import and several speed improvements in loading and viewing thousands of signals 
in AMBER. In addition, an equivalent of moveable steps in Autonomie was created so that OEMs could 
customize the default AMBER workflows. As part of this work, our team demonstrated moving an OEM 
vehicle from legacy Autonomie and running them in AMBER.  

At the end of the fourth quarter, there was an AMBER 1.0 release. It is now being phased in for use on DOE 
studies. As part of the 1.0 release, there were many improvements in AMBER that affect every workflow. 
Many of the existing Autonomie workflows were enhanced with new user interfaces or improvements. These 
included the project and user settings, which is a user interface to setup libraries, import settings and other user 
options. A simulation options user interface was develop to configure the solver. The data analysis workflow 
was heavy revised to improve significantly the speed of loading results. The vehicle editor also had many bug 
fixes and performance enhancements. 

Regression tests on Jenkins were developed and several tasks were accomplished regarding obfuscation, 
licensing and deployment. All of these tasks were necessary for deploying a high quality product and allowing 
seamless updates to the tool. With unit tests and an update process a continuous deployment of patches can be 
achieved in the future. 

Many of procedures were ported from Legacy Autonomie into AMBER. These included gradeability, passing 
and many certification procedures such as Two Cycle US, Five Cycle, J1711 PHEV, Japan PHEV, EU PHEV, 
several heavy-duty procedures along with others.  

A Matlab backend was also developed to support the integration of optimization routines. This framework can 
be leveraged in developing optimization workflows in future development tasks. 

There were significant improvements to the POLARIS AMBER user interface and the entire POLARIS-GL 
code based was packaged and added as an action in AMBER. This action is modular and can be reused across 
workflows such as in the Smart Mobility workflow or the POLARIS workflow. 

There were also significant improvements to the Smart Mobility (Energy for Transportation) Workflow, which 
was updated to incorporate Aimsun, VISSIM and MOVES. The user can now choose between SVTrip and 
VISSIM for trip generation or choose between Autonomie or MOVES for energy calculations. 
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VIII.2.3 Real-World Energy Impact Estimation 
Project Introduction 
Several studies have been done using simulation tools to evaluate the impact of vehicle technologies under real 
world conditions. All these were done using models that were verified with test data from dynamometers. As 
part of the other projects sponsored by DOE, University of Michigan has collected a large amount of data from 
instrumented vehicles under real world driving conditions. This projects utilizes that data to verify the 
accuracy of simulation models. This effort helps to define levels of confidence in the simulation results 
involving real world driving conditions.  

Past studies have shown that if a vehicle model is built using sufficient data collected from dynamometer tests, 
the model can be used to predict fuel economy accurately [1], [2]. However many times, modelers are faced 
with the challenge of building vehicle models using standard library components, and scaling them to the 
power rating needed in a vehicle. In this case too, the real world cycles were recorded from over 200 different 
makes and models of vehicles, and building validated models for each of those vehicles will exceed the time 
and effort expected in this work. So, the first step in this study has been to generate vehicle models based on 
publicly known information, from the vehicle technology database compiled by Argonne National Laboratory. 

Objectives 
• Develop a process to automatically develop models for a large number of production vehicles  

• Compare the simulated vehicle energy consumption with published data on standard driving cycles 

• Query, collect and process real world vehicle test data  

• Compare the simulated vehicle energy consumption to real world measurements 

Approach 
Vehicle energy consumption can be accurately predicted on standard cycles with validated models. If a vehicle 
model is defined by high-level public data, the accuracy of such a model would not be as good. This study 
examines the level of accuracy that can be achieved by such a model on both standard and real world cycles.  

We used the inputs provided by the University of Michigan as the on-road referral data for our models 
comparison and validation of the real word driving cycle fuel consumption: total 93027 trips recorded for 369 
vehicles.  

Many on-road cycles came with various issues. So, before referring to those data, we needed to (1) identify, 
list and fix (if needed) data issues, (2) filter out unrealistic or unfixable cycles, (3) convert on-road driving 
cycle data into Autonomie format and (4) add leading and trailing sections, if needed. 
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Figure VIII.2.3.1 Approach overview procedure 

Results  
In order to provide detailed results obtained in this study, we will focus here only on two vehicles, one 
conventional and a hybrid vehicle (HEV). The conventional car used here is the 2015 Honda Civic LX 
performing on 270 real world cycles and the HEV is the 2014 Toyota Prius Hybrid performing on 104 real 
world cycles. Those vehicles have been modelled on Autonomie using the publicly available vehicle data, and 
can predict regulatory fuel consumption within an error of +/- 5%. Since real world accessory loads were not 
recorded in the collected data, we assumed 600W for the accessories load during the simulations on the real 
world driving cycles.  

 
Figure VIII.2.3.2 Honda Civic fuel economy distribution 
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For the conventional vehicle, 45% of Autonomie’s fuel consumption predictions are within [-10%; +5%] of 
real world measurements. For HEV case, 53% of Autonomie’s fuel consumption predictions are within 15% 
margin. The following fuel economy density distribution charts help visualize how our models on real world 
cycles compare with the University of Michigan data acquisition. The wider distribution of the real world data 
shows larger variations in real world conditions during the acquisition. There are some extreme cases (blue 
colored zones in Figure VIII.2.3.2) that appear in the density distribution of the UofM data. However, with 
Autonomie’s vehicle model, 91% of the fuel economy is within [30 45] mpg which is in line with the 
assumptions we used for real world driving. Autonomie’s fuel economy prediction for conventional cars is 
overall accurate and consistent with real world measurements.  

 
Figure VIII.2.3.3 Toyota Prius fuel economy prediction distribution vs Real world fuel economy distribution  

for various accessory loads 

 
The knowledge of the accessories power during the cycle is deterministic as we can see with the Figure 
VIII.2.3.3: Toyota Prius fuel economy prediction distribution vs Real world fuel economy distribution  
for various accessory loads. Indeed, as accessories load vary from 200W to 800W, the fuel economy density 
distribution radically varies as well. We have also a cold start penalty in the begging of the cycle in order to 
reflect the real world condition of driving. For that end, we assumed 15% fuel consumption penalty for the first 
505 seconds of the cycle. Therefore, in the case of the 2014 Toyota Prius Hybrid, with the assumption of 
800W power accessories and the cold start penalty applied, Autonomie’s fuel economy prediction overall 
matches the on-road fuel economy (red and blue plots in the Figure VIII.2.3.3).  

Conclusion and next steps 
In this study, the vehicles considered so far (for the manufacturing years from 2011 to 2018) are 143 
conventional vehicles, 52 HEVs, 13 PHEVs and 2 EVs. The vast majority of vehicles show <10% fuel 
economy uncertainty on the standard driving cycles. Autonomie’s models only represent operation under 
ambient conditions (i.e., 72F with warmed up engine). Therefore, the lack of information on several important 
parameters (i.e. vehicle accessory load, outside temperature, Initial SOC) can explain the wider predictions 
uncertainties in certain cases. For the future data collection efforts funded by DOE, we would request the 
inclusion of more parameters that would help in calibrating Autonomie models. 
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VIII.2.4 Toyota Prius Prime Validation 
Project Introduction 
Argonne has been working with the U.S. Department of Energy (DOE) and the automotive industry to provide 
informative analysis results of advanced vehicles to the public. For this purpose, the Advanced Powertrain 
Research Facility (APRF) is equipped with two-wheel and four-wheel drive dynamometers, and vehicle 
performance characteristics, such as fuel economy and emissions, are evaluated on bench dynamometers. For 
many years, Argonne has tested, analyzed, and validated the models for conventional, hybrid electric, plug-in 
hybrid electric, and battery electric vehicles (EVs), including their thermal aspects; Argonne is continuing its 
efforts to provide more analysis results for advanced vehicles. 

Toyota Prius PHEV of which electric drive range is 25 miles. It is improved from the former version by adding 
a one-way clutch to the engine side which enables for generator to support electric drive. In fiscal year 2018, 
analysis, development and validation of the vehicle was done based on the test data from APRF of which 
chassis dynamometer set temperature can be controlled in a thermal chamber. 

Objectives 
The objective of this study is to develop and validate Prius Prime vehicle model to understand and quantify the 
impact of cold and hot ambient temperature on the vehicle energy consumption for new powertrain 
configurations. 

Results  
Control Analysis 
To develop a vehicle model by merging the developed components model, we analyzed the vehicle-level 
control of Prius Prime. First, we analyzed the control algorithm based on normal temperature (or warmed-up 
start condition without HVAC operation), including engine on/off, battery energy management, or engine 
operating points, etc. 

The Prius Prime as a PHEV normally depletes the electric energy first called charge depleting (CD) mode. If 
the battery SOC is depleted to a certain point, the vehicle is driven keeping the battery SOC called charge 
sustaining (CS) mode. Thanks to the one-way clutch which makes the generator connected to sun gear can 
support the electric driving called EV2 mode. There were no engine operation while in CD mode because of 
EV2 mode and larger battery size compared to the former version of Prius PHEV which shows many engine 
on in CD mode. As in Figure VIII.2.4.1, there is no engine on when the battery SOC is over 15%. According 
to the analysis, the mode change from CD to CS occurs at 14.5%. 
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Figure VIII.2.4.1 Battery output power according to battery SOC. 

After the CD or CS mode is determined, the engine on/off condition should be defined. There was no engine 
operation in CD mode for the Prius Prime so no need to define any engine on condition in CD mode. In CS 
mode, the engine on is determined by the battery SOC and power demand as in Figure VIII.2.4.2. Normally 
engine is turned on when the power demand is over 13kW. However, when the battery SOC decreases under 
12% the engine turn on condition decreases as well to maintain the battery SOC high enough by using the 
engine power as a power source for the vehicle.  

 

Figure VIII.2.4.2 Vehicle wheel power operating points according to battery SOC. 

Once the engine is turned on, it is required to determine how to distribute the energy between engine and 
battery. As in Figure VIII.2.4.3, the more power is charged to the battery as the lower battery SOC. However, 
there is a limit of battery charging about 10kW. Therefore, battery charging when the engine is on occurs from 
about 14.5% of battery SOC and the charging capacity increases as the battery SOC decreases. At 13.5% 
battery SOC, the charging power of the battery is limited to 10kW. 
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Figure VIII.2.4.3 Battery output power according to the battery SOC. 

Validation 
We implemented a model of the vehicle, including calibrated plants and controllers, in Autonomie. The 
validation process is iterative, and combines data analysis, model development, and model calibration. Figure 
VIII.2.4.4 shows how the main signals in the test and in the simulation compare with each other and 
demonstrates the successful validation of the vehicle. 

Figure VIII.2.4.4 Comparison of vehicle operating conditions (UDDS cycle, 22°C and -7°C ambient temperature) 
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Conclusions  
A vehicle simulation model of the Prius Prime vehicle was developed in Autonomie based on test data from 
Argonne’s APRF. First, the performance of the components was analyzed, including thermal aspects. Second, 
the vehicle supervisory control strategy under normal temperature conditions was analyzed and validated in 
Autonomie. 
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Project Introduction  
NREL-developed analytical tools and models, coupled with real-word vehicle and travel data, play a vital role 
in supporting and accelerating the pace of research advancements in the EEMS arena. Available for free via 
the NREL website, three key resources—the Transportation Secure Data Center (TSDC), the Fleet DNA 
repository, and the Future Automotive Systems Technology Simulator (FASTSim)—provide pivotal, 
integrated data and analysis capabilities for assessing and improving energy consumption and performance at 
multiple levels. These resources readily address several fundamental EEMS challenges—sourcing real-world 
data; accurately modeling large-scale systems and comprehensive scenarios; and the need for tools, techniques, 
and insights at vehicle, traveler, and systems levels. 

Objectives  
Key project objectives include:  

• Working with partners to obtain and analyze real-world data for personal travel (in light-duty vehicles 
and other modes) and commercial vehicle travel behavior.  

• Coupling real-world travel insights with agile modeling to evaluate large-scale scenarios. (NREL’s 
long-standing competency in this arena is also applicable to off-cycle credits analysis.) 

• Making research insights openly available, along with supporting data and tools, enabling independent 
replication and extension of research by external stakeholders.  

Approach  
Established in 2009, the TSDC provides centralized access to detailed transportation data from a wide 
assortment of travel surveys and studies conducted across the nation. The TSDC’s two-level access 
approach—a public website for downloading cleansed datasets and a secure online portal for approved users to 
work with detailed spatial data—facilitates data availability for legitimate research while maintaining the 
anonymity of survey participants. Maintained by NREL in partnership with the U.S. Department of 
Transportation, the TSDC features millions of data points for all modes of travel, including second-by-second 
global position system (GPS) readings, vehicle characteristics (if applicable), and demographics. NREL 

https://www.nrel.gov/transportation/secure-transportation-data/
https://www.nrel.gov/transportation/fleettest-fleet-dna.html
https://www.nrel.gov/transportation/fastsim.html
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screens the initial data for quality control, translates each data set into a consistent format, and interprets the 
data for spatial analysis. NREL’s processing routines add information on vehicle fuel economy and road 
grades and join data points to the road network.  
 
Established in 2012, the Fleet DNA clearinghouse now features over 12 million miles of high-fidelity vehicle 
and operations data from more than 1,800 medium- and heavy-duty vehicles, including delivery vans and 
trucks, school buses, transit buses, bucket trucks, service vans, tractor trailers, and refuse trucks. Aggregated 
duty cycle statistics, summaries, and visualizations are available for download via the public website while a 
secure database stores and protects the raw data. Fleet DNA can be combined with other models, tools, and 
data resources, and subjected to data fusion, multivariate analysis, and advanced visualization techniques to 
investigate complex, multi-dimensional transportation issues and solutions. For example, Fleet DNA data can 
be fused with datasets pertaining to chassis dynamometer results, road networks, road grade, weather, vehicle 
specifications, and vehicle registrations, and combined with other tools such as FASTSim and the Drive-Cycle 
Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool, which uses GPS and controller area 
network (CAN) data to characterize vehicle operation and produce statistically representative drive cycles 
based on real-world activity. 
 
Building upon NREL’s decades of experience with vehicle powertrain modeling, FASTSim provides an easy 
way to compare powertrains and estimate the impact of technology improvements on light-, medium-, and 
heavy-duty vehicles. Balancing accuracy and complexity, it captures the most important factors influencing 
vehicle fuel economy, performance, and cost—including powertrain technology, vehicle and component sizes, 
how the vehicle is driven, etc. It accommodates a range of vehicle types—conventional (spark ignition, 
Atkinson, diesel, and hybrid diesel), electric-drive (hybrid, plug-in hybrid, and all-electric), and hydrogen fuel 
cell vehicles—and includes standard U.S. drive cycles as well as European and Japanese cycles (plus the 
ability to link to on-road drive cycles from the TSDC and Fleet DNA). 

Results  
The TSDC continues to see substantial growth in the number of external users (the public website currently 
has more than 2,000 registered users while the secure data portal has roughly 100) as well as the number of 
datasets, with efforts underway to secure additional datasets. Redesigned to accommodate an ever-increasing 
number of datasets, the revamped public website features an enhanced user experience with a one-time login 
functionality, an interactive map, a sortable and searchable table, and a landing page for each dataset—all 
within a responsive design template that accommodates viewing via mobile devices. To ensure a positive 
experience for users of the secure portal as well, NREL developed a questionnaire to solicit feedback at two 
points during each user’s access period.   
 
To further increase the TSDC’s reach, NREL hosted a hands-on workshop titled “Open Travel Data: Demo of 
Analysis Potential with the TSDC” at the GIS for Transportation Symposium in March 2018. Additionally, a 
new TSDC GitHub repository houses tutorials and demonstrations of how faculty, students, national lab 
researchers, and others can utilize the data. 
 
Nearly 150 research publications have been supported through access to TSDC data, across a wide range of 
applications. Example research areas supported by TSDC data include:  

• Real-world driving and parking profiles used to inform charging infrastructure siting based on potential 
future vehicle penetration scenarios.  

• Analysis of the prevalence of driving conditions detrimental to vehicle emissions control (NREL 
conducted this work in collaboration with industry partners). 

https://github.com/NREL/TSDC/blob/master/sample_analysis.ipynb
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The Fleet DNA clearinghouse features 1-Hz engine CAN, GPS, and component data from commercial 
vehicles operated by project partners across the country. New this year are 14 datasets from UPS; Walmart; 
Zion and Bryce Canyon national parks; the ports of Long Beach, New York, and New Jersey; Mexico City; the 
U.S. Army Tank Automotive Research, Development, and Engineering Center (automated vehicles); Odyne; 
Rialto School District; Duluth and Santa Clara Valley transit authorities; and the NREL shuttle fleet. In 
addition to securing and processing these new datasets, NREL made significant improvements related to data 

Figure VIII.3.2 The TSDC’s public website, which underwent a major redesign in FY 2018, offers cleansed 
data for download while a secure portal provides approved users with access to spatial data. Credit: NREL 

Figure VIII.3.1 The TSDC boasts a growing number of registrants from various backgrounds, primarily 
academia, government, and private industry. Credit: NREL 
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processing, scalability, and access. The new Spark big-data platform enables operation on the full data package 
and provides new capabilities to filter signals, quickly query for available data, work with missing values, and 
much more. Its consistent data structure makes sharing data easier, and the platform is highly scalable with 
increasing quantities of data. NREL also launched an updated version of the DriveCAT drive cycle analysis 
tool, with over 30 representative downloadable drive cycles developed from Fleet DNA data. 
 
Fleet DNA’s extensive, real-world data help users understand the broad operational range of commercial 
vehicles across vocations, technologies, and weight classes and enable the successful development of energy-
efficient vehicle technologies that meet performance requirements and reduce operating costs. The data-driven 
insight and decision-making capabilities facilitated by Fleet DNA support a variety of DOE-funded research 
activities and partnerships, including recent work with industry partners Cummins, Robert Bosch, Peterbilt, 
Volvo, Ford, Eaton, Proterra, Navistar, Blue Bird, Efficient Drivetrains, PACCAR, and Odyne.  
 

The following examples highlight recent projects that leveraged Fleet DNA:  

• Fleet DNA supported several research projects led by two pillars within DOE’s Systems and Modeling 
for Accelerated Research in Transportation (SMART) initiative—a multi-modal pillar project used Fleet 
DNA delivery truck data collected from UPS trucks in Columbus, Ohio; and a connected and automated 
vehicles pillar project tapped into detailed platooning test results combined with national usage data from 
Volvo trucks. 

• In partnership with the Cummins and PACCAR Super Truck II teams and Purdue University’s ARPA-E 
NEXTCAR team, NREL fused Fleet DNA data from class 8 tractor trailers with road network data, 
employing data mining and analysis techniques to support optimized and connected powertrain 
development subject to real-world driving conditions. 

• In partnership with Blue Bird, NREL utilized Fleet DNA school bus data for drive cycle development 
and baseline EV chassis dynamometer testing to aid in the development of a next-generation, high-
efficiency, electric school bus with vehicle-to-grid power export capabilities.  

Figure VIII.3.3 Map showing freight volumes (red) along major U.S. roadways and Fleet DNA data coverage (blue) along 
those routes. Credit: NREL 

https://www.nrel.gov/transportation/drive-cycle-tool/
https://www.nrel.gov/transportation/drive-cycle-tool/
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• NREL employed Fleet DNA data analytics to 1) improve the Environmental Protection Agency’s Motor 
Vehicle Emission Simulator (MOVES) by providing idle, soak, and speed distributions across vocations 
and weight classes and 2) develop low-load NOx emission profiles for the California Air Resources 
Board in partnership with the Southwest Research Institute. 

• Industry partners Cummins and Robert Bosch are utilizing representative drive cycles developed from 
Fleet DNA data using the DRIVE tool in their development of commercially viable, range-extended 
electric vehicles for urban delivery applications, targeting efficiency improvements of 50%. 

 
NREL continues to validate and enhance FASTSim, now available for download on the NREL website in 
Excel and Python formats along with a recently published FASTSim Validation Report, a new introductory 
fact sheet, and an assortment of technical papers (70 listed on the website to date) describing research projects 
that made use of the tool.  
 
FASTSim has played an important role in a wide variety of NREL research projects and industry partnerships 
this year, contributing to efforts in real-world modeling, powertrain optimization, thermal modeling, fuel-
economy estimations, eco-adaptive controls, eco-routing, energy-aggregation analyses, off-cycle technology 
evaluations, battery life and charging infrastructure analyses, optimized fleet operation, and economic 
evaluations, among other topics. 

 
While the TSDC, Fleet DNA, and FASTSim can be used independently, in combination they offer 
compounded benefits and insights, as in these recent cases: 

• Segregation and analysis of vehicle speed profiles in different driving conditions as well as simulation 
for various vehicle/powertrain types – Used to train energy estimation modeling for green routing and 
aggregate off-cycle technology impact assessments, including for connected and automated vehicles. 

• Large-scale screening of prospective vehicle dynamics and powertrain control strategies prior to 
implementation by a major automaker. 

• Opportunity assessment for commercial vehicle electrification – Worked with multiple industry partners 
to optimize hybrid electric, all-electric, and range-extended EV powertrain requirements using FASTSim 
models simulated across a distribution of real-world vocational drive cycles and operational modes from 
Fleet DNA. 

Conclusions    
Valuable EEMS resources, the TSDC, Fleet DNA, and FASTSim provide vital real-world data and analysis 
capabilities for assessing and optimizing current and future vehicle/transport energy consumption and 

Figure VIII.3.4 FASTSim validation efforts focus on price, acceleration, and fuel economy. Credit: NREL 
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performance. While protecting individual privacy and commercially sensitive data, NREL makes these tools 
easily accessible—open source and free of costs associated with licensing and 3rd party software—to 
researchers at NREL and at large, maximizing their value to the national laboratory system, U.S. industry, and 
ultimately the American consumer.  

Combining these tools enables agile, large-scale, cost-effective scenario evaluations, drawing on validation and 
real-world data for credibility and focusing on the most influential effects and fidelity required for a given task. 
Over the course of the year, these tools have been applied in numerous DOE evaluations pertaining to 
advanced powertrains, connected/automated vehicles, and alternative fuel infrastructure as well as industry 
partnerships focusing on the assessment of off-cycle technology and alternative powertrain design scenarios. 
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