Emissions Control for Lean Gasoline Engines

<u>Todd J. Toops</u>, James E. Parks (PI), Josh A. Pihl, Shean Huff, Vitaly Prikhodko

Oak Ridge National Laboratory

ACE033 May 17, 2012

Gurpreet Singh and Ken Howden
Advanced Combustion Engines Program
U.S. Department of Energy

Project Overview

Timeline

- New project:
 - Combination of two related efforts
 - Refocused to address current DOE and industry needs
- Lean Gasoline: Started in FY10
- Fundamental Catalysis: Started in FY02

Budget

- Lean Gasoline
 - FY11: \$200k
 - FY12: \$400k
- Fundamental Catalysis
 - FY11: \$200k
 - FY12: \$0k

Barriers Addressed

- Barriers listed in VT Program Multi-Year Program Plan 2011-2015:
 - 2.3.1B: Lack of cost-effective emission control
 - 2.3.1C: Lack of modeling capability for combustion and emission control
 - 2.3.1.D: Durability

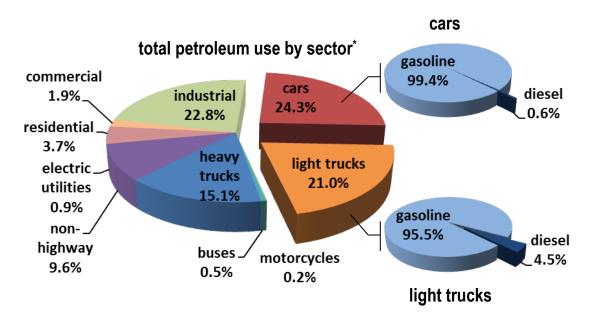
Collaborators & Partners

- Umicore
- General Motors
- University of South Carolina
- University of Wisconsin
- Cross-Cut Lean Exhaust Emissions Reduction Simulations (CLEERS)

Objectives and Relevance

Enabling lean-gasoline vehicles to meet emissions regulations will achieve significant reduction in petroleum use

Objective:


- Address technical challenges to meeting emissions regulations
- Investigate strategies to achieve cost-effective compliance
 - minimize precious metal content while maximizing fuel economy

Relevance:

- U.S. passenger car fleet is dominated by gasoline-fueled vehicles.
- Enabling introduction of more efficient lean gasoline engines can provide significant reductions in overall petroleum use
 - thereby lowering dependence on foreign oil and reducing greenhouse gases

Relevance: small improvements in gasoline fuel economy significantly decreases fuel consumption

Lean gasoline vehicles can decrease **US** gasoline consumption by ~30 million gal/day

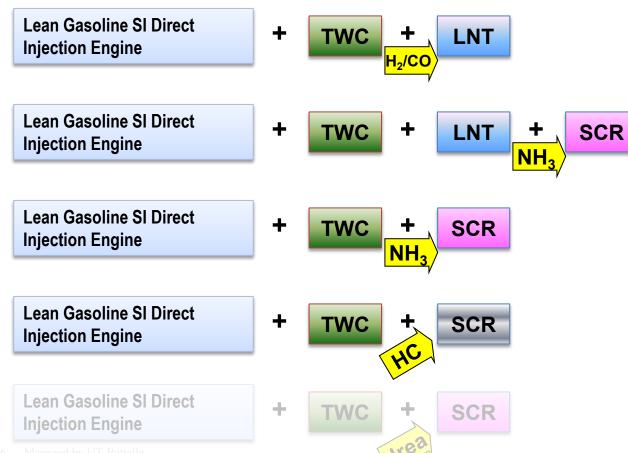
- 132,000 million gallons of fuel used by cars and light trucks annually**
- New car and light-truck sales dominated by gasoline engines
- 10% fuel economy benefit † from base case of 22.6/18.1 mpg** has big impact
 - Saves >200,000,000 barrels gasoline annually
 - 5% of overall petroleum used
- **HOWEVER...emissions compliance needed!!!**

Current and Future Milestones

- FY2011: Investigate performance, sulfation and desulfation of Ca-doped LNTs with a Ca-level between 3 and 9% (9/30/2011).
 - Complete; project merged with Lean Gasoline project
- FY2011: Analysis of lean-rich period modification for enabling lower volume LNTs to reduce the higher concentrations of NOx associated with lean gasoline engines (9/30/2011).
 - Complete
- FY2012: Measure the effect of oxygen storage capacity on NH₃ formation by three way catalyst for use in passive SCR emission control strategy. (9/30/2012)
 - On track
- Future years will adopt a quantitative milestone approach to ensure progression towards goal
 of low-cost emissions control solution for fuel efficient lean-burn gasoline vehicles

	FY13	FY14	FY15	FY16	FY17
Fuel economy gain over stoichiometric	7%	10%	10%	12%	15%
Total emissions control devices Pt* (g/L _{engine})	8	7	6	5	4

	Pt-equivalent	
Platinum	\$ 1,504/troy oz.	1.0
Palladium	\$ 463/troy oz.	0.3
Rhodium	\$ 3,582/troy oz.	2.4
Gold	\$ 989/troy oz.	0.7


^{* -} will use Pt equivalent to account for different costs of Pt, Pd and Rh; 5-year average value fixed at beginning of project

Approach: Technology Options and Critical Issues Related to Cost and Performance

- Goal: Enable Tier II Bin 2 Emission Compliance for Lean Gasoline Engine
- Focus on NOx, CO, HC (PM may be issue for DI engines, but outside of project scope; new project starting)
- Technologies: TWC = Three-Way Catalyst
 LNT = Lean NOx Trap

SCR = Selective Catalytic Reduction

Specific Key Issues:

Cost, Durability, Fuel Penalty, Operating Temp., etc...

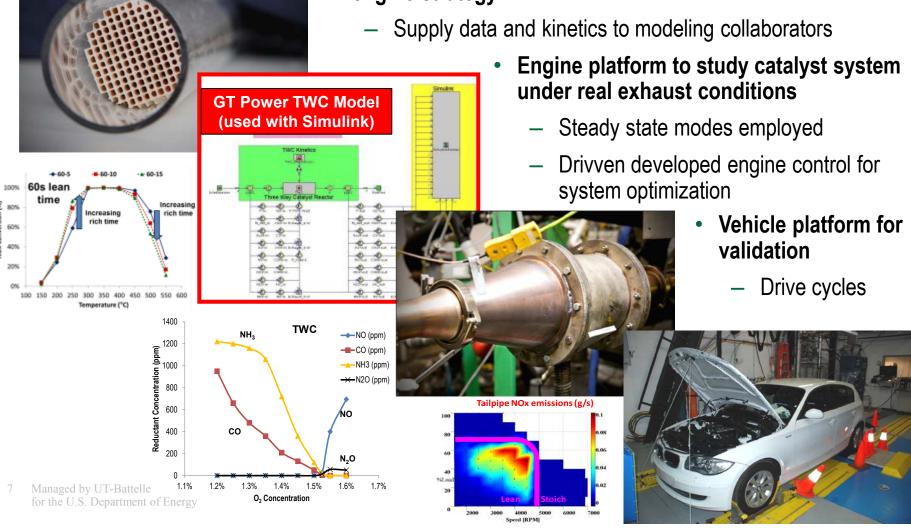
LNT Capacity and Cost
HC Slip Control

LNT NH₃ Optimization HC Slip Control

TWC NH₃ Production HC Slip Control

Temperature Performance HC Supply and Slip Control

Urea Tank/Injector Cost Customer Acceptance


Not in Project Scope

Managed by UT-Battelle for the U.S. Department of Energy

Overall approach to meeting long term milestones

- Improve catalyst understanding and optimize emissions control
 - Catalyst technology focus → Efficiency gains from lean vs. stoichiometric operation

Understanding from bench reactor catalyst data guides engine strategy

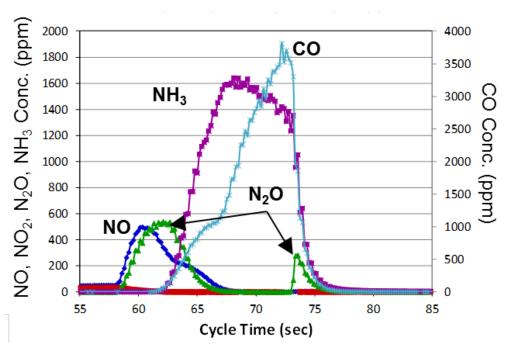
Collaborations and partners

- Currently all collaborations are based on mutual interest
 - No subcontracts between partners
- General Motors
 - Monthly teleconferences
- Umicore
 - Catalyst supplier for the commercial LNT and TWCs
 - Facilitating range of catalysts with varying PGM and functionality
 - Monthly teleconferences
- University of South Carolina
 - Visiting graduate student operating and analyzing bench reactor data
- University of Wisconsin
 - Modeling components; based on global kinetics
- CLEERS
 - share results and identify research needs

Summary of Technical Accomplishments

- Progressed towards lean gasoline engine dynamometer platform
 - Obtained two lean gasoline vehicles (BMW 120i)
 - Engine to be removed from one for full control in test cell
 - Other vehicle to be kept intact for chassis-studies
 - Subcontract to Drivven to develop full pass controller in progress
 - Transient drive cycle data uploaded to CLEERS website
- Measured impact of lean/rich duration on NOx reduction and product yields
 - Maximized NOx conversion with constant fuel penalty with:
 - short, concentrated rich dose for high temperatures T>450°C
 - long, low concentration rich dose for T<300°C
 - Identified peak NH₃ and N₂O formation at 250°C
 - Established desulfation temperature: Peak desulfation at 550-580°C (sulfated to 3.4 g/L)
- Identified TWC NH₃ production conditions for passive SCR approach
 - Two TWC technologies studied
 - High PGM, Pd-based technology with <u>no</u> OSC (oxygen storage capacity)
 - Low PGM, Pd/Rh-based technology with OSC
 - Demonstrated controlled NH₃ production while rich with >98% CO/HC conversion

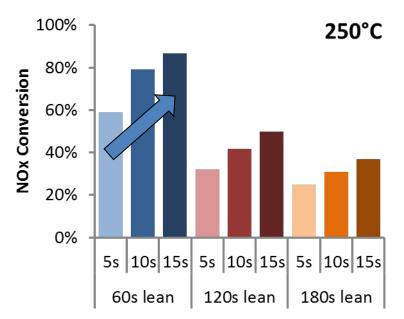
Engine and vehicle platform is the lean burn gasoline version of the BMW120i - 2.0L L4

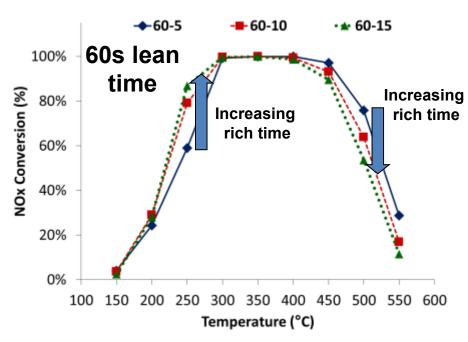


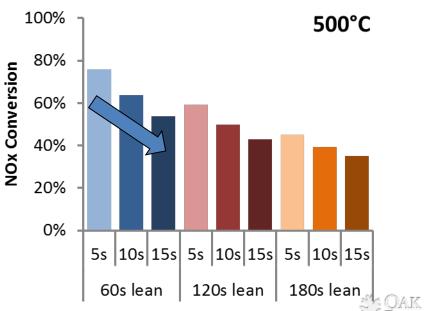
- Vehicle based on industry suggestion
 - BMW lean-burn gasoline vehicle
 - Close-coupled Three-way Catalyst (TWC)
 - Underfloor Lean NOx Trap (LNT)
 - New CLEERS reference catalyst
 - Total PGM = 7.5 g/L-engine
 - As calibrated, does not meet current US emissions standards
- Bench reactor studies focused on catalyst technologies relevant to this application
 - Umicore recommended TWC
 - Pd-only with no oxygen storage component (OSC) in front zone
 - Pd/Rh with OSC in rear zone
 - Identical LNT to BMW

LNT: Lean/rich durations varied to establish impact on NOx reduction and NH₃ formation

- Investigate 3 lean times and 3 rich times for a total of nine conditions
 - Hold rich dose/fuel penalty constant for all cases
 - Stoichiometric reductant concentrations for nitrate reduction to carbonate + OSC reduction
- Develop understanding on tradeoffs of long and short durations
 - Is it better to have a short rich time with high reductant concentrations?
 - What is the impact on conversion and NH_3 and N_2O formation?

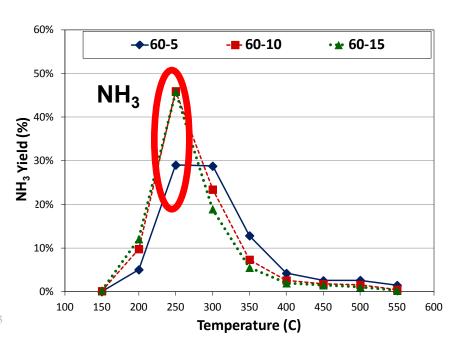

Lean / Rich times	CO	H_2	C_3H_6
60 s lean/5 s rich	2.01%	0.67%	0.112%
60 s lean/10 s rich	1.01%	0.34%	0.056%
60 s lean/15 s rich	0.67%	0.22%	0.037%
120 s lean/5 s rich	2.83%	0.94%	0.157%
120 s lean/10 s rich	1.42%	0.47%	0.079%
120 s lean/15 s rich	0.94%	0.31%	0.052%
180 s lean/5 s rich	3.65%	1.22%	0.203%
180 s lean/10 s rich	1.82%	0.61%	0.101%
180 s lean/15 s rich	1.22%	0.41%	0.068%

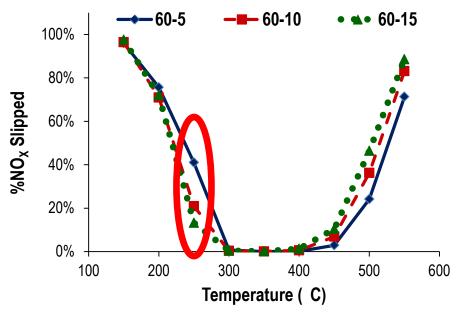

Example products during rich portion of 60s lean and 15s rich at 250°C

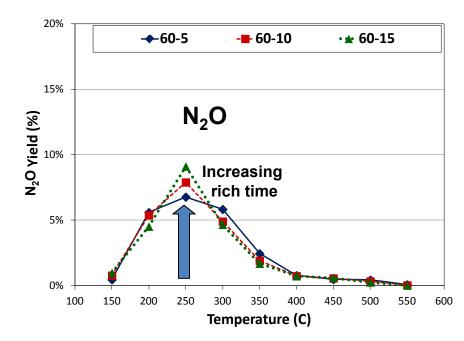


Practical lean/rich timing variation impacts NOx conversion performance

- Short lean times and long, low concentration rich dose favored at T<350°C
 - At 250°C, NOx conversion varies from 25% to 85%...fuel penalty is constant
 - Slow NOx release and reduction kinetics
- Need fast, high concentration rich dose to convert stored NOx at T>400°C
 - Fast NOx release and reduction kinetics

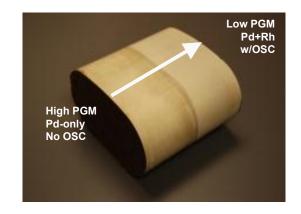


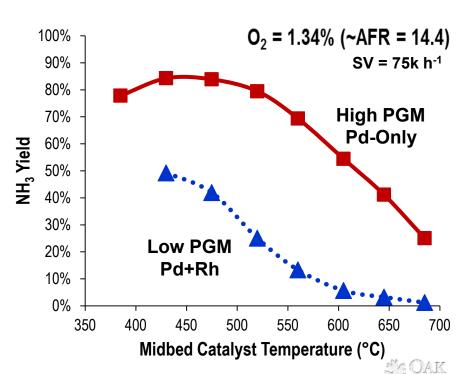



NH₃ generation occurs between 200 and 350°C; potential of LNT+SCR

$$Yield_{NH_3} = \left(\frac{NH_3(produced)}{NO_X(fed)}\right)$$

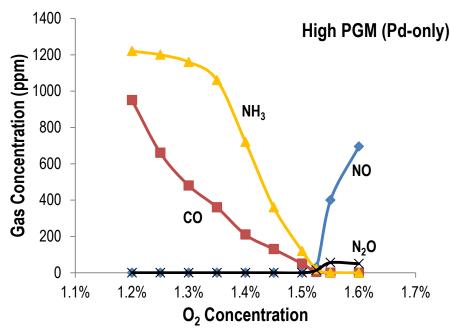
- Up to 45% NO fed goes to NH₃
- Comparing NOx and NH₃ slip at 250°C illustrates potential LNT+SCR system
- Unfortunately, N₂O yield also peaks at these conditions

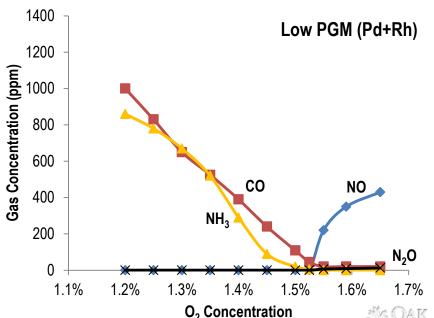



Understanding NH₃ generation over TWC may enable TWC+SCR system without Urea

- Measure performance of TWCs as a function of temperature and components
 - Overall NO, CO, C₃H₆ conversion
 - N₂O and NH₃ formation

- High PGM Pd-only with no oxygen storage component (OSC)
 - 0/4.4/0 g Pt/Pd/Rh
- Low PGM Pd+Rh with OSC in rear zone
 - 0/0.8/0.21g Pt/Pd/Rh
- Including LNT into this study will give the following catalyst types:
 - PGM-only
 - PGM + OSC
 - PGM + OSC + NOx storage

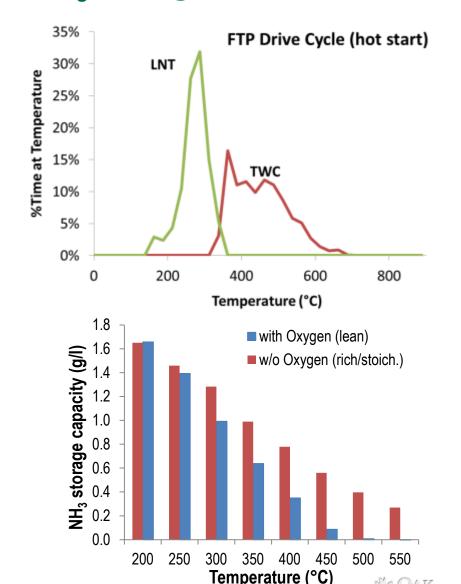




TWC is effective and tunable NH₃ generator

- NH₃ readily generated; varies with PGM
 - For high PGM (Pd-only) TWC:
 - All NO fed converted to NH₃ when very rich
 - For low PGM (Pd+Rh) TWC:
 - NH₃ production is still significant but reduced
- At all conditions, >95% CO conversion
 - C₃H₆ not observed in effluent
 - >98% CO conversion for O₂>1.35% (AFR ~14.4)
- N₂O formation observed under lean conditions and varies with PGM content
 - Up to 56 ppm with high PGM (Pd-only) TWC
 - Less than 10 ppm with low PGM (Pd+Rh) TWC

~AFR	O ₂	NO	СО	H ₂	C_3H_6
14.6	1.59%	0.12%	1.80%	0.60%	0.10%
14.4	1.34%	0.12%	1.80%	0.60%	0.10%
14.2	1.06%	0.12%	1.80%	0.60%	0.10%



Midbed Temperatures: 460-500°C

NH₃ production over LNT and TWC occurs at temperatures relevant to vehicle operation and NH₃ storage on SCR

- **Histogram of catalyst temperatures** during drive cycle with BMW 120i
 - FTP (hot start)
 - 200-350°C for LNT
 - 350-600°C for TWC
- LNT: max NH₃ yield at 250-300°C
- TWC: tunable NH₃ production 350-600°C
- NH₃ production temperatures mesh well with NH₃ storage temperatures on SCR
 - More NH₃ storage occurs under rich/stoichiometric conditions
 - However switching from rich to lean will result in NH3 release if over-saturated

Lean Gasoline Engine Research Platform Development In Progress

- Two BMW 120i lean gasoline engine vehicles were procured from Europe and are being mapped for engine controller development
 - One vehicle's engine will be pulled for installation on engine dynamometer
- Subcontract to Drivven for controller development in progress
 - End controller will have full control capability for research specific engine operation and OEM map operation for general catalyst and reference studies

<u>Tasks in Controller Development:</u>

- 1. Procure Vehicles (complete)
- 2. Verify lean operation (complete)
- 3. Drivven visit for electronic signal probing (complete)
- 4. Shipment of one vehicle to Drivven (complete)
- 5. Calibration of sensors, injectors, etc. (in progress)
- 6. Harness wiring and mapping preparation (in progress)
- 7. Full mapping exercise on vehicle at ORNL (May-June 2012)
- 8. Control software development (June 2012)
- 9. Engine installation at ORNL (July 2012)
- 10. Controller installation at ORNL (July 2012)
- 11. Controller operation and verification (August 2012)

Additional future work

- Study effects of catalyst composition by varying:
 - PGM content, OSC content
 - Adding NOx storage capacity to TWC
 - Low temperature CO/HC oxidation
- Impact of lean/rich cycling on TWC
 - Investigating strategies for minimizing N₂O formation
- Age catalysts and evaluate end of life performance
 - Define durability requirements, time and temperature as related to sulfur exposure and desulfation requirements
- Improve modeling capability to better guide research and meet milestones
- Finalize milestones and achieve year one target

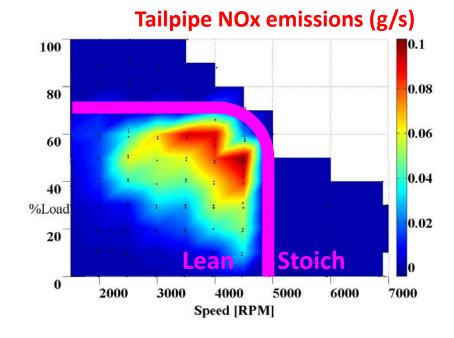
	FY13	FY14	FY15	FY16	FY17
Fuel economy gain over stoichiometric	7%	10%	10%	12%	15%
Total emissions control devices Pt* (g/L _{engine})	8	7	6	5	4

Summary

- Relevance: Enabling lean gasoline vehicles will impact significantly on US petroleum use
- Approach: Cost-effective emissions control facilitates introduction of lean-gasoline engines
 - Employ multi-platform approach to optimize catalysts and lean engine operation
 - Employ annual cost and efficiency milestones to push technology
- Collaborations: Industrial (GM and Umicore) and Academic (U-So. Carolina and U-Wisconsin)
- <u>Technical Accomplishments</u>:
 - Progressed towards lean gasoline engine dynamometer platform
 - Measured impact of LNT lean/rich duration on NOx reduction and product yields
 - Identified TWC NH₃ production conditions for passive SCR approach

• Future Work:

- Complete and install DRIVVEN-developed engine controller for engine/chassis operation
- Vary OSC and NOx storage component on LNT and TWCs under cycling conditions
- Develop and employ aging routine to rapidly age catalysts to end of life
- Meet first cost and efficiency milestone of the multi-year program

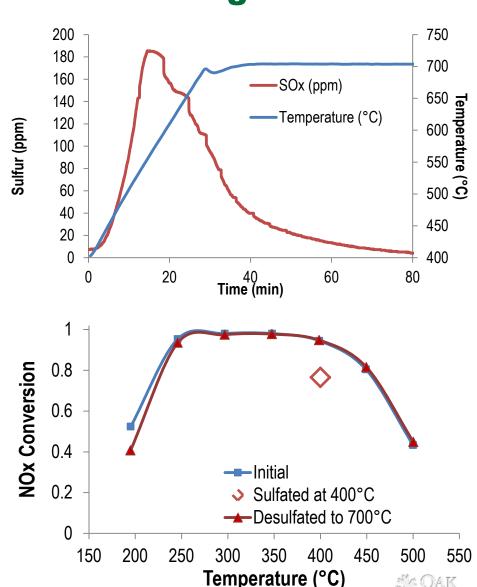


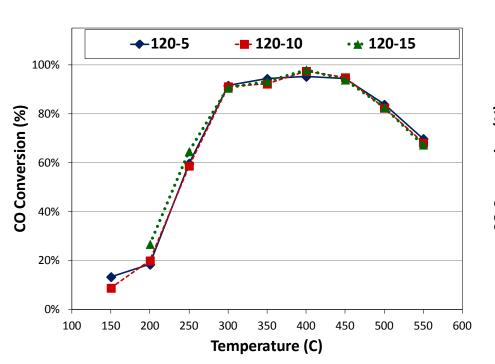
Technical back-up slides

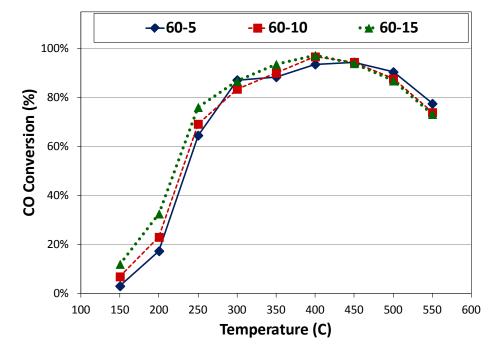
4-15% Fuel Economy Benefit <u>but</u> Challenge of Emissions Exceeding U.S. Regulation Levels

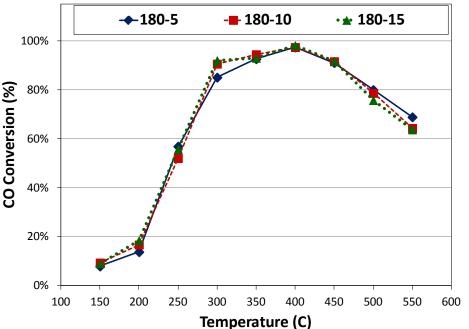
- Vehicle designed to meet emissions levels required by European regulations
- NOx emission levels exceed U.S. Tier II Bin 5, 0.05 g/mile at 50k miles
 - Bin 2 → 0.02 g/mile
- NOx emissions during lean operation are problematic
 - Data shown is from engine vehicle evaluation at ORNL

Improved Lean
NOx catalysis
required for
deployment of
lean gasoline
vehicles


Drive Cycle	Fuel Economy Improvement*	NOx Emissions (g/mile)
FTP	10.0%	0.11
HFET	14.6%	0.11
US06	4.4%	0.35

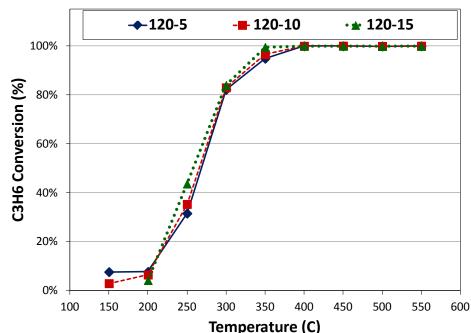

Peak LNT desulfation at 550-580°C and full performance recovery after desulfating to 700°C

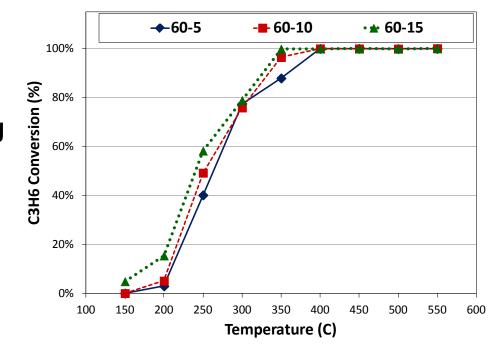

- Sulfation to 3.4 g/L_{cat} at 400°C
 - 45 ppm SO₂ accelerated
 - NOx conversion drops from 95% to 77%
- LNT shows low desulfation temperature
 - Sulfur removal occurs readily above 400°C
 - Peaks at 550-580°C
 - Slow release up to 700°C
- Desulfation to 700°C results in complete performance recovery
 - Suggests targeting 700-750°C for aging conditions

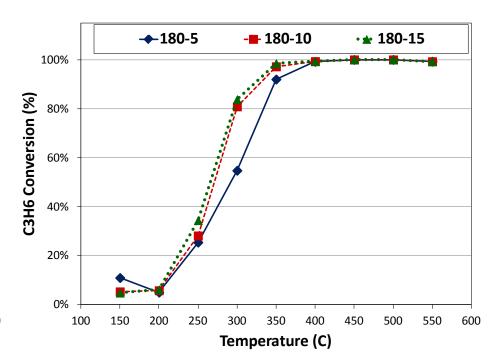


Cycle averaged CO conversions

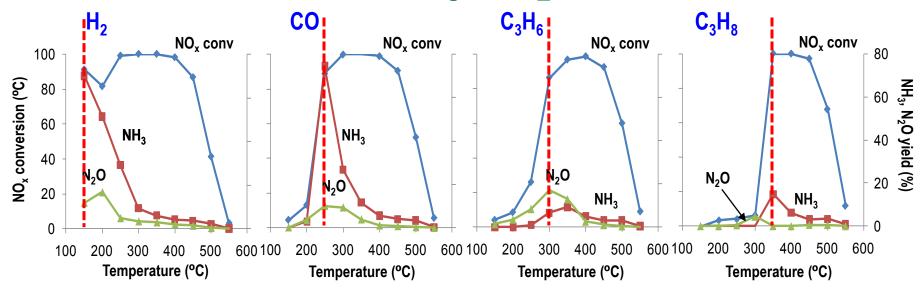
- Essentially independent of lean rich timing
 - at 300-500C, >80% conversion all conditions
- CO utilization decreases at higher temperatures
 - Less NOx stored and fast release
 - Mismatch in reductant feed and NOx release







Cycle averaged C₃H₆ conversions


- Similarly independent of lean/rich timing
 - at T>300, >80% conversion all conditions
 - Except 180s lean / 5s rich
- Looks like a typical light off curve
- Represents propylene disappearance rather than complete oxidation

Reductant type affects spatial distribution of NH₃ chemistry controlling NH₃ & N₂O yields

- Light-off temperature is highly dependent on reductant type: H₂ < CO < C₃H₆ < C₃H₈
 - At light-off: near max conv. reached using whole LNT
 - Above light-off: max conv. using partial length of LNT
- NH₃ & N₂O yields peak at light-off T
 - Significant slip possible: NH₃ ~70%; N₂O ~20%
 - At light-off: reactions forming NH₃ (reductant + stored NO_x) & N₂O (NH₃ + stored NO_x) maximized
 - Above light-off: NH₃-consuming reactions without generating N₂O increase (NH₃ + CeO₂; decomposition)

