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Timeline

* June 2011
e December 2013
* 30% Complete

Budget

e Total project funding
— $700K

e Funding received FY11
—  $200K

e Funding expected FY12
—  $300K

e Funding expected FY13
—  $200K
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O i US:
DRIVING RESEARCH AND INNOVATION FOR
VEHRICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Barriers

Need electro-thermal-mechanical modeling,
characterization, and simulation of advanced
technologies to:

e Improve electrical efficiency

e Improve package thermal performance
and increase reliability

e Reduce converter cost

Partners

e NIST- Electro-thermal modeling

e UMD/CALCE — Reliability modeling

e VTech — Soft switching module

e Delphi—High current density module
e NREL - Cooling technology
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Goal: Electro-Thermal-Mechanical Simulation 4s. /E

DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Driving Cycles, Environmental Conditions

Simulation Applications
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* Inverter performance evaluation
» Advanced topology design
» Advanced device integration
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Fail
T « In-Vehicle applications:
— Maintaining component health,
— Predicting service needs,
— Operation with partially degraded

199 Ny Mechanical k capacity near component end-of-life.
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R e I e va n c e DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Objective: Provide theoretical foundation, measurement methods, data, and
simulation models necessary to optimize power module electrical, thermal, and
reliability performance for Plug-in Vehicle inverters and converters.

FY 2012:

1) Utilize electro-thermal-mechanical models to simulate:
— VTech soft switching module performance (electrical, thermal, package life)
— Delphi’s Viper module performance (high current IGBT SOA, package life).

2) Develop cooling system thermal network component models for:
— double-sided liquid cooling fixture (with NREL)
— air and liquid cooling fixtures for VTech module.

3) Extend thermal cycling and monitoring measurements to include:

— two different DBC stack types (with Powerex)
— range of cycling conditions for reliability model parameter determination.

4) Develop electro-thermal models for advanced semiconductor devices
e.g., SiC MOSFETs and SiC JFETs and GaN diodes.

5) Perform electro-thermal simulations to determine impact of air cooling
and advanced semiconductors on high current density, low thermal
resistance, and soft-switching modules.

6) Demonstrate full electro-thermal-mechanical simulations where
simulations predict and include damage resulting from system operation.
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I e Sto n e S e C I S I O n o I n t S DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Month/Yr | Milestone

May 12 1a) Simulate fault conditions to determine safe operating area (SOA) of IGBT in high
(ongoing) | current density Viper module,

Aug. 12 1b) and evaluate thermal stresses in Viper module for nominal and fault operating
conditions.

Jun. 12 2) Extend thermal cycling degradation and monitoring measurements on two DBC stacks
(ongoing) | for range of conditions (initial-T, AT, T-ramp-rate) necessary for reliability modeling.

Jul. 12 3) Develop thermal-network-component modes for representative cooling systems.

Aug. 12 4a) Use simulations to evaluate thermal stresses at module interfaces for VTech module,
4b) and use physics-of-failure models to calculate damage and evaluate impact on VTech
modaule life.

Oct. 12 4c) Calculate increase in thermal resistance at interfaces in VTech module due to thermal
cycling damage and use changing resistance in the thermal network during simulations.

Nov. 12 5) Include liquid- and air-cooling thermal network component models in electro-thermal
simulations of vehicle inverters.

Feb. 13 6) Develop electro-thermal models for advanced semiconductor devices including SiC
MOSFETs, SiC JFETs and GaN diodes.

Apr. 13 7) Include advanced semiconductor device models in simulations to optimize high current
density, low thermal resistance, and soft-switching modules.

A
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Approach: USOF/L
Measurement, Modeling, and Simulation

» Develop dynamic electro-thermal Saber models, perform
parameter extractions, and demonstrate validity of models for:
= Silicon IGBTs and PiN Diodes
= Silicon MOSFETs and CoolMOSFETs
= SiC Junction Barrier Schottky (JBS) Diodes

» Develop thermal network component models and validate
models using transient thermal imaging (TTI) and high speed
temperature sensitive parameter (TSP) measurement.

» Develop thermal-mechanical degradation models and extract
model parameters using accelerated stress and monitoring:

= Stress types include thermal cycling, thermal shock, power cycling
= Degradation monitoring includes TTI, TSP, X-Ray, C-SAM, etc.
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Application: Delphi Viper Module USDRIVE
Double-Sided Cooling Model

Heating
Module | Elem?nts ‘
(2.7 mm thick) .
Thermocouple
Thermocouple

A temperature controller monitors
thermocouples to ensure that both sides of
the module are at the same temperature
before thermal transient.
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Method: Electro-Thermal Model for USORIVE
Double-Sided Cooling Viper Module

—

Thermal Grease
Cu

Thermal
Model

AN,
B AN,
AIN SRR """III’ D "l
P > W

e A TR D

- e ey
Cu //"7 S :
,/’/ Electrical
s Model
AlN

Cu
Thermal Grease

—

NIST @ecalce vt W7 zowErex DELPHI g



L

Validation: Thermal Test Fixture Steady State USORIVE

DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Viper module thermal test fixture

Piston Top Cooling Plate (not shown)

Viper Module

—  Water Cooling Fixture

Viper module 262 W steady state ANSYS
simulation for double-cooled test fixture

Top Plate Temperature (0.05” from edge)
37 °C (ANSYS model)
40.4 °C (Measurement)

Device Temperature
69 °C (ANSYS model)

Piston Temperatures (0.05” from edge)
28 °C (ANSYS model)
31.7 °C (Measurement)
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Validation: Thermal Network Component  usos/i
Model for Viper Module Package

« Test fixture used to validate thermal model of Viper die, package, and
interface to copper plates using TSP measurements.

« Test fixture modeled and compared with ANSYS and TSP.
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Validation: Delphi-Viper USoF/L
Electro-thermal Semiconductor Models

VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY
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Demonstration: Electro-Thermal Simulation USORIVE
Adiabatic Heating for Short Circuit Conditions =
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Application: VTech Soft Switching Module  usos/ve

xi1 M1 LC
'SXﬂK?EDX?’JK]} - Qﬂl%mJELT 1 Jl? IE}Q Circuit Diagram
'_'M’— J]—r-,-: Lﬂ "rfaad
Vd:é._ ;ga‘r [ C R
t S R ""[ ’
! T ——
4Dx4 3
'SXEKI}D 2 JK’} -
1 Q2

— =W

Wil v

Module Components

NIST @ calce  <ene=

13



/',-—-\

D Method: Thermal Network Component Models uso/v=

DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY
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Validation: VTech Module Us.
Electro-thermal Semiconductor Models
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Additional validation results given at 2012 PEEM Kickoff meeting.
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Demonstration: Full Electro-thermal USOEIVE
Simulation of Soft-Switching Vehicle Inverter
37.0 - 247.5 -
<RI ARARARVAR ARVARARVAR
246.0 - f
36.0-| /. V. VLV VUV
: Voltage detail
35.5 | Currenti detail | 5445 ‘ g | ‘
43.6ms 43.7ms 43.8ms 77.0ms 77.05ms 77.1ms
40 - - 300
= S
b= 20+ 150 o Inverter
g = Output
S 0- P
= > P 5KW
-E' -20 - --150 E. fout: 60 Hz
8 = fsw: 20kHZ
O ,:35A
40, | | | | -300 Vipus: 325V
40 50 60 70 80
t(ms)

NIST @calce <ow= V& 7zowEREx DELPHI 16



/-_-'—-\‘

Analysis: Full Electro-thermal Simulation ys

Optimization of Soft Switching Crossover
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Simulations with generic IGBT model
originally used to optimize timing for
Zero-voltage switching.
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Simulations with physics-based IGBT
model indicate that timing is delayed
from ideal model prediction.
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Analy5|s Full Electro-thermal Simulation  Us0/5/L

Temperatures of Hybrid Module Devices
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Electro-thermal simulation of junction temperature for
switches undergoing half-sine wave power cycle.
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& Analysis: Paralleled Si IGBT, CoolMOS, Diodes ¥

DRIVING RESEARCH AND INNOVATION FOR
VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY
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Application: Package Reliability Simulations #50/571
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y DRIVING RESEARCH AND INNOVATION FOR
VERICLE EFFICIENCY AND ENERGY SUSTAINABILITY

* Developed electro-thermal semiconductor models and evaluated
trade-offs for different semiconductor component selections in
VTech soft switching module.

* Developed thermal-network-component model for VTech module
and utilized full electro-thermal simulations to determine
operating temperature of devices and evaluate impact of IGBT
gate drive delay on circuit timing.

* Developed electro-thermal model for Delphi double-sided cooling
Viper IGBT module and utilized models to simulate representative
short circuit fault condition.

* Developed thermal-network-component model for Viper package,
developed double-sided cooling thermal test fixture, and used the
fixture to validate the Viper thermal stack model using TSP.

* Developed and demonstrated method for determining parameters
for DBC stack physics-of-failure models using variable-ramp-rate
thermal cycling with high-speed transient TSP monitoring.
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Future Work
VERICLE EFFICIENCY AND ENERGY SUSTAINABILITY

* Develop electro-magnetic package/system interconnect
models.

* Perform EMI simulations using electro-magnetic
package/system interconnect models, electro-thermal
semiconductor models and thermal-network-component
models.

 Determine grid applications and develop circuit simulation
scripts for bi-directional vehicle charger/grid storage
inverters.

e Perform simulations and evaluate impact of advanced
technology power semiconductors and module packages in
bi-directional vehicle charger inverter applications.

NIST @calce fover V7 7zowEREx DELPHI 22



