

Electric Motor Thermal Management

Kevin Bennion National Renewable Energy Laboratory May 16, 2012

Project ID #: APE030

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Project Start Date: FY 2010 Project End Date: FY 2013 Percent Complete: 60%

Budget

Total Project Funding:

DOE Share:\$1,275K (FY10-FY12)

Funding Received in FY11: \$450K

Funding for FY12: \$425K

Barriers and Targets

- Cost
- Weight
- Performance & Life

Partners

- Interactions / Collaborations
 - University of Wisconsin (UW) Madison (Thomas M. Jahns)
 - Oak Ridge National Laboratory (ORNL)
 - Motor Industry Representatives
- Project Lead
 - National Renewable Energy Laboratory

Relevance/Objectives

The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems.

Speed

Thermal management is needed to reduce size and improve performance of electric motors.

- Meet/improve power capability within cost/efficiency constraints
- Reduce rare earth material costs (dysprosium)

Relevance/Objectives

The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems.

Speed

Objectives

- Quantify opportunities for improving cooling technologies for electric motors
- Link thermal improvements to their impact on Advanced Power Electronics and Electric Motors (APEEM) targets
- Increase publicly available information related to motor thermal management

Addresses Targets

- Translates cooling performance improvements into impacts on program targets
- Prioritizes motor thermal management efforts based on areas of most impact

Milestones

Date	Milestone or Go / No-Go Decision Point
Oct. 2011	 Milestone report Analytical and 3D finite element analysis (FEA) models for determining effective conductivity of composite materials as applied specifically to motor slot windings Results of initial thermal property testing of motor lamination materials Method of evaluating loss distributions within the electric motor for different operating conditions (in collaboration with University of Wisconsin – Madison) Development of stator thermal model validated against published data Parameter sensitivity study of thermal design factors for motor stator cooling
Jan. 2012	 Go/No-Go Completed selected motor lamination material thermal property tests Decided to not expand material tests at this time Milestone (intermediate) Completed thermal sensitivity analysis for interior permanent magnet (IPM) motor stator and rotor utilizing test data provided by ORNL
Jul. 2012	 Go/No-Go Thermal sensitivity analysis shows significant impact common to multiple motor configurations leading to future project proposals for specific cooling enhancements
Sept. 2012	 Milestone report Lamination material thermal properties, motor thermal sensitivity analysis, and oil heat transfer experimental data

Approach/Strategy

- Complete thermal FEA and lumped parameter thermal models for cooling parameter sensitivity analysis (UW, NREL)
- Complete material thermal property tests (NREL)

- Characterize fundamental oil-cooling heat transfer performance
- Initiate experiments to identify cooling limitations (durability)

Lamination Stack

Approach/Strategy

Motor thermal analysis is a challenge

- Complicated
- Many unknowns

Absolute results of analysis could change, but the goal is to identify trends for improvements in motors

Try to make intelligent choices to ensure quality:

- Results not focused on single motor design
- Assumptions and results compared to published literature
- Model results compared against test data
- Collaborations with motor designers
- Component testing

Lamination Material Tests

Measured bulk thermal conductivity of lamination materials

- Tests performed with Xenon Flash equipment
- Four samples of each material tested
- General data for silicon steels lists the thermal conductivity to be between 20-30 W/m-K [1].

Thermal Conductivity with sample at 25°C

Data range from four samples of each material

Lamination Material Tests

Measured specific heat of lamination materials

- Tests performed with differential scanning calorimeter
- Two samples of each material tested
- Provides data for specific heat over a range of temperatures
- Generally available data for silicon steels list the specific heat to be 0.49 J/(g-K) [1].

Data range from two samples of each material (two of each thickness)

[1] J. R. Hendershot and T. J. E. Miller, "Design of brushless permanent-magnet motors." Magna Physics Pub., 1994.

Additional specific heat measurements for sample materials

Data range from two samples of each material

Data range from two samples of each material

Quantified thermal contact resistance between laminations

- Tests performed with ASTM interface test stand
- Tested at multiple pressures and lamination layer counts
- Data used to approximate effective cross lamination thermal conductivity
- Data support modeling activities
- Expands publicly available data

Calculated contact resistance from measured bulk material properties and lamination stack resistance measurements

Calculated effective conductivity from measured bulk material properties and lamination-to-lamination contact resistance

Quantified thermal properties for slot windings

- Expanded on published analytical methods to include wire, filler material, and insulation material (3-component analytical model)
- Developed parametric FEA modeling capabilities to characterize multi-dimensional heat spreading effect across slot windings
- Supports motor thermal modeling activities

H. Kanzaki, K. Sato, and M. Kumagai, "A Study of an Estimation Method for Predicting the Equivalent Thermal Conductivity of an Electric Coil," *Trans. JSME*, 56 (526), 1990, 1753-1758.

Cooling sensitivity analysis with different winding/core heat distributions at fixed heat exchanger performance

Parameter with 20% Increase in Effective Thermal Conductivity

Change in available power output versus relative change in effective thermal conductivity for case-cooled configuration

NATIONAL RENEWABLE ENERGY LABORATORY

Convection coefficients, shown in yellow, applied to the (a) case, (b) rotor face, and (c) & (d) end windings.

Operating Point				Loss Distribution			
Dataset	Power	Speed	Torque	Core Loss	Winding Loss		
	[W]	[RPM]	[Nm]	[W]	[W]		
1	25,000	5,000	47.75	87%	13%	1	
2	33,500	3,000	106.6	70%	30%		
3	33,500	3,000	106.6	70%	30%		
4	33,000	5,000	63.03	83%	17%		
5	33,000	5,000	63.03	83%	17%		
6	33,500	7,000	45.70	85%	15%		
7	50,000	5,000	95.49	76%	24%		
8	50,000	5,000	95.49	76%	24%		

Completed thermal sensitivity analysis for interior permanent magnet motor application (stator and rotor)

- Developed 3D thermal model of permanent magnet motor stator and rotor
- Validated model against test data provided by ORNL
- Dataset with longest run time selected for estimation of boundary conditions
- Remaining data sets used for model validation
 - Builds on previous stator model parameter assumptions and validation
 - Expands analysis to include rotor

Model comparison to experimental data

Model performance is comparable to test data
Shorter duration tests show less agreement in case temperature because steady-state temperatures have not been reached

Sensitivity in power output capability for 20% increase in material thermal conductivity

Change in Power Output at Fixed Temperature Limit

Note: "Nominal h" refers to the baseline cooling performance, "High h" represents an aggressive cooling condition

Sensitivity in power output capability for 20% increase in material thermal conductivity

Note: "Nominal h" refers to the baseline cooling performance, "High h" represents an aggressive cooling condition

Collaboration and Coordination

<u>University</u>

- UW Madison (Thomas M. Jahns)
 - Support with electric motor expertise
- Industry
 - Motor industry suppliers, end users, and researchers
 - Input on research and test plans

Other Government Laboratories

- ORNL
 - Support from benchmarking activities
 - Ensure thermal design space is appropriate and modeling assumptions are consistent with other aspects of APEEM research
- Other VTP areas
 - $\,\circ\,$ Collaborate with VTP cross-cut effort for combined cooling loops

Proposed Future Work

Cooling Technology Selection

- Characterize oil-cooling heat transfer coefficients
- Initiate cooling durability tests (winding insulation)
- Go/No-Go for FY13
 - If improvement in cooling performance shows impact on total thermal performance, pursue efforts to characterize improved oil-cooling approaches
 - Continue cooling durability tests

Proposed Future Work

Package Mechanical Design

- Complete thermal sensitivity analysis and model validation for concentrated winding motor with University of Wisconsin (FEA and lumped parameter thermal analysis)
- Quick look at methods to enhance internal heat spreading
- Go/No-Go for FY13
 - If motor cooling sensitivity analysis shows common areas for thermal improvement, initiate R&D on critical factors

Courtesy of T. M. Jahns / S. McElhinney, UW - Madison

Summary

Relevance

- Impacts the transition to more electrically dominant propulsion systems with higher continuous power requirements
- Enables improved performance of non-rare earth motors
- Supports lower cost through reduction of rare earth materials used to meet temperature requirements (dysprosium)
- Applies experimental and analytical capabilities to quantify and optimize the selection and design of effective motor cooling approaches

Approach/Strategy

Developed process to meet challenges of motor thermal management

- Identify thermal improvements across a range of motor configurations
- Evaluate multiple operating conditions (loss distributions)
- Engage in collaborations with motor design experts
- Perform in-house characterization of material and interface thermal properties

Summary

Technical Accomplishments

- Measured bulk thermal conductivity of lamination materials
- Measured specific heat of lamination materials
- Quantified thermal contact resistance between laminations
- Quantified thermal properties for slot windings
- Completed thermal sensitivity analysis for surface permanent magnet motor stator
- Completed thermal sensitivity analysis for interior permanent magnet motor application (stator and rotor)

Collaborations

- Collaborations established with research and development partners
 - University of Wisconsin Madison
 - Oak Ridge National Laboratory
 - Motor industry representatives: Manufacturers, researchers, and end users (light duty and heavy duty)

Acknowledgments:

Susan Rogers and Steven Boyd, U.S. Department of Energy

Tim Burress, Oak Ridge National Laboratory

Team Members:

Justin Cousineau Douglas DeVoto Mark Mihalic Gilbert Moreno Thomas M. Jahns (UW–Madison) Seth McElhinney (UW–Madison)

For more information, contact:

Principal Investigator Kevin Bennion Kevin.Bennion@nrel.gov Phone: (303)-275-4447

APEEM Task Leader:

Sreekant Narumanchi Sreekant.Narumanchi@nrel.gov Phone: (303)-275-4062