

# Electric Drive Semiconductor Manufacturing (EDSM) Center

Don Morozowich

Powerex, Inc.

May 15, 2012

Project ARRAVT030



#### **Timeline**

Project start date: 12 Mar 2010

Project end date: 30 Sep 2012

Percent complete: 90+%

#### **Budget**

- Total project funding
  - DOE share: \$6,049,581.00
  - Powerex share: \$2,592,678.00

#### **Barriers**

- Equipment integration
- Material handling
- Agility to meet variety of products and industry standards
- Transition from prototype to production
- Process control

#### **Partners**

- No partners in grant award
- Leveraging existing customer and supplier relationships

# **"OWEREX"** Project Overview

- Powerex corporate offices in Youngwood, PA (near Pittsburgh)
- 250+ employees
- 120,000 square feet of facilities
- Design and manufacture
  - Rectifiers and Thyristors
  - Custom Modules
  - Integrated Power Products
- Markets include: automotive/ vehicle, transportation, wind, power generation & distribution,/ motor control, energy conservation











# **#OWEREX** Project Objectives/Relevance

#### **Objective:**

Powerex will modify its existing facility to house an integrated Electric Drive Semiconductor Manufacturing (EDSM) Center capable of producing over 100,000 electric drive semiconductor devices annually.

- EDSM Facility Provide a facility capable of meeting all EDSM project objectives
- Manufacturing Center Provide capability to produce, at a minimum, 100,000 electric drive semiconductor devices annually
- Reliability Center Provide the capability to fully test and qualify semiconductor device performance and reliability
- **Prototype Center** Provide the capability to develop new semiconductor device concepts through prototyping. This capability will reduce risk associated with new semiconductor device performance and reduce risk associated with high-volume manufacturing of new devices.

## **\*\*CWEREX** Approach – Phases & Milestones

#### Phased into existing facility

Maintain continuity of current operations and reduce risk

#### Phases of implementation

- Phase 1
  - Construct 10,000 sq ft class 10,000 clean room
  - Install & integrate manufacturing center equipment and processes
- Phase 2
  - Relocate existing prototype equipment into clean room
- Phase 3
  - Install reliability center equipment in space vacated by prototype equipment move
- Phase 4
  - Demonstrate capability through Low Rate Initial Production

| MILESTONE                                       | DATE            | STATUS   |
|-------------------------------------------------|-----------------|----------|
|                                                 |                 |          |
| Clean room installation complete                | Nov 2011        | Complete |
| Manufacturing Center equipment installed        | Nov 2012        | Complete |
| Prototype Center equipment moved to clean room  | <b>Dec 2012</b> | Complete |
| Low Volume production resumes in new clean room | Jan 2012        | Complete |
| Reliability Center equipment installed          | Jan 2012        | Complete |
| Manufacturing Center process demonstrated       | Jun 2012        | Open     |
| Reliability Center capability demonstrated      | Jun 2012        | Open     |

# **\*\*CWEREX** Approach – Project Scope

#### **Modifications of existing Powerex facility**

- 10,120 ft<sup>2</sup> (940 m<sup>2</sup>)
- 40% to 60% relative humidity control
- 22C +/- 2C temperature control
- Class 10,000 manufacturing areas

#### **Manufacturing Center**

- 6,070 ft<sup>2</sup> (565 m<sup>2</sup>)
- Capable of producing 100,000 units/year in 2015

#### **Prototype Center**

- 4,050 ft<sup>2</sup> (375m<sup>2</sup>)
- Utilizing existing Powerex equipment

#### **Reliability Center**

- 4,300 ft<sup>2</sup> (400m<sup>2</sup>)
- Capable of testing to automotive standards







- Finished Steel City room Nov 3, 2011
- Equipment moved in Nov 4, 2011



- Production moved to clean room Dec 19-30, 2011
- Production started Jan 4, 2012

# **CWEREX** Approach – Process & Equipment



# **Steel City Clean Room Layout**

Manufacturing Center in same room with Prototype Center.

This concept will allow us to better utilize all machines and cells.



# First equipment moved to Powerex Cleanroom:

- Base plates de-stacker
- Solder mask printer
- UV curing oven
- Wire bonder
- Solder paste dispensers (2)
- Components pick & place (2)











100% acoustic microscope inspection after reflow soldering









Solder flux cleaners placed in clean room



# Housing Assembly Cell

- Cleaner unloading
- RTV dispensing
- Housing placing
- Screws attachment
- Placing on the curing oven belt









# Acceptance Testing Integrated Cell

- 5 or 6 testers in individual racks
- Standardized (exchangeable) contacts fixtures installed by robot
- Tested devices placed on hotplates plus in and out contact fixtures by robot
- Testers controlled by PC
- Data automatically collected and stored





- Equipment to perform 27 tests for automotive reliability including
  - Electrical testing
  - Environment testing
  - Lifetime testing
  - Mechanical testing
- Analytical equipment to troubleshoot and control processes

## **CWEREX** Accomplishments – Reliability Center



#### Acoustic Microscope

- Ultrasound imaging
- Solder void and lamentation analysis

#### **Electron Microscope**

- Micro imaging
- Micro Elemental Analysis (EDS)



## **\*\*COMEREX** Accomplishments – Reliability Center

- Single-Axis Vibration (Sinusoidal and Random)
- Burn-in (High Temp Reverse Bias, High Temp Gate Bias)
- Highly Accelerated Stress Testing (HAST)
- Intermittent Operating Life (IOL)
- Temperature Cycling
- Moisture Resistance
- Low Temp Storage
- Partial Discharge
- Wire Bond Pull
- Doe Shear



#### **COMEREX** Collaboration & Coordination

- No partners are directly involved in execution of grant
- Strong, collaborative partnerships with many critical material suppliers and service providers
- Long-standing relationships with many customers in electric drive industry
- Long-standing teaming arrangements with universities, federal agencies and companies engaged in state-ofthe-art power module research



#### In 2012

- Complete Manufacturing Center equipment integration and process demonstration
- Demonstrate full capability of Reliability Center
- Complete and close out project

# **CWEREX** Project Summary

- Grant awarded in March 2010
- Objective: create capacity to design through prototyping, produce and test 100,000 semiconductor power modules annually
- 2-year phased approach to permit risk reduction and implementation in existing plant without impacting on-going production operations
- Project is meeting all technical goals on schedule and within budget
- Clean room complete, equipment installed, working on final process demonstration