### 2019 DOE VEHICLE TECHNOLOGIES OFFICE ANNUAL MERIT REVIEW PRESENTATION

# EFFICIENT, COMPACT, AND SMOOTH VARIABLE PROPULSION MOTOR

PI: James D. Van de Ven

University of Minnesota

Project ID: ft083



This presentation does not contain any proprietary, confidential, or otherwise restricted information.





### **Overview**

#### **Timeline**

- Project start date: 5/1/2018
- Project end date: 4/30/2021
- Percent complete: 30%

#### **Budget**

- Total project funding: \$1,856k
  - DOE share: \$1,484k
  - Contractor share: \$372k
- Funding for FY2018: \$637k
  - DOE share: \$509k
  - Contractor share: \$128k
- Funding for FY2019: \$596k
  - DOE share: \$472k
  - Contractor share: \$123k

#### **Barriers Addressed**

- Efficient fluid power components/systems
- Reduce peak loads
- Advanced system controls

#### **Partners**

- University of Minnesota: Lead
- Milwaukee School of Engineering
- Poclain Hydraulics Inc.
- Bobcat/Doosan





### Relevance

#### Objectives:

- Efficiency >90% above 15% displacement
- Reduce fuel consumption 30%
- Power density >5 kW/kg
- Torque ripple <5% of the mean torque</li>
- Cost <\$4/kW</li>

#### Go / No Go This Period (Simulation):

- ✓ Efficiency >97% above 15% displacement
- ✓ Torque ripple = 2.8%



#### Value Propositions:

- Motor Efficiency:
  - Saves fuel, increases power
- Variable Displacement Motor:
  - Increases transport speed and higher system efficiency
- Low Torque Ripple:
  - Improves control and productivity
- Scalable Motor:
  - Applicable to wide variety of off-highway vehicles





# **Milestones**

|                                                                                                                                                                | BP1 |    |    |    | BP2 |    |    |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|----|-----|----|----|----|
|                                                                                                                                                                | Q1  | Q2 | Q3 | Q4 | Q1  | Q2 | Q3 | Q4 |
| Hydraulic motor kinematic and kinetic model complete.                                                                                                          |     |    |    |    |     |    |    |    |
| Hydraulic motor tribology model complete.                                                                                                                      |     |    |    |    |     |    |    |    |
| Complete hydraulic motor drivetrain simulation complete.                                                                                                       |     |    |    |    |     |    |    |    |
| Preliminary business case complete.                                                                                                                            |     |    |    |    |     |    |    |    |
| Model predicts total efficiency exceeds 90% at motor displacements above 15% and torque ripple is less than 5% of the mean output torque at full displacement. |     |    |    |    |     |    |    |    |
| Single cylinder prototype design completed                                                                                                                     |     |    |    |    |     |    |    |    |
| Single cylinder prototype operational                                                                                                                          |     |    |    |    |     |    |    |    |
| Single cylinder prototype performance map complete                                                                                                             |     |    |    |    |     |    |    |    |
| Single cylinder prototype model validated                                                                                                                      |     |    |    |    |     |    |    |    |
| Experimentally validated motor model predicting potential for total efficiency greater than 90% at displacements above 15%.                                    |     |    |    |    |     |    |    |    |





# **Approach**



### Variable displacement mechanism

- Low friction roller bearings
- Low piston side-load
- Multiple strokes per revolution

#### Benefits:

- High efficiency across wide range
- Low starting friction
- Low leakage
- High torque density
- Low torque ripple

### Research approach:

- Dynamic model
  - Mechanism kinematics & kinetics
  - Friction in tribological surfaces
  - Cylinder pressure dynamics
- Parameter optimization
- Model validation: 1 cyl prototype
- Demonstration & HIL testing: multi-cylinder prototype





### **Technical Accomplishments: Kinematics**



- Vary displacement by adjusting ground pivot of linkage driving cam
- Inverse cam design
  - Specify piston trajectory
  - Solve for cam profile





### **Technical Accomplishments: Kinetics**



# Technical Accomplishment: Tribology



- Predicting fluid film thickness and friction in all joints
- Frictional power loss is very low





### **Technical Accomplishment: Valve Timing**



### Findings:

- Valve timing critical to efficiency via "pre/de-compression"
- Valve area slope important to efficiency across wide range of speed, pressure, and displacement





### Technical Accomplishment: System Model

Finding: Variable Motor allows 2X pump downsizing



Technical Accomplishment: Motor Optimization



### Met Go/No Go Decision:

- Efficiency >97% above 15% displacement
- Torque ripple 2.8 %







# Responses to Previous Year Reviewers' Comments

- This project is nearing completion of BP1
- No previous reviews





### **Partners/Collaborators**

| University of Minnesota | Lead institution. Responsible for mechanical design aspects of the project including motor modeling, optimization, motor design and prototyping.                                                                                                                                                       |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MS<br>OE.<br>UNIVERSITY | Responsible for tribological aspects of the project including friction modeling and single & multi piston prototype tests.                                                                                                                                                                             |
| Bobcat.                 | OEM track steer manufacturer. Responsible for vehicle system requirements, duty cycle requirements and customer value propositions.                                                                                                                                                                    |
| POCLAIN Hydraulics      | Hydraulic components manufacturer. Responsible for providing baseline motor requirements, developing business case and prototype assistance.                                                                                                                                                           |
| Consultants             | <ol> <li>Retired hydraulic industry VP of research.         Responsible for overall project management</li> <li>VDLM co-inventor. Responsible for guiding motor modeling and design.</li> <li>Retired hydraulic industry master designer.         Responsible for CAD design of prototypes.</li> </ol> |



# Remaining Challenges and Barriers

- Motor detailed design
  - Complex packaging, critical tolerances, material selection, coating selection
- Validating subsystem models from full motor experiments
- Displacement actuation control
- System sizing and control
  - Varying pump displacement adds control degree-of-freedom
  - Complex trade-offs in component sizing and control





# **Proposed Future Research**

#### FY19: Model Validation: Single Cylinder Prototype

- Optimize prototype parameters
- Detailed design of prototype
- Fabricate prototype
- Dynamometer testing and model validation
- Develop system control strategy

#### FY20: Performance Demonstration: Multi-Cylinder Prototype

- Optimize multi-cylinder prototype
- Detailed design: include displacement actuation
- Fabricate prototype
- Hardware-in-loop: controller evaluation and performance demonstration

Any proposed future work is subject to change based on funding levels





# Summary

- Balanced research team of academics, OEM vehicle, and OEM hydraulic motor
- Multi-domain dynamic motor model
  - Kinematics & kinetics: Design for low torque ripple
  - Tribology: Low friction forces
  - Fluid dynamics: Low valve transition losses
  - System model: Inform component sizing
  - Model integration and optimization
- Met milestones and Go/No Go criteria
  - Efficiency >90% above 15% displacement
  - Torque ripple <5%</p>





### TECHNICAL BACKUP SLIDES





# **Automatic Bearing & Link Sizing**



Basic load ratings





# **Optimization Flow Chart**





