

OVERVIEW

TIMELINE

- Start: 07/01/2019
- End: 6/30/2020

BUDGET

DOE: \$198,697

• 75% complete as of 03/31/2020;

Progress delayed due to COVID-19 lab closures

PARTNERS

fiber

· IACMI-The Composites Institute

Lack of predictive modeling

High cost and energy use in processing carbon

• The University of Tennessee

BARRIERS ADDRESSED

Limited recycling

· Project lead: Resource Fiber LLC

RELEVANCE

IMPACT

- Reduce energy use in processing materials
- Expand use of lightweight composites by reducing costs and improving
- · Improve recyclability and use of sustainable materials

TECHNICAL OBJECTIVES

A. Create a hybrid bamboo/carbon fiber intermediate that is more affordable, more recyclable, and less energy intensive;

B. Improve the interface engineering of constituents within the hybrid bamboocarbon fiber to realize lighter weight while still being strong, less brittle, and reformable mats: and

C. Pelletize hybrid bamboo/carbon fiber intermediates for injection, extrusioncompression molding and vacuum forming

MILESTONES

Milestone	Location	Status
Prepare and test bamboo fibers	Resource Fiber/UT	Complete
Create simple blended charge forms, test, and analyze results	UT	Complete
Create compounded blended forms, test, and analyze results	UT	On hold (lab closed for Covid)

APPROACH

The team focused on next generation lightweight multi-scale hybrid intermediates from bamboo and low-cost carbon fiber to create value added intermediates. The team developed innovative multi-scale hybrid preform mats and processes for parts comprising discontinuous fiber forms of low-cost carbon fibers and bamboo fibers in thermoset and thermoplastic polymers.

MATERIALS

(1) Thermoplastic Polymer (MiniFiber) (2) Bamboo Fiber (Resource Fiber) (3) Carbon Fiber (ZolteK). Materials by weight %:

, ,			
Material Nomenclature	Bamboo Fiber	Carbon Fiber	PP
Bamboo-PP	30%	-	70%
Bamboo-PP	50%	-	50%
20%Bamboo-80%CF-PP	20%	80%	60%
80% Bamboo-20%CF-PP	80%	20%	60%

PROCESSING METHODS

Figure 1. Schematic representation of Wet-laid process

Figure 2. Schematic representation of bamboo-PP composite by compression molding process

POTENTIAL APPLICATIONS

Figure 3. Potential vehicle applications for bamboo/carbon fiber composite

DISCONTINUOUS LOW-COST CARBON FIBER -BAMBOO FIBER HYBRID INTERMEDIATES FOR LIGHTWEIGHTING VEHICLE APPLICATIONS

Project ID #: MAT171

Principal Investigator & Presenter: Lee Slaven, Resource Fiber June 2, 2020

2020 DOE Vehicle Technologies Office Annual Merit Review

TECHNICAL ACCOMPLISHMENTS AND **PROGRESS**

Characterization:

Three-point bend (ASTM D-790), Interlaminar shear strength (ASTM D2344) and impact properties (ASTM D-256) tests were performed using 50N test resources frame on bamboo-PP and CF-bamboo-PP composite panels.

Key Results and Key Findings:

1. Bamboo-PP Composite

2. Bamboo-CF-PP Composite

Mechanical Properties

· Projected Mechanical Properties:

Observations and Future Plans

- > From three fiber variants, type B was selected for further trials
 - High mechanical properties compared to type A and type C
 - Fiber length was 11mm similar to long fiber thermoplastic (LFT)
- In bamboo-PP composites, 40% fiber wt. fraction gives higher mechanical properties. Hence, for hybrid formulation 40 wt.% fiber were used
- In hybrid composite, 80% CF and 20% bamboo-PP composite gives higher flexural, interlaminar, impact strength and vibrational damping ratio compared to other formulations
- In future, 80% CF and 20% bamboo-PP composite for various applications
- Pursue Phase II funding and advance to commercialization

Any proposed future work is subject to change based on funding levels

Funding Acknowledgement

Department of Energy (DOE) SBIR Phase I DE-SC0020041