Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

Mike Harold, PI
University of Houston
May 16, 2012

ACE029

Overview

TIMELINE

■ Start: Oct. 1, 2010

■ End: Sept. 30, 2012

■ 75% complete

BUDGET

■ Total project funding

■ DOE: \$2,217,317

■ UH & partners: \$687,439

Funding received

■ FY10-FY12: \$2,103,496

BARRIERS/TARGETS

- Increase fuel efficiency of light-duty gasoline vehicles by 25% (by 2015): LNT/SCR has potential as non-urea deNOx approach for LD diesel & lean burn gasoline vehicles
- Reduce NOx to <0.2 g/bhp-h for heavy-duty diesel (by 2015): *LNT/SCR* is promising non-urea solution

PARTNERS

- U. Houston (lead)
- Center for Applied Energy Research (U. Kentucky)
- Ford Motor Company
- BASF Catalysts LLC
- Oak Ridge National Lab

LNT/SCR Technology: Observations and Relevance

- LNT/SCR is promising non-urea deNOx technology for light- & medium duty diesel & lean burn gasoline
- Synergistic benefits of LNT/SCR have been demonstrated: Most previous studies show increased NOx conversion by adding SCR unit downstream of LNT
- Coupling between LNT & SCR not understood or characterized
- Optimal catalyst/reactor designs not yet identified; full potential not demonstrated/realized
- Need to reduce PGM requirements & minimize fuel utilization in meeting NOx reduction targets

Overall Goal, Impact & Approach of Project

<u>Goal:</u> Identify the NOx reduction mechanisms operative in LNT (Lean NOx Traps) and *in situ* SCR (Selective Catalytic Reduction) catalysts, and to use this knowledge to design optimized LNT-SCR systems in terms of catalyst architecture and operating strategies.

Impact: Progress towards goal will accelerate the deployment of a non-urea NOx reduction technology for diesel vehicles.

<u>Premise of Approach:</u> Focused experiments complemented by predictive reactor models tuned through simulation of experiments can be used to identify optimal LNT/SCR designs & operating strategies

Principal Challenges & Questions

- LNT/SCR only viable if sufficient NH₃ generated in LNT: Need to identify conditions for NH₃ generation in LNT & main pathways
- Hydrocarbons present during LNT regeneration may slip past LNT: Need to understand and quantify HC role as supplemental reductant in SCR
- LNT/SCR configurations and operating conditions: Which is optimal?
 - Stratified, segmented, multi-layer?
 - How little precious metal can be used to meet NOx reduction targets?
- LNT/SCR operating conditions:
 - What can be done about low temperature limitations?
 - How susceptible is performance to regeneration phase composition?

Collaborative Project Team: Current Activities

University of Houston

- Mike Harold (PI), Vemuri Balakotaiah, Dan Luss
- Bench-flow, TAP reactors; LNT NH₃ generation; LNT/SCR multi-layer catalyst synthesis & reactor studies; NH₃ SCR kinetics on Fe and Cu zeolite catalysts
- **University of Kentucky Center for Applied Energy Research**
 - Mark Crocker (CoPI)
 - Bench-flow reactors, SpaciMS: LNT, HC SCR, LNT/SCR segmented reactor studies
- **Oak Ridge National Laboratory**
 - Jae-Soon Choi
 - Bench-flow reactor, SpaciMS: LNT, SCR spatio-temporal studies
- **BASF Catalysts LLC** (formerly Engelhard Inc.)
 - C.Z. Wan
 - Model catalyst synthesis & characterization; Commercial SCR catalyst

- Bob McCabe, Mark Dearth, Joe Theis
- Bench-flow reactors, SpaciMS: LNT studies desulfation, aging
- Vehicle testing of LNT/SCR system

Activity Highlights from this Period

Since project inception: 22 peer-reviewed publications, 20 presentations, 4 invited lectures & 1 keynote

■ LNT

- DRIFTS study shows involvement of isocyanate pathway during regeneration
- SpaciMS regeneration data features predicted by LNT regeneration model
- Predictive crystallite LNT model predicts lean-rich cycling data & identifies optimal conditions for NH₃ formation

■ SCR

- Comprehensive kinetics and modeling completed for Fe/ZSM-5 & Cu/chabazite catalysts
- New dual-layer Fe/Cu SCR catalyst shows significant extension of temperature window resulting in high NOx conversion
- SpaciMS experiments provide compelling evidence for olefin trapping and reduction as supplement to NH₃

■ LNT-SCR

- N₂O emissions from LNT mitigated by downstream Cu/chabazite
- First LNT/SCR dual-layer catalyst experimentally demonstrated
- Predictive LNT/SCR model quantifies segmented configuration performance

LNT

LNT Regeneration Modeling of SpaciMS Data (Tasks 2.1, 2.7, 2.9, 3.5; UK, Ford, UH)

Time after switch to rich, sec

- $Pt/Rh/BaO/Al_2O_3$ aged catalyst (225 g washcoat/L)
- Regeneration using H₂
- Data fitted to UH model of Pt/BaO/Al₂O₃ catalyst

- First fit no optimization of kinetic parameters!
- Aged catalyst:
 - decrease in Pt site density
 - decrease in Pt and BaO site proximity
- Peak broadening present in the experimental data (e.g., 16.4 mm position) probably due to the NH₃ delay in the capillary due to the polar nature of NH₃
- Tuning underway to fully capture trends

DRIFTS Study of NOx Reduction with CO on LNT Catalysts (Task 3.1; UK)

- UK-ORNL DRIFTS study employing Pt/BaO/Al₂O₃ catalyst
- Lean—rich cycling performed in absence of H₂O
- Strong isocyanate bands observed during rich purging
- Isocyanate reactivity:
 H₂O > NO+O₂, O₂ > NO

- Linear relationship between Ba-NCO formation (2162 cm⁻¹) and Banitrate reduction (1320 cm⁻¹) implies that Ba-NCO is a direct intermediate in nitrate reduction
- At >100 °C, kinetics of Ba-NCO hydrolysis (to NH₃) are very fast

Crystallite-Scale Model of NO_x Storage & Reduction on Pt/BaO: Storage (Tasks 2.1, 2.7, 2.9; UH)

Effect of Pt Dispersion

Feed: 500 ppm NO, 5% O₂ Bal Ar, GHSV: 60,000 hr⁻¹

Loading (wt. %): Pt = 2.48 BaO = 13

Catalyst	Pt radius, R _c (nm)	Effective Storage Radius , R _{eff} (nm)	Pt Dispersion (%)
D3	15.0	440	3
D8	6.3	120	8

 Model predicts effect of Pt dispersion on NOx breakthrough (fixed Pt loading)

Crystallite-Scale Model of NO_x Storage and Reduction on Pt/BaO: Cycling Results (UH)

Feed: Lean: 500 ppm NO, 5% O₂, 60s; Rich: 5000 ppm H₂, 5-30s, Bal Ar GHSV: 60,000 hr⁻¹

 Model captures both initial and cyclic steady-state NO_x profiles

Catalyst D8 (8%)

 Good agreement between model & experiments for different rich time

 Key finding: Enhanced diffusion in the storage phase during the regeneration, indicative of H₂ spillover and diffusion

SCR

SCR Kinetics: Fe/ZSM-5 & Cu/chabazite (Tasks 2.1, 2.4, 2.9, 3.4; UH)

- Systematic kinetic model developed from compartmental approach
 - NO oxidation
 - Standard SCR
 - NO₂ SCR
 - Fast SCR

differential kinetics + ammonia uptake + integral kinetics +

- Incorporation into SCR monolith model to simulate single-, dual-layer, dual-zone catalysts
 - Include HC as reductant (ongoing)

Combination of Fe- and Cu-zeolite: Dual-layer Catalyst System (UH)

Dual layer catalyst the NO_x reduction efficiency over a wide temperature range

Dual-Layer Catalyst System (UH)

Experiments vs Simulations

Model accurately captures the experimental trends for single layer and dual-layer Fe-/Cu-zeolite catalysts

Non-NH₃ NOx Reduction Pathway in LNT-SCR: NOx Conversion with Olefins over Cu-zeolite SCR Catalyst (Tasks 2.4, 2.7; UK)

Lean-rich cycling using SCR catalyst (w/o upstream LNT): Lean (60 s): 300 ppm NO, 8% O_2 , 5% CO_2 , 5% H_2O , bal. N_2 ; Rich (5s): 300 ppm NO, 3333 ppm C_3H_6 and/or 300 ppm NH $_3$, 5% CO_2 , 5% H_2O , bal. N_2

Dotted line = sum of individual NOx conversions obtained separately using NH_3 and C_3H_6 as reductants

- Effects of NH₃ and C₃H₆ on NOx reduction over the SCR catalyst are additive
- Under cycling conditions, NOx reduction with olefins occurs in the rich phase and in the beginning of the lean phase, indicating that olefin storage occurs
- Rich phase NOx storage in SCR catalyst decreases HC slip (HC can be stored until it is oxidized in the lean phase)
- HC-SCR pathway to be captured in LNT-SCR model (on-going work at UH)

SCR Performance Determined by Spatiotemporal Distribution of Regeneration Chemistry (Task 2.7; ORNL, UK)

Lean/rich cycling Cu-chabazite (base gas: $5\% H_2O$, $5\% CO_2$, N_2 balance) Lean (60 s): 300 ppm NO, $8\% O_2$ Rich (5 s): 300 ppm NO, $1\% O_2$, reductant

- HC-SCR effective above 250 °C
- NH₃-SCR highly effective at all temps.
- NH₃ & C₃H₆ effects additive
- Near max NO_x reduction by 0.5L at 350
 C and above
- Optimal spatiotemporal distribution of storage, conversion & release of C₃H₆ & reductant products at 300-350 °C

LNT-SCR

Dual Layer LNT/SCR Catalysts (Task 2.6; UH)

Dual Layer LNT/SCR Catalysts

Lean/rich cycling

Lean (60 s): 500 ppm NO, 5% O₂ , balance Ar

Rich (5 s): 2.5% H₂, balance Ar

	Pt/Rh (g/ft³)	BaO (wt%)	CeO ₂ (wt%)
LNT1	90	14	0
LNT2	90	14	17
LNT3	90	14	34

• Addition of SCR layer on LNT layer results in utilization of NH_3 with some increase in N_2O production while maintaining high conversion

Dual Layer LNT/SCR Catalysts

Lean/rich cycling
Lean (60 s): 500 ppm NO, 5% O₂,
2.0% CO₂, 2.5% H₂O, balance Ar
Rich (5 s): 2.5% H₂, 2.0% CO₂,
2.5% H₂O, balance Ar

- Improved performance in presence of CO₂ & H₂O
- Elimination of NH₃ and very low N₂O
- Good low temperature performance

Modeling of LNT NOx Reduction Selectivity: Segmented Reactor & Global Kinetics (Tasks 1.8, 2.9; UH)

Serial design with LNT & SCR sections of equal length Catalysts: Pt/BaO (LNT) Cu/ZSM-5 (SCR) Length of each catalyst = 2cm; $GHSV=60,000\ h^{-1}$; Lean inlet: $NO=500ppm,O_2=5\%$; Rich inlet: $NO=500ppm,H_2=0.875\%$; λ = $Total\ LNT\ length/Total\ SCR\ length$ n = $number\ of\ LNT-SCR\ bricks$

• Low temperature operation is major constraint in optimizing the catalyst sequence

Modeling of LNT NOx Reduction Selectivity: Segmented Reactor & Global Kinetics (UH)

Length of each catalyst = 2cm; $GHSV=60,000h^{-1}$; Lean inlet: $NO=500ppm,O_2=5\%$; Rich inlet: $NO=500ppm,H_2=0.875\%$; λ = Total LNT length/Total SCR length $t_L = 6t_R$

• Cycle time has significant impact on LNT-SCR performance (NOx conversion)

Selected Activities Planned: 3Q-4QFY12 (Complete Phase 2 & 3)

- LNT:
 - Carry out model simulations of cyclic SpaciMS experiments to further elucidate NH₃ formation in Pt/Rh/CeO₂/BaO monolith
 - LNT model developments
 - Extend microkinetic NSR H₂ model to H₂/CO/HC mixtures
 - Incorporate washcoat diffusion using low-dimensional approach
- SCR:
 - Complete kinetic study of for $NH_3 + C_3H_6$ SCR on Cu/chabazite
 - Carry out isotopic (15 NO) TAP study of NH $_3$ + C $_3$ H $_6$ SCR on Cu/chabazite
- LNT/SCR:
 - Continue double-layer LNT/SCR experiments: Focus on reducing PGM content
 - LNT/SCR reactor modeling
 - Combine crystallite-scale LNT model and Cu/chabazite SCR models
 - Simulate LNT/SCR segmented architecture
 - Simulate LNT/SCR double-layer architecture

Publications & Presentations

Publications – Appeared Since Project Inception

- Joshi, S., Y. Ren, M.P. Harold, and V. Balakotaiah, "Determination of Kinetics and Controlling Regimes for H₂ Oxidation on Pt/Al₂O₃ Monolithic Catalyst Using High Space Velocity Experiments," Appl. Catal. B. Environ., doi:10.1016/j.apcatb.2010.12.030 (2011).
- Kumar, A., M.P. Harold, and V. Balakotaiah, "Estimation of Stored NOx Diffusion Coefficient in NOx Storage and Reduction," *I&EC Research*, **49**, 10334-10340 (2010).
- Kumar, A., X. Zheng, M.P. Harold, and V. Balakotaiah, "Microkinetic Modeling of the NO + H₂ System on Pt/Al₂O₃ Catalyst Using Temporal Analysis of Products," J. Catalysis, **279**, 12–26 (2011).
- Joshi, S., Y. Ren, M.P. Harold, and V. Balakotaiah, "Determination of Kinetics and Controlling Regimes for H₂ Oxidation on Pt/Al₂O₃ Monolithic Catalyst Using High Space Velocity Experiments," Applied Catalysis B: Environmental, **102**, 484–495 (2011).
- Metkar, P., N. Salazar, R. Muncrief, V. Balakotaiah, and M.P. Harold, "Selective Catalytic Reduction of NO with NH₃ on Iron Zeolite Monolithic Catalysts: Steady-State and Transient Kinetics," Applied Catalysis B: Environmental, **104**, 110–126 (2011).
- Kumar, A., X. Zheng, M.P. Harold, and V. Balakotaiah, "Microkinetic Modeling of the NO + H₂ System on Pt/Al₂O₃ Catalyst Using Temporal Analysis of Products," J. Catalysis, **279**, 12–26 (2011).
- Xu, J., M. Harold, and V. Balakotaiah, "Microkinetic Modeling of NOx Storage on Pt/BaO/Al₂O₃ Catalysts: Pt Loading Effects," Applied Catalysis B: Environmental, **104**, 305-315 (2011).
- Wang, J., Y. Ji, U. Graham, C. Spindola Cesar de Oliveira, M. Crocker, "Fully Formulated Lean NOx Trap Catalysts Subjected to Simulated Road Aging: Insights from Steady-State Experiments", Chin. J. Catal., **32** (2011) 736.
- Wang, J., Y. Ji, V. Easterling, M. Crocker, M. Dearth, R.W. McCabe, "The effect of regeneration conditions on the selectivity of NO_x reduction in a fully formulated lean NOx trap catalyst", Catal. Today, 175 (2011) 83.
- Ji, Y., V. Easterling, U. Graham, C. Fisk, M. Crocker, J,-S. Choi, "Effect of aging on the NO_x storage and reduction characteristics of fully formulated lean NO_x trap catalysts", Appl. Catal. B 103 (2011) 413.
- Liu, Y., M.P. Harold, and D. Luss, "Spatiotemporal Features of Pt/CeO₂/Al₂O₃ Catalysts During Lean/Rich Cycling," Applied Catalysis A, General, 397, 35-45 (2011).*
- Ren, Y., and M.P. Harold, "NOx Storage and Reduction with H₂ on Pt/Rh/BaO/CeO₂: Effects of Rh and CeO₂ in the Absence and Presence of CO₂ and H₂O," ACS Catalysis, 1, 969-988 (2011).
- Metkar, P., V. Balakotaiah, and M.P. Harold, "Experimental Study of Mass Transfer Limitations in Fe- and Cu-Zeolite Based NH₃ SCR Monolithic Catalysts," Chem. Eng. Sci., **66**, 5192–5203 (2011).
- J. Wang, Y. Ji, Z. He, M. Crocker, M. Dearth, R.W. McCabe, "A non-NH₃ pathway for NO_x conversion in coupled LNT-SCR systems", Appl. Catal. B **111-112** (2012) 562.

Publications & Presentations, cont.

Publications – Appeared Since Project Inception, cont.

• Metkar, P., V. Balakotaiah, and M.P. Harold, "Experimental Study of Selective Catalytic Reduction of NO_x on a Combined System of Fe and Cu-based Zeolite Monolithic Catalysts," Applied Catalysis B: Environmental, **111–112**, 67–80 (2012).

Accepted and In Press

- Joshi, Joshi, S., Y. Ren, M.P. Harold, and V. Balakotaiah, "Determination of Kinetics and Controlling Regimes for Propylene and Methane Oxidation on Pt/Al₂O₃ Monolithic Catalyst Using High Space Velocity Experiments," Ind. Eng. Chem. Res., in press (2012).
- Kota, A., D. Luss and V. Balakotaiah, "Modeling and Optimization Studies of Combined LNT-SCR Catalyst Systems", Ind. Engng. Chem. Res., in press (January, 2012).
- Metkar, P., M.P. Harold, and V. Balakotaiah, "Experimental and Kinetic Modeling Study of NO Oxidation: Comparison between Fe and Cu-zeolite Catalysts," Catalysis Today, in press (December, 2011).
- Dasari, P., R. Muncrief,, and M.P. Harold, "Elucidating NH_3 Formation During NO_{χ} Reduction by CO on Pt-BaO/Al₂O₃ in Excess Water," Catalysis Today, in press (December, 2011).
- Shakya, B., M.P. Harold, and V. Balakotaiah, "Modeling the Effects of Pt Dispersion During NO_x Storage and Reduction on Pt/BaO/Al₂O₃," Catalysis Today, in press (February, 2012).
- Harold, M.P., "NOx Storage and Reduction in Lean Burn Vehicle Emission Control: A Catalytic Engineer's Playground", Current Opinion in Chemical Engineering, in press (February, 2012).
- Liu, Y., M.P. Harold, and D. Luss, "NOx Storage and Reduction in Dual Layer Pt/BaO/Cu/ZSM5 Monolith Catalyst," Appl. Catal. B. Environmental, under review (January, 2012).

Patents Since Project Inception

• Harold, M.P., and P. Metkar, US Provisional Patent Application, "Multi-Component and Layered Formulations for Enhanced Selective Catalytic Reduction Activity," June 6, 2011.

Presentations – Since Nov. 2010:

• Total: ~21 oral presentations (AIChE, NAM, CLEERS, ACS, etc.)

5 invited presentations (NAM Keynote, ACS National Meeting, Philadelphia Catalysis Society, Michigan Catalysis Society, Chicago Catalysis Club, etc.)

Summary

- Comprehensive program combining fundamental catalysis, reaction engineering and vehicle testing
- Very good progress on Phase 2 & 3 tasks
 - SpaciMS LNT measured temporal profiles predicted by LNT regeneration model
 - Predictive crystallite LNT model identifies optimal conditions for NH₃ formation
 - Definitive evidence for olefin trapping and role as NOx reductant
 - New dual-component SCR catalyst
 - First LNT/SCR dual-layer catalyst
 - Predictive LNT/SCR model quantifies segmented configuration performance
- Final efforts to close loop on identifying optimal LNT-SCR configurations with reduced PGM content

Technical Backup Slides

Approach: Team Participants

Schedule of Tasks: Phases 2 & 3

Phase 2 Tasks		Year 2				Year 3			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
2.1: Spatiotemporal study of LNT NO_x reduction selectivity									
2.2: Isotopic TAP study of NO _x reduction on LNT & SCR									
2.3: Transient kinetics of NO_x reduction on LNT & SCR									
2.4: Kinetics of transient NO _x reduction w/ NH ₃ on SCR									
2.5: Examine effect of PGM/ceria loading on LNT-SCR									
2.6: Prepare double layer LNT-SCR catalysts									
2.7: Spatiotemporal study of LNT-SCR performance									
2.8: Sulfation-desulfation study of LNT-SCR system									
2.9: Modeling and simulation studies									
2.10: Phase 2 reporting									
Phase 3 Tasks		Year 2				Year 3			
2.1 I ' DDIETC	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
3.1: In situ DRIFTS study on double layer LNT-SCR									
3.2: Age LNT-SCR systems on bench reactor									
3.3: Comparison study of segmented LNT-SCR systems									
3.4: Completion of microkinetic model for LNT and SCR]	
3.5: Optimization/simulations of LNT-SCR system									
3.6: Identification of optimal segmented LNT-SCR config.								\$	
3.7: Reactor studies on aged LNT-SCR systems									
3.8: Physico-chemical analysis of aged LNT-SCR systems								<u> </u>	
3.9: Vehicle tests on aged LNT-SCR system									

NO Oxidation on Cu/chabazite: Experiments vs. Simulations (UH)

- Model accurately predicts the experimental data for different feeds and temperatures
- Effect of NO₂ inhibition on the NO oxidation is well captured by the model

N₂O Reduction Over Cu-chabazite SCR Catalyst (Tasks 2.4, 2.7; UK)

Under lean-rich cycling conditions, SCR catalyst helps to mitigate N₂O emissions from upstream LNT catalyst

Steady state (continuous flow); SCR catalyst:

Feed: 100 ppm N_2O , 5% H_2O , 5% CO_2 , reductant as shown, bal. N_2 ; GHSV = 30,000 h^{-1}

Lean-rich cycling, LNT-SCR, 275 °C; concentration profiles before (black) and after (red) SCR catalyst:

60 s L - 5 s R; L: 300 ppm NO, 8% O_2 , 5% H_2O , 5% CO_2 , bal. N_2 ; R: 1% H_2 , 5% H_2O , 5% CO_2 , bal. N_2 . GHSV = 30,000 h^{-1}

H₂ best reductant, followed by NH₃

 N₂O conversions can reach 80% under favorable conditions

Crystallite-Scale Model of NO_x Storage and Reduction on Pt/BaO: Cycling Results (UH)

Feed: Lean: 500 ppm NO, 5% O₂, 60s; Rich: 5000 ppm H₂, 10s, Bal Ar GHSV: 60,000 hr⁻¹

Model predicts nonuniform storage and reduction at crystallite scale and along reactor length