

Development of Next-Generation Vertical GaN Devices for High-Power-Density Electric Drivetrain

Greg Pickrell, Co-PI, Power Electronics Sandia National Laboratories June 11, 2019

Project ID: elt210

Overview

1

Timeline

- Start FY19
- End FY21
- 25% complete

Budget

- Total project funding
 - DOE share 100%
- Funding received in FY18:\$0
- Funding for FY19: \$550k

Goals/Barriers

- Power Density = 100 kW/L
- Power target > 100 kW (~1.2kV/100 A)
- Cost target for Electric Traction Drive system (\$6/kW)
- Operational life of Electric Traction Drive system = 300k miles
- Barriers:
 - Conventional SiC-based devices not designed for automotive environment
 - Relative immaturity of GaN-based vertical devices (performance/reliability)
 - Relative immaturity of new passive materials (performance/reliability)

Partners

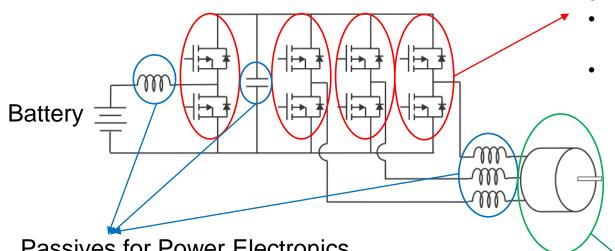
- ORNL
- NREL
- SUNY Woongie Sung
- Ohio State Anant Agarwal
- Jim Cooper
- Jon Wierer Lehigh University
- Project Lead: Sandia Labs, Team Members: Jack Flicker (Co-PI), Todd Monson, Bob Kaplar

Relevance and Objectives

Objectives

- Develop power electronics components to reach the power density targets of > 100 kW (~ 1.2 kV/100A) and 100 kW/L
- Power electronics performance targets enable overall system performance targets for the Electric Traction Drive system of 33 kW/L, \$6/kW, and > 300k mile operation lifetimes
- First year objectives:
 - SiC efforts focused on COTS device evaluation, design improvement for automotive environments
 - GaN efforts focused on device design/simulation, and process development
 - Passives efforts focused on design of reliability evaluation methods/equipment for capacitors and demonstration of Fe₄N/glass composite inductors

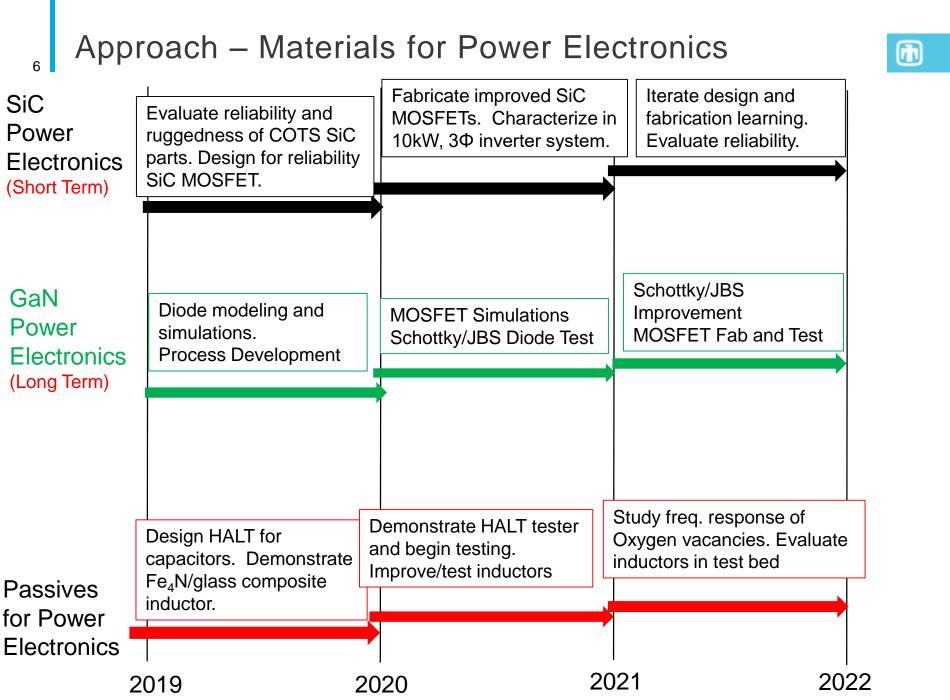
<u>Impact</u>


- Enabling advanced future Electric Traction Drive vehicles which contributes directly to clean energy transportation
- Wide bandgap (SiC and GaN) power devices enable higher power densities (reduced size and weight) and higher operating frequencies
- Higher operating frequencies enable size and weight reduction for passive devices (capacitors and inductors) in power circuits
- Efforts directly address technology barriers for power electronics and Electric Traction Drive power density targets

FY19 Milestones

Milestone	Date	Status
Simulate GaN-based diodes (Schottky diode and Junction barrier Schottky (JBS) diode). Demonstrate growth/fabrication processes for realization of devices.	10/2019	On Track
Evaluate state-of-the-art SiC power devices and identify gaps	4/2019	In Progress
Evaluate state-of-the-art passive components and identify gaps	4/2019	
Design and fabricate advanced test-bed to evaluate components in realistic operating scenarios	10/2019	On Track

Approach – System Level View



- Power Electronic Devices:
 - SiC or GaN-based
 - Higher critical elec. field
 - Higher frequency operation
 - Increased power density
 - Reduced size/weight

- Passives for Power Electronics
 - Composite materials for improved inductors
 - Improved capacitor lifetime, operating modes
 - Higher frequency operation
 - Reduced size/weight

- Advanced Motor Designs:
 - Increased power density
 - Higher speed operation
 - Reduced size/weight

- Characterization efforts at each point in the system:
 - Power electronic devices, passives, motors
- Sandia National Labs efforts span multiple levels within system design

Any proposed future work is subject to change based on funding levels.

7

Approach - SiC based Power Electronics

- SiC is still young ... but several Electric Traction Drive products have recently featured SiC devices
- Improving the performance of SiC devices is likely to increase its adoption
- Achieve interim project goals within project timeline

PD550 Si IGBT Inverter **9 kW/L**

Gen-1 SiC Inverter

18 kW/L

- Requires 1/3 the space

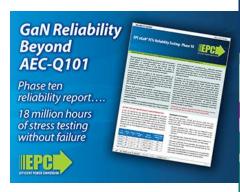
Follow successful commercial model of **staged** device integration from Si + SiC development

Stage 1: SiC MOSFET + SiC Diode

Device modeling, circuit simulation at each stage.

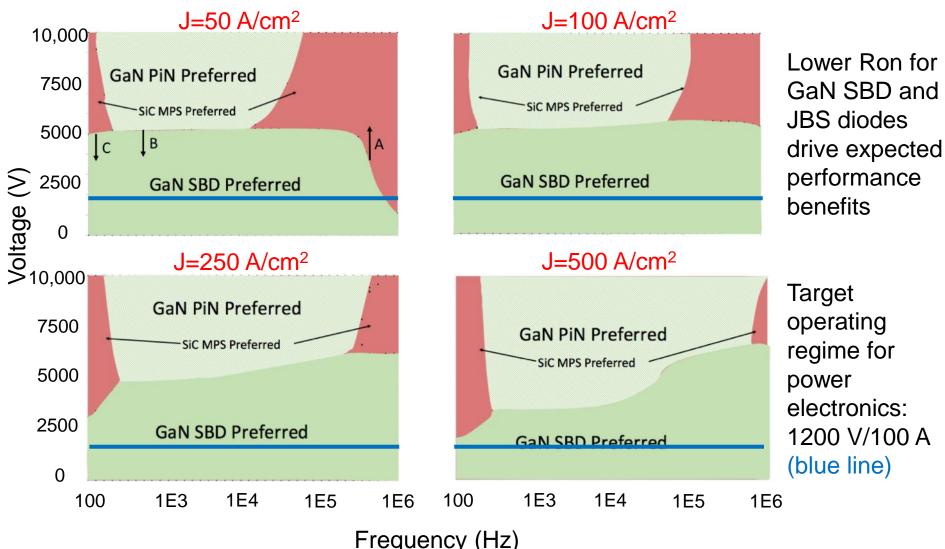
Stage 2: SiC MOSFET + GaN Diode

Characterization and evaluation of device technology in test bed at each stage.



transphorm

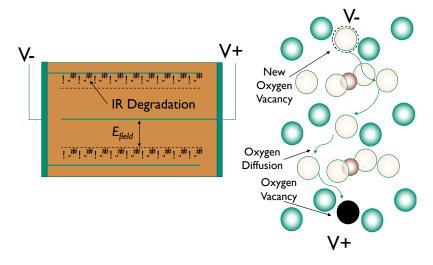
Second Line of AEC-Q101-qualified GaN FFTs Now Offered at 175°C



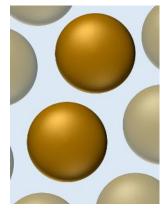
EPC GaN FETs show excellent device reliability (AEC-Q101 qualified)

Approach: GaN-Based Power Electronics

System evaluation of <u>diode power dissipation vs. diode type</u> for given operating regime (reverse voltage, forward current density, frequency), T=300K


J. Flicker and R. Kaplar, IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, 2017.

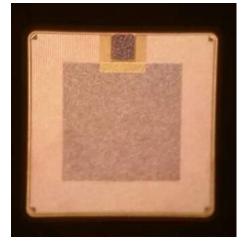
10


Approach: Passive Materials for Power Electronics

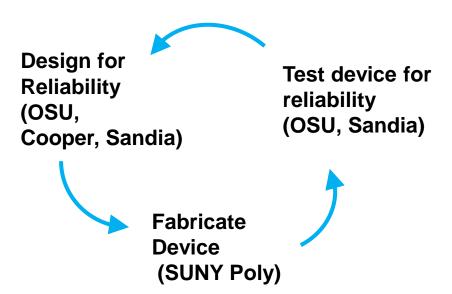
Innovate passive materials for high frequency power electronics systems

- Improve ceramic capacitor performance and reliability
- Increase frequency and reduce size of inductors
- Increase power density through integration (vs. discrete components)

- Ceramic capacitors aging caused by oxygen diffusion toward anode and accumulation of oxygen vacancies at cathode
- Bipolar switching at ~10x the rated voltage and 125°C above the rated temperature can increase the time to failure



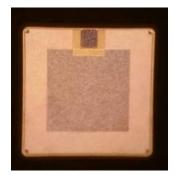
With permission from Getty Images


- Inductor designs improved with designed Fe₄N composites
 - Smaller size
 - Higher frequency operation
 - Operating temperatures up to 200 C

- Technical Accomplishments and Progress SiC
- SiC is one path to Power Electronics target (short term)
 - SiC has some commercial maturity and a larger manufacturing base
- SiC device designs currently not targeting automotive applications
 - Cost emphasized over reliability
 - High temp. operation causes issues with threshold voltage < 1 V at 150C (junction temp.)
 - Gate oxides designs, channel length designs not optimized for automotive environment
- Change focus to "design for reliability" within cost targets
- Design Advanced Component Test-Bed Ongoing at Sandia (poster)
 - Characterize new device designs with relevant use scenarios

MOSFET Die

With permission from SUNY Poly (Woongie Sung) https://sunypoly.edu/research/woongje-sung/research.html



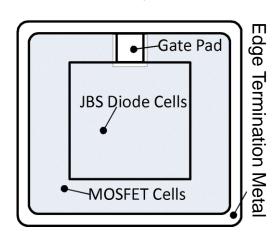
Technical Accomplishments and Progress - SiC

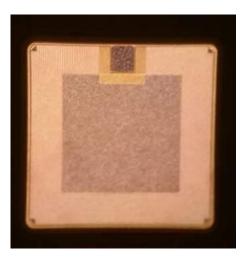
COST and RELIABILITY GOALS are achievable by 2025

Estimates of chip cost for a 1.2 kV/100 A MOSFET with an integrated JBS diode (chip size 6 mm × 6 mm)

With permission from SUNY Poly (https://sunypoly.edu/research/woon gie-sung/research.html)

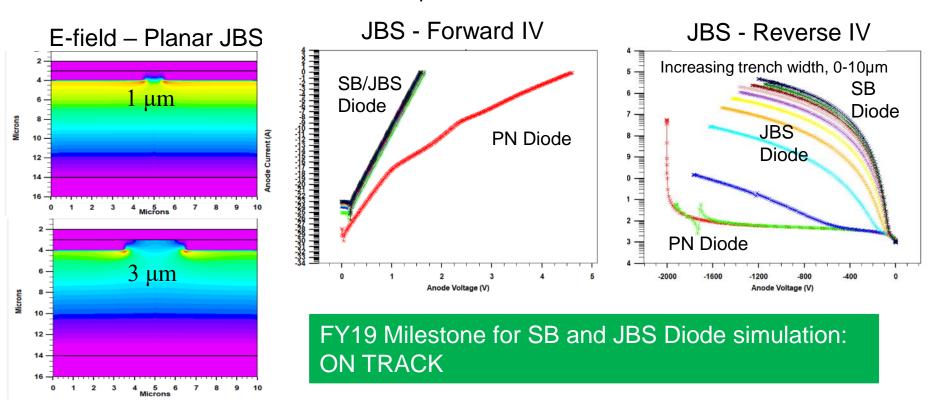
	R&D Phase (2018)	Low volume (2020) 10,000 chips per year	Moderate volume (2023) 1 million chips per year	200mm substrate with Moderat volume (2023~)
Cost per Amp	27¢ _{/Amp}	10¢/ _{Amp}	2.8¢/Amp	1.85¢/Amp
Cost of 150 mm SiC substrate	\$2500	\$1700	\$500	\$750
Process cost per wafer	\$5000	\$1500	\$500	\$500
Cost per 100 A die	\$27	\$10	\$2.8	\$1.85
Total number of chips on a wafer excluding a 2 mm zone around the substrate	400	400	400	750
Yield	70%	80%	90%	90%
Number of functional die per wafer	280	320	360	675


Technical Accomplishments and Progress - SiC



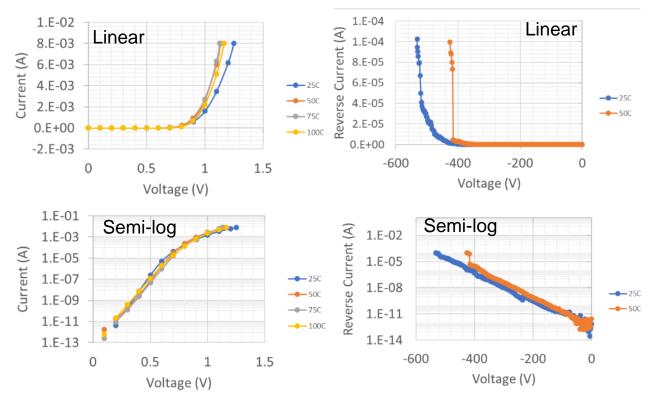
SiC device manufacturing: SUNY Poly

- Reliability/Ruggedness evaluation of COTS and SUNY Poly devices
 - Ohio State University
- Evaluate devices in 10kW, 3 phase inverter system
 - Stress devices in realistic drive cycle scenario (e.g. 10 min hill climb)
- Devices fabricated by State University of New York Polytechnic Institute (SUNY Poly)
 - High performance, highly reliable 900-1700 V SiC JBS diode integrated MOSFETs
 - Devices to be fabricated at commercial foundry

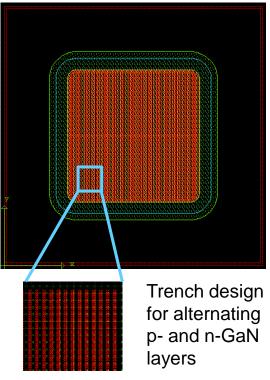


With permission from SUNY Poly (Woongie Sung), (https://sunypoly.edu/research/woongje-sung/research.html)

- Vertical GaN devices is another path to Power Electronics target (Long Term)
 - Higher Performance and Larger Design Space
- Decision to focus resources in first year on the vertical GaN diode
 - Allows staged combination with SiC transistors.
 - Schottky Barrier (SB) diodes and Junction Barrier Schottky (JBS) diodes
- Modeling/Simulation is underway
 - Developed SB diode models in Silvaco simulation software
 - JBS diode models are under development



Technical Accomplishments and Progress - GaN



- Gen1 GaN SB Diodes <u>demonstrated</u>
 - SB diodes being characterized and used to calibrate models
 - Focus on good Schottky/Metal interface on Gen1 devices, not on breakdown voltages
- Mask designs for JBS diode development completed
 - Exploring different design strategies
 - Using SiC devices to understand current scaling methods

SB Diode IV over Temperature

JBS Diode Mask

FY19 Milestone for GaN Process Development: ON TRACK

Responses to Previous Year Reviewers' Comments

- Sandia's first year on this program
- No previous comments

<u>Oak Ridge National Laboratory</u> – Collaborating partner for Electric Traction Drive integration and evaluation.

<u>National Renewable Energy Laboratory</u> – Collaborating partner for Electric Traction Drive integration and evaluation.

<u>State University of New York (SUNY) (Woongie Sung)</u> – Fabricating SiC JBS diode integrated with MOSFETs. (Subcontractor)

<u>Ohio State University (Anant Agarwal)</u> – Designing for improved reliability for SiC electronics. Evaluate reliability and ruggedness of commercial and fabricated devices using realistic scenarios. (Subcontractor)

<u>Jim Cooper</u>— Working with OSU for SiC device evaluation. Working with Sandia for GaN power electronic device design and characterization. (Subcontractor)

<u>Lehigh University (Jon Wierer)</u> – Working with Sandia for design/simulation/modeling of GaN SB and JBS diodes. (Subcontractor)

Remaining Challenges and Barriers

SiC Devices

- Designs need to be optimized for automotive environments
- Multiple iterations needed to understand performance/reliability/cost tradeoffs

GaN Devices:

- •Immaturity of GaN devices requires multiple cycles of learning to develop and optimize device performance
- MOSFET development to follow behind JBS diode development

Passives

Immaturity of technology requires further development and understanding

Proposed Future Research

1

SiC:

- FY19-20:
 - Evaluate COTS devices for reliability and ruggedness
 - Initiate "design for reliability" efforts
 - Initiate SiC device fabrication and evaluation
- Rest of project:
 - Focus on Design and Test for Reliability
 - Fabricate devices based on Design for Reliability
 - Evaluate performance against Consortium targets
 - Utilize devices in Gen1 prototype Electric Traction Drive

Passives:

- FY19-20:
 - Design and build HALT tester for capacitors.
 - Demonstrate Fe₄N/Glass composite inductor
- Rest of project:
 - Refine materials for passives for highly integrated, high frequency solution
 - Evaluate reliability of capacitors and inductors
 - Develop path for production of passive components

GaN:

- FY19-20:
 - Refine SB and JBS diode modeling efforts
 - Improve SB GaN diode performance
 - Demonstrate GaN JBS diodes
 - Initiate GaN MOSFET modeling and process development
- Rest of project:
 - Iterate to improve GaN SB and JBS diode performance against targets (1200 V/100 A)
 - Combine with SiC MOSFET in circuit for evaluation
 - Demonstrate GaN MOSFET device performance
 - Iterate to improve GaN MOSFET performance against targets (1200 V/100 A)
 - Combine GaN MOSFET and JBS diode in circuit for evaluation

Any proposed future work is subject to change based on funding levels.

Summary

- •Systems level view of the project identified key areas for performance improvement in power electronics:
 - Wide bandgap power devices evaluate SiC and vertical GaN devices
 - Passive devices
- •SiC device improvement will be driven through "design for reliability" approach with performance metrics for reliability and cost in mind
- GaN device development is underway
 - GaN diode simulation and modeling in process
 - Schottky Barrier (SB) diodes demonstrated and used to refine models
 - GaN process development underway for JBS diode fabrication
- Passive component (capacitors and inductor) development is underway
 - Reliability evaluation of ceramic capacitors with different operation modes is in design.
 - Fe₄N/Glass composite inductor materials are in development.