

Development of High-Capacity Cathode Materials with Integrated Structures

Principal Investigator: Michael Thackeray Chemical Sciences and Engineering Division Argonne National Laboratory

Annual Merit Review
DOE Vehicle Technologies Program
Arlington, VA
May 14-18, 2012

ES019

Overview

Timeline

- Start date: FY09
- End date: On-going
- Percent complete:
 - project on-going

Budget

- Total project funding
 - 100% DOE
- Funding in FY11: \$400K
- Funding in FY12: \$300K

Barriers

- Low energy density
- Cost
- Abuse tolerance limitations

Partners

- Lead PI: Michael Thackeray
 (Previous PI: S.-H. Kang)
- Collaborators:
 - CSE, Argonne: <u>Donghan Kim</u>, Jason Croy,
 Kevin Gallagher, Giselle Sandi (materials design, synthesis and electrochemical characterization)
 - APS, Argonne: Peter Chupas, Karena Chapman, Matthew Suchomel (HR-XRD and PDF analyses)
 - MIT: Yang Shao-Horn, Chris Carlton (HR-TEM)

Objectives

- Develop low cost, high-capacity cathode materials with good structural, electrochemical and thermal stability for PHEVs
 - Design and synthesize Li- and Mn-rich oxides with integrated structures, notably 'layered-spinel' materials, to counter the voltage fade phenomenon observed in 'layered-layered' electrode materials
 - Identify and overcome performance degradation issues
 - Exchange information and collaborate closely with others in ABR's 'voltage fade' team
 - Supply promising high-capacity cathode materials for PHEV cell build

Milestones FY12

- Explore/optimize the electrode composition using phase diagrams as the guide – on going
- Evaluate electrochemical properties of 'layered-spinel' electrode materials in lithium half cells and a full Li-ion cell configuration with various anode materials – on going
- Investigate both bulk and surface effects on-going
- Initiate detailed structural analyses of composite electrode structures at the Advanced Photon Source (APS) by X-ray diffraction, X-ray absorption and pair-distribution-function (pdf) analyses *initiated October 2011*

Background: Integrated Cathode Structures

'Layered-Layered' Li₂MnO₃-LiMO₂-MO₂ (M=Mn, Ni) Phase Diagram

'Layered-Spinel' $0.7\text{Li}_2\text{MnO}_3 \bullet 0.3\text{Li}_4\text{Mn}_5\text{O}_{12}$

- Compatibility of ccp planes in layered Li_2MnO_3 (C2/m, 001) with those in layered $LiMO_2$ (R-3m, 003) and spinel LiM_2O_4 (Fd3m, 111) allows structural integration of the two components
- Strategy: Use the 'layered-layered' component to provide high capacity and the spinel component to act as a stabilizer to counter voltage fade

Voltage Fade: Relationship to other EERE projects

- Use Li₂MnO₃ as precursor to fabricate 'layered-layered' electrodes see Croy et al., BATT Poster ES049
- Voltage decay due to internal phase transitions migration of transition metal ions into Li layers provides 'spinel-like' character
- Hypothesis: Phase transitions may be arrested by introducing and controlling the number of stabilizing ions in Li layer via a Li₂MnO₃ precursor

New BATT process

Li⁺/M⁺/H⁺-ion exchange during acid treatment, followed by annealing step to complete M⁺ diffusion into the lithium and transition metal layers

Strategy and Goal of ABR project: Fabricate (by standard industry processes, e.g., solid state reactions using mixed metal hydroxides /carbonate precursors) stabilized 'layeredlayered-spinel' electrodes that do not exhibit voltage decay

Approach

Initial strategy

- Embed a spinel component to stabilize 'layered-layered' composite structures
 - Spinel domains can be created by controlling the lithium content in the composite electrode structure
 - Lower the Li: Transition Metal ratio relative to 'layered-layered' electrodes

- Electrodes investigated on the tie-line $x\{0.5Li_2MnO_3 \bullet 0.5LiMn_{0.5}Ni_{0.5}O_2\} \bullet (1-x)LiMn_{1.5}Ni_{0.5}O_4$
- Mn:Ni ratio in 'layered-layered' component = 75:25

Recent approach

- Evaluate composite electrodes with a higher Ni content in the 'layered-layered' component to enhance structural stability during cycling
- Use a small amount of spinel stabilizer (5-10%) in $0.3\text{Li}_2\text{MnO}_3 \bullet 0.7\text{LiMn}_{0.5}\text{Ni}_{0.5}\text{O}_2$ 'layered-layered' component in which the Mn:Ni ratio = 65:35
- Based on literature results, investigate the potential benefits of Mg substitution and surface stabilization with AIF₃
- Initiate structural analyses of 'layeredlayered' and 'layered-layered-spinel' electrode structures at the Advanced Photon Source (APS), using a 'layeredlayered' component xLi₂MnO₃•(1-x)LiCoO₂ as a baseline standard for simplicity

Li_xMn_{0.75}Ni_{0.25}O_y 'Layered-Layered-Spinel' Compositions

RECAP:

- Li_xMn_{0.75}Ni_{0.25}O_y compositions fall on the tie line between $0.5\text{Li}_2\text{MnO}_3 \bullet 0.5\text{LiMn}_{0.5}\text{Ni}_{0.5}\text{O}_2$ ('layered-layered') and LiMn_{1.5}Ni_{0.5}O₄ (spinel) tie line with constant Mn:Ni ratio (3:1).
- $= \text{Li}_{1.5} \text{Mn}_{0.75} \text{Ni}_{0.25} \text{O}_{2.5} = 0.5 \text{Li}_2 \text{MnO}_3 \bullet 0.5 \text{LiMn}_{0.5} \text{Ni}_{0.5} \text{O}_2; \quad \text{Li}_{0.5} \text{Mn}_{0.75} \text{Ni}_{0.25} \text{O}_2 = \text{LiMn}_{1.5} \text{Ni}_{0.5} \text{O}_4$
- Therefore, lowering the Li:Mn+Ni ratio from 1.5 :1 to 0.5:1 induces spinel formation in the 'layered-layered' structure

- Improvement in the 1st-cycle efficiency was achieved by incorporating a spinel phase in the 'layered-layered' matrix. (e.g., 90% for $Li_{1.3}Mn_{0.75}Ni_{0.25}O_v$ when cycled at 4.6-2.0 V)
- 200 mAh/g at 1C rate was achieved for Li_{1.2}Mn_{0.75}Ni_{0.25}O_v
- But..... Mn concentration too high (cf. phase diagram)

Kang et al (2011)

The Li_xMn_{0.65}Ni_{0.35}O_y System

- Li_xMn_{0.65}Ni_{0.35}O_y products were synthesized from Li₂CO₃ and Mn_{0.65}Ni_{0.35}C₂O₄•2H₂O* (850 °C, 12 h, air, Mn:Ni ratio = 65:35)
- In this system, $Li_{1.3}Mn_{0.65}Ni_{0.35}O_{2.3}$ corresponds to the spinel-free, 'layered-layered' composition $0.3Li_2MnO_3 \bullet 0.7LiMn_{0.5}Ni_{0.5}O_2$
- Lowering the lithium content induces the formation of spinel in the layered structure

Li _x Ni _{0.35} Mn _{0.65} O _y	$\delta(0.3\text{Li}_2\text{MnO}_3 \bullet 0.7\text{LiNi}_{0.5}\text{Mn}_{0.5}\text{O}_2)$	(1-δ)Li _{0.5} Ni _{0.25} Mn _{0.75} O ₂
(a) x= 1.3	$\delta = 1$ $0.3 \text{Li}_2 \text{MnO}_3 \bullet 0.7 \text{LiNi}_{0.5} \text{Mn}_{0.5} \text{O}_2$	$(1-\delta)=0$
(b) x = 1.25	$\delta = 0.94$ $0.28 \text{Li}_2 \text{MnO}_3 \bullet 0.66 \text{LiNi}_{0.5} \text{Mn}_{0.5} \text{O}_2$	$(1-\delta) = 0.06$ $0.06Li_{0.5}Ni_{0.25}Mn_{0.75}O_2$
(c) x = 1.2	$\delta = 0.88$ 0.26Li ₂ MnO ₃ •0.62LiNi _{0.5} Mn _{0.5} O ₂	$(1-\delta) = 0.12$ $0.12 \text{Li}_{0.5} \text{Ni}_{0.25} \text{Mn}_{0.75} \text{O}_2$
(d) x = 1.15	$\delta = 0.81$ $0.24 \text{Li}_2 \text{MnO}_3 \bullet 0.57 \text{LiNi}_{0.5} \text{Mn}_{0.5} \text{O}_2$	$(1-\delta) = 0.19$ $0.19 \text{Li}_{0.5} \text{Ni}_{0.25} \text{Mn}_{0.75} \text{O}_2$
(e) x = 1.1	$\delta = 0.75$ $0.23 \text{Li}_2 \text{MnO}_3 \bullet 0.53 \text{LiNi}_{0.5} \text{Mn}_{0.5} \text{O}_2$	$(1-\delta) = 0.25$ $0.25 \text{Li}_{0.5} \text{Ni}_{0.25} \text{Mn}_{0.75} \text{O}_2$

The Effect of Lithium Content in $Li_xMn_{0.65}Ni_{0.35}O_y$: Optimizing capacity and first cycle efficiency

- Like the Li_xMn_{0.75}Ni_{0.25}O_y system, the 1st cycle efficiency and rate capability were enhanced by introducing a spinel component into the 'layered-layered' structure.
- Based on the 1st-cycle efficiency and the rate capability, Li_{1.25}Mn_{0.65}Ni_{0.35}O_y was selected for further study.

XRD patterns of Li_xMn_{0.65}Ni_{0.35}O_y samples

- Spinel component is detectable in samples with x = 1.25, but not x = 1.3, as expected
- AIF₃ treatment enhances the spinel content through Li removal (acid leaching) and annealing
- Provides a technique to simultaneously stabilize the surface and tailor the amount of stabilizing spinel in the bulk?

SEM/TEM Images of Precursor and Products

 $Mn_{0.65}Ni_{0.33}Mg_{0.02}C_2O_4$ •2 H_2O

 $Li_{1.25}Ni_{0.33}Mg_{0.02}Mn_{0.65}O_{y}$

Cleaved crystallites, believed to be result of H₂O/CO₂ loss from oxalate precursor, contribute to the porosity of secondary particles

High resolution TEM/EELS images of AlF_3 -coated $Li_{1.25}Ni_{0.33}Mg_{0.02}Mn_{0.65}O_{\nu}$ Samples

TEM

~1nm AlF₃ layer on particle surface

EELS map shows uniform Al distribution (white dots) over particle surface

Electrochemistry of $Li_{1.3}Mn_{0.65}Ni_{0.35}O_{2.3}$ and $Li_{1.25}Ni_{0.33}Mg_{0.02}Mn_{0.65}O_y$ Electrodes

- First cycle efficiency = 78%
- Typical behavior for a 'layered-layered' electrode

Mg-doped, Li deficient 0.3Li₂MnO₃•0.7LiNi_{0.5}Mn_{0.5}O₂

- First-cycle efficiency = 89% (spinel phase can accommodate surplus Li)
- Mg doping improves capacity (consistent with Sun et al, J. Mater. Chem. (2003))
- Voltage fade on discharge still significant ⇒ stabilizing spinel concentration too low? (~6%)

AlF_3 -treated $Li_{1.25}Ni_{0.33}Mg_{0.02}Mn_{0.65}O_y$ Electrodes

- AlF₃ treatment enhances the cycling stability and provides cells with an apparent 'built-in' voltage decay \Rightarrow increased spinel component in the acid-treated electrode?
- AIF₃-treated electrodes provides inferior capacity (higher surface impedance) relative to uncoated samples

dQ/dV Plots of Li_{1.25}Ni_{0.33}Mg_{0.02}Mn_{0.65}O_v Electrodes

- Untreated electrodes with low spinel concentration (~6%) show typical voltage fade
- Ni reduction peak at ~3.7 V weakens on cycling

- AIF₃-treated electrodes show greater cycling stability at ~3.7 V
- Surface treatment influences bulk processes
- Spinel-like phase (~2.95 V) becomes dominant

Rate Capability of Li_xMn_{0.65}Ni_{0.35}O_v Electrodes

- Discharge capacities measured at 15, 30, 75, and 150 mA/g
- 'Layered-layered-spinel' (LLS) composite electrodes provide higher capacity than 'layered-layered' (LL) electrodes
- AlF₃ surface treatment reduces the rate capability of 'layered-layered-spinel 'electrodes
- High rate performance tentatively attributed to the stabilizing effects of spinel at the surface as well as in the bulk

Pulse Power Performance of Li_{1.25}Ni_{0.33}Mg_{0.02}Mn_{0.65}O_v

- Impedance measured with DC pulses
 - Measured at 5% SOC increments
 - 10 sec 3C discharge, 60 minute rest, 10 sec 3C charge
- Layered-layered spinel / graphite full cell
 - $\text{Li}_{1.25}\text{Ni}_{0.33}\text{Mg}_{0.02}\text{Mn}_{0.65}\text{O}_{\text{y}}$ vs. MAG10 $\text{Li}_{\text{x}}\text{C}_{6}$ (1.2M LiPF₆ in 3:7 EC:EMC)
- Better impedance than ANL-NMC electrodes
 - Influence of spinel component unknown at this stage

Area Specific Impedance of Li_{1.25}Ni_{0.33}Mg_{0.02}Mn_{0.65}O_y

- Breakdown of measured ASI
 - Interfacial processes very significant (<1-3 seconds)
 - Diffusional impedance becomes most important at high and low SOC

XRD Patterns and PDF Spectra of xLi₂MnO₃•(1-x)LiCoO₂

(x=0.1, 0.3, 0.7, and 0.9 annealed at 850°C)

- Use a "simple" baseline system, xLi₂MnO₃•(1-x)LiCoO₂ to initiate in-depth studies of the voltage decay phenomenon in 'layered-layered' electrodes
- TEM data show a composite structure composed of Li₂MnO₃ and LiCoO₂ nanodomains (J. Bareno, Chem Mater. (2011))
- XRD data indicate solid-solution behavior of a composite " Li_2MnO_3 + $LiCoO_2$ " matrix as a function of x
- PDF data show short range environment of Mn, Co remains constant as a function of x (to R \approx 15Å) (M-M correlations: CN = 3 for Mn in Li₂MnO₃ layers; CN = 6 for Co in LiCoO₂ layers)

Future work

Composition optimization

- Continue to screen 'layered-layered-spinel' electrodes to determine optimized composition and the spinel content to circumvent voltage fade;
- Select two most promising compositions/chemistries for exhaustive electrochemical evaluation and characterization of their chemical, physical and thermal properties;
- Evaluate electrodes in a full lithium-ion cell configuration.

Collaboration

 Collaborate with other ABR participants, academic and industrial partners to understand and combat voltage fade phenomena and the cause thereof.

For example, explore detailed structure-electrochemical relationships of relatively simple 'layered-layered' baseline materials (e.g., xLi₂MnO₃•(1-x)LiCoO₂) and 'layered-layered-spinel' derivatives by XRD, XAS and PDF analyses with collaborators at the Advanced Photon Source.

Summary

- 'Layered-layered' composite electrode structures, stabilized by a spinel component, hold promise for countering voltage fade;
- Mg-doping of 'layered-layered' and 'layered-layered-spinel' electrodes enhances capacity;
- Mg-doped 'layered-layered-spinel' electrodes offer enhanced rate capacity over 'layered-layered' electrodes;
- 'Layered-layered-spinel' electrodes counter the first-cycle irreversible capacity loss of 'layered-layered' electrodes;
- AIF₃ surface treatment increases the spinel component in the structure and enhances cycling stability, but reduces the rate capability of the electrode (increased surface impedance); and
- Many questions are still to be answered: Further work is required 1) to obtain a detailed understanding of the reasons for voltage fade phenomena,
 identify optimized 'layered-layered-spinel' compositions to best counter these effects (a basis for collaborative studies with academia and industry)

Acknowledgment

Support for this work from DOE-EERE, Office of Vehicle Technologies is gratefully acknowledged

- David Howell
- Peter Faguy