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Overview 

2 

• Start date: 5/1/2011 
• End date: 4/30/2014 
• 33% complete 

• Barriers addressed 
– LiB Performance and Lifetime 
– LiB Efficiency 
– LiB Safety 
– Computer tools for design exploration 

• Total project funding: $3.0M 
– $1.5M (DOE) 
– $1.5M (cost share) 

• Funding received in FY11 
• $193.6K 

Timeline 

Budget 

Barriers 

• Ford 
• Johnson Controls 
• Penn State 
• NREL 
• ORNL 

Partners 

Funding provided by Dave Howell of the DOE Vehicle Technologies Program .  
The activity is managed by Brian Cunningham of Vehicle Technologies. 
Subcontracted by NREL, Shriram Santhanagopalan Technical Monitor 



• Develop an electrochemical/thermal (ECT) coupled model for 
large-format automotive Li-ion batteries (cells and packs) 

• Create a fast & robust tool for realistic geometries (wound or 
stacked electrode designs) 

• Develop a comprehensive materials database 
• Integrate ECT3D software with CAEBAT Open Arch. Software 
• Aide OEMs and cell/pack developers in accelerating the adoption 

of large-format Li-ion technology required for EV & PHEV 
• Develop a virtual environment to reduce the time required for 

design, build and test of Li-ion batteries 
– Performance 
– Safety 
– Life 
– Efficiency 

• Support DOE CAEBAT activity 

Project Objectives - Relevance 
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Project Milestones & Activities 
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2011/2012 Milestones Completed 
M1: Report on initial materials database 

M2: Report/manual for baseline ECT3D software delivered to NREL 

M3: Baseline ECT3D code delivered to NREL 

M4: Updated data for materials database 

M5: Report for updated materials database information 

M6: Report for updated materials database information 

Meetings with ORNL & other CAEBAT members to give input for the Open Architecture Standard 

Battery Safety 2011 – Las Vegas (11/2011) 

Presentation to USDrive (12/13/11) 

2012 Milestones in Progress 
M7: Initial model validation 

M8: Report of safety modeling 

M9: Updated version of ECT3D to NREL w/pack simulation capabilities 

M10: Report for updated materials database information 

M11: ECT3D user interfaces complete 

M12: Report of detailed model validation for ECT3D 



Approach – Supporting CAEBAT Activity 

5 

Task 1: Materials 
Characterization 

(PSU) 

EC Power software: ECT3D 

Task 2: Physico-
chemical Models 

(ECP) 

Task 3: Advanced 
Algorithms 

(ECP) 

Task 4: Experimental 
Validation 

(PSU, ECP) 

Performance Cycle Life Safety 
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Approach – Materials Database 
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Electrolyte Distribution in a Li-ion Cell Under Discharge 
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Modeling parameters needed at low-T, high-T, wide range of chemical compositions 
and similar conditions of interest for automotive Li-ion batteries and packs. 



Approach – ECT Model Development 
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Electrochemical Processes 
- electrochemical reactions 
- solid state diffusion 
- ion transport through 
  electrolyte 
- charge transfer 

Thermal Processes 
 

- conservation of thermal energy 

Heat generation rate 

Temperature-dependent 
physico-chemical properties 
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Model predictions 
- potential and current curves 
- temperature history/distribution 
- active material utilization 
- current distribution 
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• Understanding thermal  
phenomena & thermal control 

   has huge impact on  
– Battery safety 
– Cycle life 
– Battery management system 
– Cost 

• Electrochemical-thermal (ECT) coupling 
required for 

– Internal short circuits 
– Thermal runaway 
– High power, low-T operation 
– Heating from subzero environment 



Approach – Computational Challenges 
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• Develop numerical algorithms to handle:  
   1) large electrode size (0.1-1 m2)  
   2) multi-layer wound and stacked geometry 
   3) ECT couplings, while still maintaining near real-time calculations 

coin cells 18650 large format batteries

nonuniform current 
distribution
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• Development of extensive materials database 
• Efficient, electrochemical-thermal coupled large-format 

cell simulation 
– Performance evaluation and analysis 
– Analysis of active materials utilization 
– Virtual design tool: lower cell cost 

• Preliminary validation 
• Preliminary safety simulations 

– Full (fast) nail penetration 
– Partial (slow) nail penetration 
– Shorting by metal particle 

Technical Accomplishments 
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• Material, thermodynamic and kinetic properties for common Li-
ion battery materials have been compiled over a wide range of 
temperature, chemical compositions and SOC. 
– Anode AM: graphite, MCMB, LTO 
– Cathode AM: MNC, LMO, LFP, NCA, LCO 
– Electrolytes: LiPF6 in various solvents 

Accomplishments – Material Database 
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• Initial validation efforts at low-T and high C-rate 
conditions 

• Detailed validation efforts currently ongoing 

Accomplishments - Validation 
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Accomplishments - Performance 
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Accomplishments - Performance 
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5-Jelly Roll Cell Design (15 Ah) 

t=100s t=800s 

@ t = 100s  Current density 
profile determined by material and 
geometric effects 
@ t = 3500s  Current density 
profile determined by material and 
geometric effects, local SOC non-
uniformity, and thermal effects 
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Accomplishments - Safety 
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Partial nail penetration (Slow) 

Only 3-D electrochemical-thermal coupled (ECT) model can completely describe the problem  

Full nail penetration (Fast) 

26 unit layers 
stacked 

Case Study (10Ah prismatic cell) 



Accomplishments - Safety 
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0.5s 10s 100s 

Diameter = 0.5 mm 

Tmax=180oC 
Tavg= 34oC 
Tmax-Tavg=146oC 

Tmax=58oC 
Tavg= 53oC 
Tmax-Tavg=5oC 

Tmax=116oC 
Tavg= 113oC 
Tmax-Tavg=3oC 

Diameter = 8 mm 
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Tmax-Tavg=0.5oC 

Tmax=114oC 
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Full Penetration 

Rapid temperature rise caused by electrochemical effects (e.g. nail penetration) can 
only be predicted with electrochemical thermal (ECT) coupling 



Accomplishments - Safety 
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Full Penetration 
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Accomplishments - Safety 
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Tab heating is the 
key mechanism 

Accomplishments – Safety 
Shorting by Metal Particle 

• 10 Ah, 26 layer stacked cell 
• Rshort = 10mΩ 
• Short in center of layer 
• Short in center layer of stack 

C-rate in  
shorted layer 
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Shorting by Metal Particle 

Heating greatest in tabs and in metal particle 



Collaboration w/Other Institutions 
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Project Lead – Software development and sales, 
project administration. 

 
 

 

 
Funding Agency 

 
 

 

CAEBAT Program Administrator 

 
 
 

Industrial Partner – testing, 
validation, and feedback 

 
 
 

Industrial Partner – testing, 
validation, and feedback 

 
 
 

Academic Partner – 
materials testing and 

detailed model validation 

Open Architecture Software



• More safety simulation of interest to Ford & JCI 
• Pack modeling with electrochemical-thermal coupling 
• Further and extensive cell and pack validation 
• Refined user interfaces 
• Life/degradation modeling; optimization of battery usage 
• Additional content for materials database 
• Blended electrode models (anode & cathode) 
• Quarterly review meetings with all team members 

Future Work 
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• Good progress in 2011 
– Cell level software development 
– Performance modeling on cell level 
– Preliminary safety modeling of cells 
– Materials database 

• Commercial partners (Ford, JCI) 
– Began testing ECT3D in December, 2011 
– Will give expanded feedback during 2012 
– ECT3D is a tool to help 

• Reduce cost, “… by accelerating design processes and system optimization using virtual 
test bench (software).” 

• Improve safety, “… by understanding the benefits and tradeoffs of various safety 
technologies.” 

• Improved thermal performances, “… leading to either cost savings or better life.” 

• Meeting CAEBAT/DOE goals 
– Helping to accelerate the adoption of automotive Li-ion battery  

cells & packs 
– Enabling technology for EV, PHEV 

Summary 
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