

Developing High Capacity, Long Life anodes

Ali Abouimrane, (P.I)

Bo Liu, and Khalil Amine

Argonne National Laboratory

DOE merit review

May 14, 2012

Project ID ES020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start October 1st, 2009.
- Finish September 2014
- 70% complete

Budget

- Total project funding: 1200K
 - FY12: 300K
 - FY11: 300K
 - FY10: 300K
 - FY09: 300K

Barriers

- Safety of the battery.
- Power density of the battery.
- Cycle & calendar life span of the battery.

Partners

- Z. Fang (University of Utah).
- Y. Ren, D. Dambournet, P. Chupas, K. Chapman, Advanced Photon Source, (APS/ANL).
- FMC, Northwestern University.

Objectives

Develop new advanced high energy anode materials with long life and improved safety for PHEV and EV applications.

- ☐ Develop a low cost synthesis methods to prepare high energy anodes
- ☐ Full structural and electrochemical characterizations of the prepared anode materials.
- ☐ Demonstrate the high capacity and cycle life of these anodes in half and full cell systems.

Approaches

- MO-Sn_xCo_yC_z (MO=SiO, SiO₂, SnO₂, MoO₃, GeO₂) anode materials were selected for investigation as high energy anode based on the following criteria:
 - Sn_xCo_yC_z alloys are known to provide a capacity of 400-500mAh/g for hundreds of cycles.
 - MO anodes are known to provide more than 1000 mAh/g with poor cyleability.
 - The formation of Sn_xCo_yC_z and MO composite could lead to the increase in the capacity, reduce the amount of cobalt in the material and improve the cycleablity since Sn_xCo_yC_z can play a role of buffer against the MO volume expansion.
 - This anode system is more safer than the graphite and possess low potential in the range of 0.3-0.75V (expect high voltage cells when combined with high cathodes)
 - This anode system could offer high practical capacity and high 1st cycle charge discharge efficiency
 - This anode system offers high packing density (up to 3 g/cc), much higher than graphite (1.1g/cc) (expect high volumetric density)

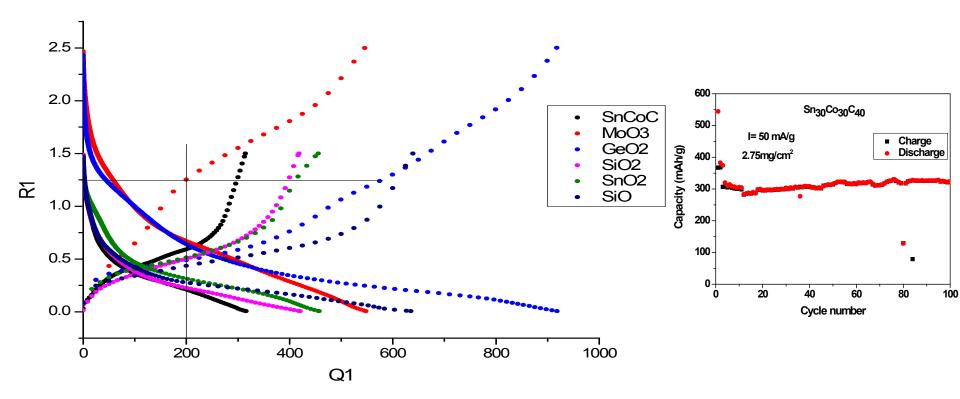
Milestones FY 11: High capacity and long life anodes

- □ Prepare composite anode by mechanical alloying using metal (Co, Sn) carbon and oxides (MO). (Completed)
- Perform comparative studies between MO- $Sn_xCo_yC_z$ (MO=SiO, SiO₂, SnO_2 , MoO_3 , GeO_2) based on their electrochemical properties and cost. (*Completed*)
- ☐ Investigate structural rearrangement of these anode composite during the intercalation and de-intercalation of lithium. (Completed)
- □ Select promising candidates for further electrochemical characterization in full cell tests. (On going)
- ☐ Improve the 1st cycle charge discharge efficiency of promising anode. (On going)

Recent accomplishments and progress

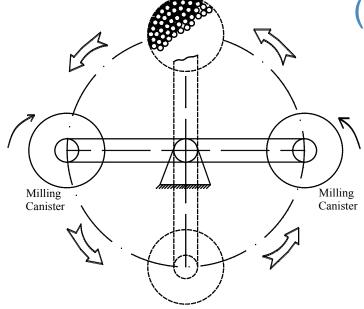
- Prepared successfully (50 wt% SiO 50 wt% Sn₃₀Co₃₀C₄₀) composite using ultra-high energy ball milling equipment UHEM.
- Improved performance of (50 wt% SiO

 50 wt% Sn₃₀Co₃₀C₄₀) composite prepared by UHEM by 30% vs. traditional ball mills
- Demonstrated high capacity and long cycle life of (50 wt% SiO 50 wt% Sn₃₀Co₃₀C₄₀) composite prepared by UHEM
- Determined the structure of the (50 wt% SiO 50 wt% Sn₃₀Co₃₀C₄₀) composite prepared by UHEM using PDF
- Initiated a full cell study using LiNi_{0.5}Mn_{0.5}O₄ and 50 wt% SiO–50 wt% Sn₃₀Co₃₀C₄₀ composite prepared by UHEM



Densities of 50 wt% MO – 50 wt% $Sn_{30}Co_{30}C_{40}$ (MO= MoO₃, SnO_2 , GeO_2 , SiO_2 , SiO_3)

Material	Tap density	True density
50 wt% MO – 50 wt%	g/cc	g/cc
$Sn_{30}Co_{30}C_{40}$		
$MO = MoO_3$	2.74	6.05
$MO = SnO_2$	3.02	7.13
$MO = GeO_2$	2.62	5.06
$MO = SiO_2$	1.43	3.58
MO = SiO	1.89	3.78

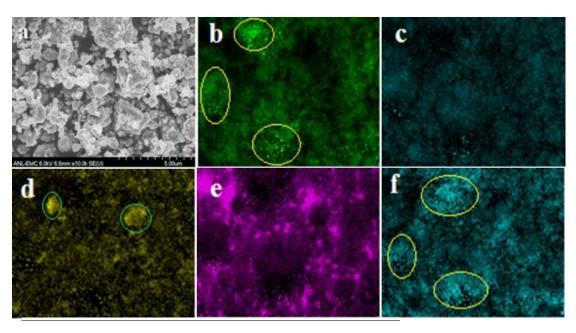

- Materials based on tin, molybdenum and germanium have the highest tap density.
- Materials based silicon and tin are the cheapest.

Voltage profile, capacity and cycleability of 50 wt% MO - 50 wt% $Sn_{30}Co_{30}C_{40}$ ($MO=MoO_3$, GeO_2 , SnO_2 , SiO_2 , SiO_2 , SiO_3) and $Sn_{30}Co_{30}C_{40}$

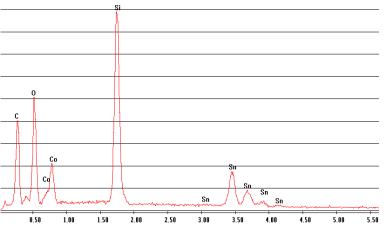
- SiO-Sn₃₀Co₃₀C₄₀ is the most promising in term of price, capacity, cycleability and voltage.
- SnCoC capacity varies with precursors (Co and Sn metals or CoSn₂ alloy, electrode loading)

Scheme for ultra-high energy ball milling machine (UHEM)

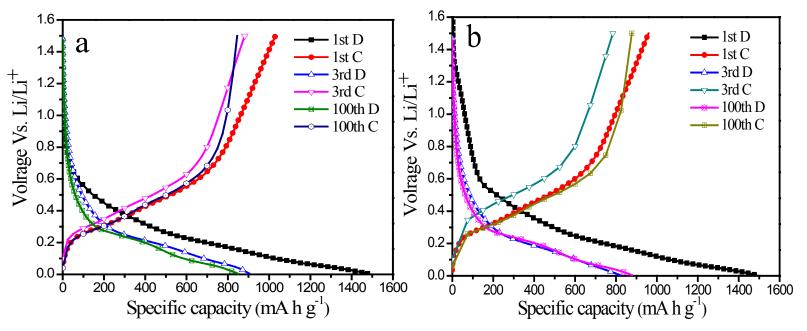
(rotation in 2 directions) that creates a very high centrifugal field, confining the particles firmly in the interstices of the ball mass was used. (~250 gr of the material can be prepared in 1 shot).


SPEX mill machine

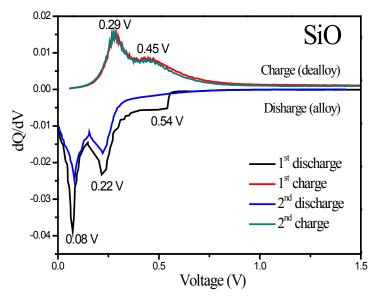
 Traditional ball mills, adopt stirred mills or vibration mills. Only few grams of material can be made

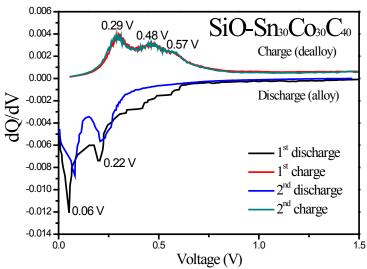

SiO-SnCoC composite was prepared using both techniques for

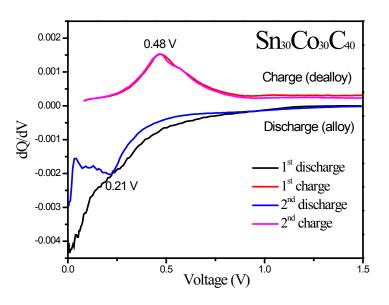
SEM Mapping


- (a) SEM images and EDX elemental mapping of
- (b) Si,
- (c) O,
- (d) Co,
- (e) C,
- (f) Sn

- Si (b) and Sn (f) exhibit similar distribution, especially in the yellowcircled areas.
- •Sn and Si may formed a new alloy after high energy ball milling (UHEM).

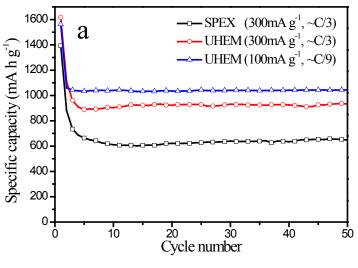

Voltage profile of 50 wt% SiO-50 wt% Sn₃₀Co₃₀C₄₀

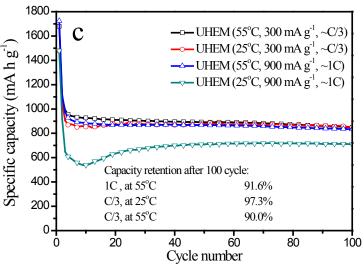


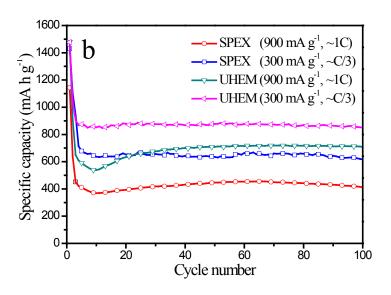

Charge-discharge curves of cells with UHEM anode cycled at rates of (a) 300 mA g⁻¹ (~C/3) and (b) 900 mA g⁻¹ (~1C)

- A Voltage ~ 0.3V higher than the graphite was observed.
- 1st cycle charge discharge effeciecy~65%.

dQ/dV plot of 50 wt% SiO-50 wt% Sn₃₀Co₃₀C₄₀







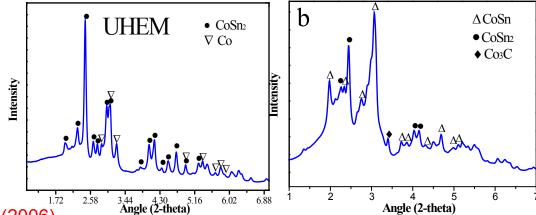
- For SiO-SnCoC, an SEI layer appeared to form at
 0.6 V to 0.3 during the first cycle discharge.
- During the charge, the 0.29 V peak correspond to delithiation of Li_xSi alloy of SiO.
- The peak at 0.57 V might be related to the delithiation of Si-Sn alloy.

Cycle performance of 50 wt% SiO-50 wt% Sn₃₀Co₃₀C₄₀

- Anode made by UHEM delivers a specific capacity of 900 mA h g⁻¹ at the rate of 300 mA g⁻¹, much higher than that (~600 mA h g⁻¹) of the anode made by SPEX at the same current.
- Anode made by UHEM exhibits excellent rate capability, over
 700 mA h g⁻¹ at high rate 1C (900 mA g⁻¹).
- Anode made by UHEM shows good stability and excellent cycle life (no capacity fade after 100 cycles).

Question: why 300 mAh/g difference between SPEX and UHEM milling samples?

1- Particle size:

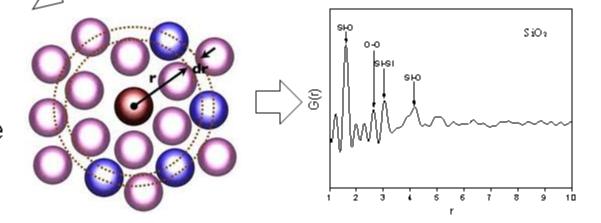

OAC	BET surface area (m ² /g)	Particle size distribution
UHEM	7.521	50% particle size < ~2.5μm
SPEX	4.733	50% particle size < ~13 μm

SPEX mill Ultra high energy mill Vltra high energy mill Particle size (µm)

• Nanomaterials can decrease the (SEI) resistance and lead to higher specific capacities at high charge/discharge area.

2- Materials structure:

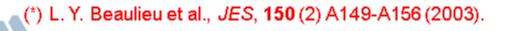
sample made by UHEM shows high amount of CoSn₂ (CoSn₂ delivers more capacity than CoSn)*.

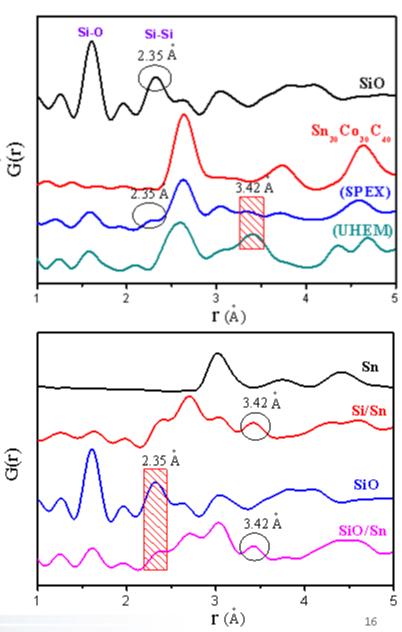

(*) J.J. Zhang et al., *JES*, **153** () A1466-A1471 (2006)

3-Short-range order structure: Pair distribution function

The *G*(*r*) gives the probability of finding an atom at a given distance *r* from another atom and can be considered as a bond length distribution.

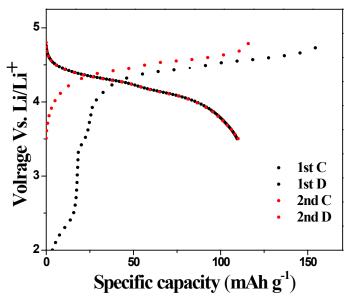
XRD patterns only contain information about the long-range average structure.

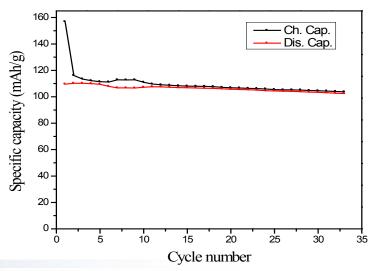



PDF analysis has been successfully used to investigate short-range order in lithium-ion battery electrode materials.

PDF study of 50 wt% SiO-50 wt% Sn₃₀Co₃₀C₄₀

- 2.35 Å peak of SPEX-milled anode is present and weak.
- 2.35 Å peak of UHEM anode disappears.
- 3.42 Å peak of UHEM anode is strong.
- 3.42 Å peak didn't exist in (SiO, Sn, Si or Sn₃₀Co₃₀C₄₀,).


- 3.42 Å peak is attributed to the Si-Sn bond of Si-Sn amorphous alloy.
- The intensity of the Si-Si peak at 2.35 Å decreased with the emergence of the 3.42 Å peak. So large amount of Si-Sn alloy is formed in UHEM, SiO/Sn and Si/Sn.
- For example Si_{0.66}Sn_{0.34} prepared by sputtering method showed approximate 3000 mAh/g capacity (*).



5V/SiO-50 wt% Sn₃₀Co₃₀C₄₀ Full cell

- The anode was first lithiated using lithium metal anode as we have 30% 1st cycle irreversibility. (rate is 45 mA/g)
- 4.3 V cell with LiNi_{0.5}Mn_{0.5}O₄.
- ~ 110 mAh/g in Full cell (capacity based on the cathode, cathode limited).
- Preliminary result shows good cycleability and good charge-discharge efficiency.

Summary

- \square MO-Sn_xCo_yC_z (MO = SiO, SiO₂, SnO₂, MoO₂, GeO₂) systems were prepared by mechanical alloying using SPEX ball milling.
- \square MO-Sn_xCo_yC_z system where (MO = SiO, SiO₂, SnO₂) are the most competitive system in term of cost.
- 50wt% SiO 50wt% Sn₃₀Co₃₀C₄₀ system shows promising properties in terms of cost, tap density, capacity, cycleability and 1st cycle charge discharge efficiency.
- ☐ Improved electrochemical performance can be achieved by ultra high energy ball milling to obtain nanoparticles and new phase alloys.
- □ PDF study demonstrated the formation of Si-Sn amorphous alloy, which is the main reason of the improvement of electrochemical performance.

Future Works

- \Rightarrow Investigate of MO-Sn_xCo_vC_z (MO = SiO) system in full cell configuration.
- ⇒Explore alternative to Co such as Fe in the composite
- ⇒ Surface characterization of lithiated anode materials by XPS
- ⇒ Investigate the pulse-discharge and charge performance of designed cell based on $MO-Sn_xCo_yC_z$ (MO = SiO, SiO_2 , SnO_2 , MoO_3 , GeO_2) system anode through hybrid pulse power characterization (HPPC test).
- ⇒ Understand the causes of the first cycle charge discharge irreversibility and try to reduce it.

Collaborations

- FMC corporation
- PJ. Chupas, and Y. Ren Advanced Photon Sources, Argonne
- Z. Fang University of Utah.