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Overview

Timeline
Start date: FY19
End date: FY21
Percent complete: 10%

Budget
Total project funding: 100% DOE
FY19 Funding: S600K

Barriers
Low energy density
Cost
Abuse tolerance limitations
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Relevance

* New battery chemistries are required in order to drive cost
down for cells for transportation technologies with sufficient
performance in volumetric energy density, and cycle life.

* The time-frame for introduction of new battery chemistry
should be within a 5 year time-frame for commercialization.

» Chemistries targeted are earth-abundant, low-cost, safe
and recyclable.

= Sodium-ion batteries (SIBs), while relatively new player in
the field of batteries may well fulfill these requirements if
deep understanding, good science and breakthroughs are

made.
‘ E Figure CNRS (France; RS2E battery network)
— \ ‘,

developed sodium-ion 18650 battery
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Milestones

= This Is a new project just initiated in January 2019.

= Objectives
— The goal is a system that is at least 500 Wh/L volumetric
energy density with over 500 cycles of operation in
sodium-ion cell

» First and second year milestone
— Develop an anode that is at least 600 mAh/g capacity
overall and operating at <0.55 V vs sodium metal

» Second and third year milestone
— Design, synthesize and develop a cathode that
possesses at least 200 mAh/g capacity and >3 V
operation
— Complete full cell fabrication and echem metric testing

4 Argonne &



Approach

* Anode development
— Create a phosphorous/metalloid/carbon composite with
excellent safe performance at low cost

= Cathode development

— Synthesize and design an intergrowth Fe-Mn containing
layered sodium transition metal oxide cathode. Intergrowth
will be an optimized P2/01/03 type structure that provide high
capacity (>200 mAh/g) and high rate

— Develop a full concentration gradient Fe/Mn-containing
layered sodium oxide cathode

— Use a stabilizing coating for the cathode interface

= Diagnostics
— Make use of operando synthesis methods to hone in on the
best conditions to make cathodes. i.e. temperature-dependent
XRD used at APS
— Study the safety of the materials using DSC, and evaluate 0 V
battery storage (for safety, storing/transportation)

Argonne &



Technical Accomplishments

Argonne BatPaC Calculations for SIB
battery pack for EVs
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BatPaC modeling shows that a volumetric energy density for SIB at 549
Wh/L is possible. Cost is projected at $63.5/kWh.
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Technical Accomplishments

ldentification of suitable commercial
electrolyte completed
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Figure (above) Voltage profile of commercial
hard carbon and (right) sodium-ion battery cathode ,
in preferred electrolyte formulation. 0 2 4 60 80 100 120 140

Capacity (mAhlg)

New commercial battery grade NaPF4 is adequate for use for SIB
work/research in this project

Han, Park, Lee, 2019 (Argonne) ! Argonne &




Technical Accomplishments

Development of recyclable Pb and Pb-
oxide carbon composites as energy
dense anodes - synthesis

= Lead oxide : carbon =7 : 3 weight ratio

= |Lead oxide sources: PbO and Pb304

= Carbon sources: super P and C45 (Timcal) carbon black

= Added, Stainless jar and sealed in glove box.

» The sealed jar was shaken in SPEX 8000M MILL GRINDER for 6h

Method Compound Electrode laminate

Spexmill Pb-O-C composite #1 (from PbO) Active : Carbon: PVDF=8:1:1

Spexmill Pb-O-C composite #2 (from Pb;0,) Active : Carbon: PVDF=8:1:1
Commercial PbO (SIGMA) Active : Carbon: PVDF=7:2:1
Commercial Pb;O, (SIGMA) Active : Carbon: PVDF=7:2:1
Super-P Carbon: PVDF=9:1

A Pb based anode system in a SIB battery system can be recycled by the lead-
acid battery industry thus providing a potential revenue stream to recycling
companies.

8 Argonne &
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Technical Accomplishments

Development of recyclable Pb and Pb-
oxide carbon composites as energy
dense anodes — XRD results

Pb-O-C composite

1.0+

0.8 —— Pb-O-C composite
' —— Pb metal
— PbO

0.6

ﬁ
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20 (degree, CuKa)

Figure XRD pattern (left) and SEM image (right) of the Pb-O-C composite sample
made by HEBM. The mechanochemical carboreduction of lead oxide in presence of
carbon resulted in Pb metal in the matrix of PbO-C composite.

Intensity (arbi. unit)

0.2

Ball milling lead oxides (PbO or Pb;0,) with carbon makes Pb metal in a sea of
oxide matrix together with carbon composite

J. Han and E. Lee, 2019 (Argonne)  ° Argonne &




Technical Accomplishments

Development of recyclable Pb and Pb-
oxide carbon composites as energy
dense anodes — battery (coin cell)
cycling results (first 2 cycles)

Mechanism Electrochemical titration of
Voltage profile Na/Pb:Pb oxide  dQ/dV of Na/Pb:Pb oxide Pb in Na half cell
) Pb sodium half-cell
PbO/C composite . o
5 .I(mrmtl of The l:l:'('ltm'/u'lmml Society. 161 (3) A416-A421 (2014)
= 1st 2t r —r— ———
L 9nd 0.001 4 1.2 ’ Initial Scan E —T—Pb
~ 151 ‘ : | '
= s Sos8r 2 25 30 35 40 45 50
@ < ® NaPb; Scattering Angle (Degrees)
2 < 0.000 o ’
Z 104 £ 3 1 L
s 3 ® ol |
= g T —Jl o o Nay,Ph, |
o = ‘—\‘ g a;sPh,
= o -0.001 4 @ . @5 -M\_i s L
o ' 1 " 1 i 1 e @‘l _V_v:‘\i
0 100 200 300 400 500
Capacity (mAh/g)
0 0 160 260 360 -0'0020_0 Figure 3. Voltage curve of a sputtered lead vs. sodium half-cell.

Capacity (mAh/g) Voltage (V vs. Li*)
*(1.1V plateau) &

Na Na Na Na
- NaPt NaPt NagPb. Na,sPby.
Electrolyte decomposition at the metal surface RO S — SR N

Voltage profile follows the expected electrochemical pathway in the literature

J. Han and E. Lee, 2019 (Argonne) Argonne &




Technical Accomplishments

Development of recyclable Pb and Pb-
oxide carbon composites as energy
dense anodes — battery (coin cell)
cycling results (first 2 cycles)

400 ¢ —o— Pb-O-C composite
—o— Commercial PbO
300 - —o— Commercial Pb3;0O,

_-_~16OO mAh/cc

Specific capacity (mAh/qg)

O 20 40 60 80 100
Cycle number
Cycle stability is good. Since Pb density is 11.36 g/cc and Pb;O,is 9.53 g/cc; we
take the overall density of the material as about 8 g/cc (carbon is in it). Thus the

volumetric energy density is 1600 mAh/cc (c.f., graphite (LIB) is ~600 mAh/cc,
and Si (LIB) ~2200 mAh/cc).

J. Han and E. Lee, 2019 (Argonne) B




Technical Accomplishments

Black Phosphorus provides good
anode performance — >1500 mAh/g Datafrom Co-PI, K. Amine
(100 cycles)
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Figure Structure scheme, cycle performance
and sodiation/de-sodiation mechanism for the
black phosphorus/Ketjenblack composite.

High capacity and good cycle life of black phosphorus/Ketjenblack
composite was achieved because of high sodiation/de-sodiation
reversibility.

Xu, and Amine (Argonne); published in Nano Letters 2016 12
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High performance when served as ™"l Accomplishments
anode in full cell Data from Co-PI, K. Amine
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Good stability of black phosphorus/Ketjenblack composite in full cell was
successfully demonstrated.

Xu, and Amine (Argonne); published in Nano Letters 2016 13 Argonne &




Blend of black and red phOSphorus Technical Accomplishments
to lower cost and maintain high Data from Co-PI, K. Amine
performance
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Figure cycle performance of black
phosphorus/Ketjenblack composite.

We are compositing red Phosphorus (inexpensive polymorph @ $40/kg)
with doping of Black P and carbon black as conductive diluent

Xu, and Amine (Argonne), U.S. patent application US20170214035A1; Areoe @




Cathode work: Intergrowth layered ™"l Accomplishments
structures provide high-capacity and
high-rate performances
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Synergistic performance enhancement mechanism via O3/P2 layer intergrowth
structurers was first reported by Argonne team.

Lee, Johnson, et al. Adv. Energy Mater. 2014, 4, 1400458
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Cathode work: Understand the Technical Accomplishments
sintering process by operando Data from Co-PI, K. Amine
Synchrotron HEXRD

Real-time observation of structure evolutlon
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Triple-phase formed at high temperatures;
Triple-phase disappeared during the cooling process;

Xu, Chen, Amine et al. Energy Environ. Sci. 2017, 10, 1677-1693
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Technical Accomplishments

Controlled the crystal structure of
the materials through controlling
the sintering condition

Data from Co-PI, K. Amine
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Technical Accomplishments

Triple-phase intergrowth structure |
significantly increase the reversible Pa@fom Co-Pl K. Amine
capacity, cycle stability and rate

capability
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Intensity, a.u.
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Xu, Chen, Amine et al. Energy Environ. 1Sgci. 2017, 10, 1677-1693

Technical Accomplishments

Operando HEXRD of P2/01/0O3 during
the 15t cycle showing high sodiation/de-
sodiation reversibility process

Data from Co-PI, K. Amine
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Technical Accomplishments

Triple-phase intergrowth structure also
Improve the thermal stability

Data from Co-PI, K. Amine

: -
144 Dried electrode with 2 pL electrolytes P2/O 1/03 = 8
400 °C = y
- 12 4 371 °C
; 343°C
&0 315°C
= 10 1 286°C = ——
: e ==——
z 81 ==
é 193 °C =
- 6- 172°C ==
= 1 137°C EBeVr"ro ‘ i
S ] 2104.1J g = — =
= S
B =
21 g\ =
25°C g =N
., : o e -
T T T T T T 1 & Q a
50 100 150 200 250 300 350 400 T T . — =5 s — T
Temperature, °C 1.15 120 1.251.6 1.8 2.0 24 26 28 3.0
p ’ 2-Theta, degree
2 < g
P2/0O3 g A P2/P3 = § Au
agoccs =8 .

355°C
344°C

300 °C:

i

246°C

A

g

220°C _————————
190 °C == ——
= —————=
= ——
135°C w
e ———
80 °C =~
=
25°C M
1.15 120 12516 1.7 1.8 2.4 2.6 2.8 1.1 120 12516 1.7 18 24 25 26 27 28
2-Theta, degree 2-Theta, degree

Major heat come from generation of (222),,, This temperature was lower from 286 °C
(P2/01/03) to 220 °C (P2/03) and 176 °C (P2/P3) .

AAAAAAAAAAAAAAAAAA

Xu, Chen, Amine et al. Energy Environ. gci. 2017, 10, 1677-1693




Summary

» BatPac calculation indicates sodium-ion battery can have a cost
competitive advantage when the cell is designed with low-price, high-
performance electrode couples.

= New Pb-based composite anodes provide high volumetric energy
density and good cycle stability. The performance could be further
improved by the morphology optimization and alloying strategies.

= Synchrotron X-ray diffraction was used to track the phase evolution
during synthesis, charge/discharge and thermal runaway, providing
good guidance for the design of better battery material

* Intergrowth layered structured cathode materials demonstrate both
excellent electrochemical performance and high safety

» Phosphorus-based anode materials deliver highest reversible capacity
and suitable working voltage, and a rational host design to
accommodate the volume changes during cycling is the key to achieve
long cycle stabi

21 Argonne &



Proposed Future Research
Year 1

= Optimization of carbon host to achieve high reversible capacity and long cycle
life using red or blend (red/black) phosphorus anode materials

= Surface modification on the anode materials to stabilize the interface

= Make Na-Pb Zintl phases and check echem performance
— A process to introduce more Na cations into SIB

= Start performance and optimization of the Red P/Pb-oxide/Pb carbon
composite (PPbOC) composition for anode testing in SIB
— Evaluate the stability of the PPbOC material
« Rate, air stability, processing, etc.
— Maximize the overall volumetric ED
— Evaluate the reaction mechanism at play

Year 2

= |nitiate cathode work
» Development of high tap density layered cathodes for SIBs
» Development of full concentration gradient layered cathodes for SIBs

» Surface modification using atomic layer deposition to protect layered cathodes
from cracking, electrolytes penetration and oxygen loss during high-voltage
charge

22 Argonne &
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Response to Previous Year Reviewer Comments

* New project initiated in FY ‘19

24 Argonne &




Remaining Challenges and Barriers
Technical

= Improve the first cycle ICL for Pb-based anode composite

» Understanding the SEI and the role of FEC as additive in the Red/Black
P and Pb-based composites is critical to long cycle life (goal is 500
cycles)

* The synthesis of Fe-Mn sodium transition metal layered oxides
whereby the Fe4* cation is stabilized in the structure

» Formulate new electrolyte salts and additives. Involve an electrolyte
expert either from industry or Argonne

= Building and optimizing full coin cells

= Scale-up of active materials to allow for building of pouch cells in the
second year

Non-Technical

= Market, educate, and stimulate the battery industry to SIBs and their
potential for:
— Low cost, stability, safety and performance
— Back-up technology to LIB; existing lines can be used

25 Argonne &



