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Overview 

Timeline 
Start: Oct 2010 
Finish: September 2011 
95% completed 
 
 

Budget 
Funding received from DOE in 
FY11 

‒ $300K 
Funding from DOE for FY12 

‒ $200K 

Barriers 
Lack of fundamental knowledge 
about particulate emissions from 
advanced engine combustion. 
Lack of actual particulate 
emissions data for various fuels 
Lack of cost-effective particulate 
emissions control 
 

Partners 
University of Wisconsin 
Sandia National Laboratory 
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Relevance and Objectives 

 The particle sizes measured by commercial instruments have rarely 
been verified. 

 Soot morphology needs to be evaluated to understand the detailed 
formation mechanisms of PM emissions in LTC modes. 

 The effects of fuel composition are unavailable for PM emissions from 
LTC modes. 
 

 Assess nano-particles from LTC by comparison of particle sizes 
measured by scanning mobility particle sizer (SMPS) and transmission 
electron microscope (TEM) . 

 Examine LTC soot morphology and nanostructures to better 
understand the soot formation mechanism in LTC modes. 

 Evaluate the effects of biofuels on particulate emissions from LTC 
modes. 
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Background 

 It has recently been found that LTC engines produce a larger number of nano-
particles pertaining to the nucleation mode, but a less amount of total mass, 
than does conventional diesels. 

− Emissions regulation for the number of nano-particles (Ø ≥ 23 nm) will be 
effective soon. 

 LTC soot models have been proposed (SAE 2007-01-1945). 
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Fig. 1  Proposed LTC soot models:  
           A: surface growth limited 
           B: agglomeration limited 
           C: No agglomeration  
 (coalescence only) 



Approach 

Thermophoretic sampling 
- Minimum residence time: 20 ms 

TEM analysis 

PM morphology 
LTC engine 

SMPS measurement 
- Particle size distributions 

Soot nano-structures 
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Experimental 

 Engine  
− A single cylinder version of a GM 1.9L 4-cylinder engine modified for low 

temperature combustion 

 Fuel 
− Ultra low sulfur diesel (ULSD) 
− Soy methyl ester (20%)/ULSD mixture (SME20) 
− Palm -oil methyl ester (20%)/ ULSD mixture (PME20) 

 Engine operating conditions 
− Speed and torque: 2000 rpm and 5.5 bar IMEP 
− Injection timing: 22, 26 and 30o before top dead center (BTDC) 
− Fuel rail pressure: 860 bar 
− EGR rate: 67% 
− Intake oxygen concentration: 9.5% 
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Technical Accomplishments 
 Particle size distributions measured by SMPS 
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(a) 22°, (b) 26°, (c) 30° BTDC, and (d) mean mobility diameter 

 A large population of nano-particles below 10 nm exists at 
all the conditions. 

 With advancement in injection timing, differences in the 
size distribution are reduced among the different fuels. 

 The mean mobility diameter decreases with advancement 
in injection timing, mainly due to the increased number of 
small particles in a range of approximately 10 to 20 nm.  
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(a) Bulk in-cylinder gas temperatures and (b) calculated heat release rate at different injection 
timings (SME20) 

 In-cylinder gas temperatures gradually increased with advanced injection timing. 
 Ignition delay appeared to increase with advanced injection timing. 
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(a) (b) 

TEM images of soot aggregates 
for (a) SME20 and (b) ULSD 
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Size distributions of soot 
aggregates:  
(a) radii of gyration for different 
fuels at 22 o BTDC,  
(b) radii of gyration for SME20 at 
different injection timings, 

(a) (b) 

 The majority of soot particles from LTC represented chain-like structures. 
 SME20 soot appeared to be smallest in aggregate size. 
 The population of large particles increased with advancement in injection 

timing. 

 Soot morphology by TEM analysis 
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Fuel 
Injection 
timing 

(o BTDC) 

Primary 
particle 
(Dp), nm 

Radius of 
gyration 
(Rg), nm 

Projected 
area 

equivalent 
diameter 
(Dproj), nm 

SME20 
22 
26 
30 

14.4 ± 7.7 
13.2 ± 3.7 
16.9 ± 5.2 

22.1 ± 11.4 
28.2 ± 11.1 
31.0 ± 15.1 

47.2 ± 19.5 
55.2 ± 17.5 
62.4 ± 23.5 

PME20 22 10.9 ± 4.0 25.0 ± 10.8 49.4 ± 16.0 
ULSD 22 14.8 ± 3.5 28.0 ± 13.1 56.1 ± 19.3 

 LTC soot particles are smaller in Dp and Rg than those from conventional  
     engines, which are in the ranges of 20 – 50 nm and 40 – 80 nm, respectively. 
 Average aggregate size (SME20) increases with advancement in injection timing,  
     in contrast to SMPS data  
      Contribution of volatiles for SMPS data 
 

 Both primary and aggregate particles appeared to grow in size with advancement 
in injection timing 

      Effects of increased temperatures and longer residence time 

 Summary of particle physical dimensions 
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Fractal dimensions evaluated for soot aggregates with different 
fuels: (a) SME20; (b) PME20; (c) ULSD at all 22° BTDC; and 
(d) the summary of fractal dimensions 

 LTC soot particles represent fractal-like structures, 
similar to those from conventional diesel engines. 
 

 The decrease in fractal dimension with advanced 
injection timing indicates that soot aggregates 
became more stretched in fractal geometry. 

(a) (b) (c) 

(d) 

 Fractal dimensions 
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HRTEM images of soot particles: (a) SME20 at 22o BTDC, (b) SME20 at 30o BTDC,  
and (c) ULSD at 22o BTDC 

 Both SME20 and ULSD soot samples showed a higher degree of 
disorder in nanostructures. 
‒ Short-range graphene segments within primary particles 
‒ Rough outer surfaces of primary particles 

 We speculate that soot oxidation was insignificant with advancement in 
injection timing, due to the LTC conditions. 
‒ Insignificant difference in the interlayer spacing:  
      0.364 nm (22o BTDC), 0.361 nm (30o BTDC) 
‒ Increasing trends in both primary and aggregate sizes 

(a) (b) (c) 

 Nano-structures of primary particles 



Future Work 

 LTC soot properties will be further examined. 
− Evaluation of soot oxidative reactivity (kinetic parameters) using a TGA 
− Examination of soot nano-structures (soot crystalline structures) using 

Raman spectroscopy 
 

 Detailed assessment of particulate emissions will be made for spark 
ignited direct injection (SIDI) engines. 

− Engines: Hyundai 2.0L SIDI engine (ANL) and GM 1.9L SIDI engine 
(Univ. of Wisconsin) 

− Scope of work: examination of soot properties from SIDI engines  
− Deliverables: particle size distributions, PM morphology, particulate nano-

structures, and crystalline structures, and kinetic parameters of 
particulates (e.g., activation energy, reaction order). 

− Measurement instruments: SMPS, TEM, Raman spectroscope, and TGA 
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Summary 
 SMPS data showed a large population of nucleation mode particles in 

diameters below 10 nm . 
 Based on the TEM examination where aggregate particles smaller than 

10 nm were rarely observed, the nucleation particles measured by the 
SMPS are to be aerosols from volatile organics. 

 The LTC soot particles are found to be smaller in both primary and 
aggregate particle sizes than those from conventional diesel engines. 

− LTC soot particles represent chain-like fractal geometry, similar to those 
from conventional diesel engines. 

− Results from the present study support the proposed model (a). 
 Examinations of nano-structures as well as morphology propose that soot 

oxidation was insignificant during the combustion process. Therefore, the 
degree of graphitic structures should be relatively low. 

 Biodiesel soot appears to be smaller in both primary and aggregate sizes 
than does ULSD soot, which results in the reduced total soot mass. 
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