

... for a brighter future

Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion (LTC) Engines

PI: Kyeong Lee

Postdoc: Heeje Seong Argonne National Laboratory

Subcontractor: David Foster

Engine Research Center
University of Wisconsin, Madison

May 17, 2012

DOE Project Manager: Gurpreet Singh

Project ID: ACE083

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start: Oct 2010

Finish: September 2011

■95% completed

Budget

- ■Funding received from DOE in FY11
 - \$300K
- ■Funding from DOE for FY12
 - \$200K

Barriers

- Lack of fundamental knowledge about particulate emissions from advanced engine combustion.
- Lack of actual particulate emissions data for various fuels
- Lack of cost-effective particulate emissions control

Partners

- University of Wisconsin
- Sandia National Laboratory

Relevance and Objectives

- The particle sizes measured by commercial instruments have rarely been verified.
- Soot morphology needs to be evaluated to understand the detailed formation mechanisms of PM emissions in LTC modes.
- The effects of fuel composition are unavailable for PM emissions from LTC modes.
- Assess nano-particles from LTC by comparison of particle sizes measured by scanning mobility particle sizer (SMPS) and transmission electron microscope (TEM).
- Examine LTC soot morphology and nanostructures to better understand the soot formation mechanism in LTC modes.
- Evaluate the effects of biofuels on particulate emissions from LTC modes.

Background

- It has recently been found that LTC engines produce a larger number of nanoparticles pertaining to the nucleation mode, but a less amount of total mass, than does conventional diesels.
- Emissions regulation for the number of nano-particles (Ø ≥ 23 nm) will be effective soon.
- LTC soot models have been proposed (SAE 2007-01-1945).

Fig. 1 Proposed LTC soot models:
A: surface growth limited
B: agglomeration limited
C: No agglomeration
(coalescence only)

Approach

Compare Data

Radius of gyration:

$$R_g = \sqrt{\frac{1}{n} \sum_{i=1}^n r_i^2}$$

Number of primary particle:

$$a = \left(\frac{A_a}{A_p}\right)^{1.09}$$

Fractal dimension:

$$\ln(n) = D_f \cdot \ln\left(\frac{R_g}{d_v}\right) + \ln(k_f)$$

SMPS measurement

- Particle size distributions

PM morphology

- Minimum residence time: 20 ms

TEM analysis

Soot nano-structures

Experimental

Engine

 A single cylinder version of a GM 1.9L 4-cylinder engine modified for low temperature combustion

Fuel

- Ultra low sulfur diesel (ULSD)
- Soy methyl ester (20%)/ULSD mixture (SME20)
- Palm -oil methyl ester (20%)/ ULSD mixture (PME20)

Engine operating conditions

- Speed and torque: 2000 rpm and 5.5 bar IMEP
- Injection timing: 22, 26 and 30° before top dead center (BTDC)
- Fuel rail pressure: 860 bar
- EGR rate: 67%
- Intake oxygen concentration: 9.5%

Technical Accomplishments

Particle size distributions measured by SMPS

(a) 22°, (b) 26°, (c) 30° BTDC, and (d) mean mobility diameter

- A large population of nano-particles below 10 nm exists at all the conditions.
- With advancement in injection timing, differences in the size distribution are reduced among the different fuels.
- The mean mobility diameter decreases with advancement in injection timing, mainly due to the increased number of small particles in a range of approximately 10 to 20 nm.

Analyses of engine in-cylinder data

(a) Bulk in-cylinder gas temperatures and (b) calculated heat release rate at different injection timings (SME20)

- In-cylinder gas temperatures gradually increased with advanced injection timing.
- Ignition delay appeared to increase with advanced injection timing.

Soot morphology by TEM analysis

TEM images of soot aggregates for (a) SME20 and (b) ULSD

Size distributions of soot aggregates:

- (a) radii of gyration for different fuels at 22 ° BTDC,
- (b) radii of gyration for SME20 at different injection timings,

- The majority of soot particles from LTC represented chain-like structures.
- SME20 soot appeared to be smallest in aggregate size.
- The population of large particles increased with advancement in injection timing.

Summary of particle physical dimensions

Fuel	Injection timing (° BTDC)	Primary particle (D _p), nm	Radius of gyration (R _g), nm	Projected area equivalent diameter (D _{proi}), nm
SME20	22 26 30	14.4 ± 7.7 13.2 ± 3.7 16.9 ± 5.2	22.1 ± 11.4 28.2 ± 11.1 31.0 ± 15.1	47.2 ± 19.5 55.2 ± 17.5 62.4 ± 23.5
PME20	22	10.9 ± 4.0	25.0 ± 10.8	49.4 ± 16.0
ULSD	22	14.8 ± 3.5	28.0 ± 13.1	56.1 ± 19.3

- \triangleright LTC soot particles are smaller in D_p and R_g than those from conventional engines, which are in the ranges of 20 50 nm and 40 80 nm, respectively.
- Average aggregate size (SME20) increases with advancement in injection timing, in contrast to SMPS data
 - → Contribution of volatiles for SMPS data
- Both primary and aggregate particles appeared to grow in size with advancement in injection timing
 - → Effects of increased temperatures and longer residence time

Fractal dimensions

Fractal dimensions evaluated for soot aggregates with different fuels: (a) SME20; (b) PME20; (c) ULSD at all 22° BTDC; and (d) the summary of fractal dimensions

- LTC soot particles represent fractal-like structures, similar to those from conventional diesel engines.
- The decrease in fractal dimension with advanced injection timing indicates that soot aggregates became more stretched in fractal geometry.

Nano-structures of primary particles

HRTEM images of soot particles: (a) SME20 at 22° BTDC, (b) SME20 at 30° BTDC, and (c) ULSD at 22° BTDC

- ➤ Both SME20 and ULSD soot samples showed a higher degree of disorder in nanostructures.
 - Short-range graphene segments within primary particles
 - Rough outer surfaces of primary particles
- We speculate that soot oxidation was insignificant with advancement in injection timing, due to the LTC conditions.
 - Insignificant difference in the interlayer spacing:
 0.364 nm (22° BTDC), 0.361 nm (30° BTDC)
 - Increasing trends in both primary and aggregate sizes

Future Work

- LTC soot properties will be further examined.
- Evaluation of soot oxidative reactivity (kinetic parameters) using a TGA
- Examination of soot nano-structures (soot crystalline structures) using Raman spectroscopy
- Detailed assessment of particulate emissions will be made for spark ignited direct injection (SIDI) engines.
- Engines: Hyundai 2.0L SIDI engine (ANL) and GM 1.9L SIDI engine (Univ. of Wisconsin)
- Scope of work: examination of soot properties from SIDI engines
- Deliverables: particle size distributions, PM morphology, particulate nanostructures, and crystalline structures, and kinetic parameters of particulates (e.g., activation energy, reaction order).
- Measurement instruments: SMPS, TEM, Raman spectroscope, and TGA

Summary

- SMPS data showed a large population of nucleation mode particles in diameters below 10 nm.
- Based on the TEM examination where aggregate particles smaller than 10 nm were rarely observed, the nucleation particles measured by the SMPS are to be aerosols from volatile organics.
- The LTC soot particles are found to be smaller in both primary and aggregate particle sizes than those from conventional diesel engines.
- LTC soot particles represent chain-like fractal geometry, similar to those from conventional diesel engines.
- Results from the present study support the proposed model (a).
- Examinations of nano-structures as well as morphology propose that soot oxidation was insignificant during the combustion process. Therefore, the degree of graphitic structures should be relatively low.
- Biodiesel soot appears to be smaller in both primary and aggregate sizes than does ULSD soot, which results in the reduced total soot mass.

