DC Fast Charge Impacts on Battery Life and Vehicle Performance

P.I. - James Francfort Presenter - Matthew Shirk Idaho National Laboratory 15 May 2013

ww.inl.gov

Idaho National

Laboratory

VSS113

INL/MIS-13-28644

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TimelineField Study• October 2012-October 2013Laboratory Study• April 2013-April 2014	 Barriers Cost Infrastructure Risk Aversion Constant Advances in Technology
 Budget DOE Funding: \$1.1M Spent to date: \$0.7M 	 Partners Idaho National Laboratory – Lead Lab
	 ECOtality[™] – Testing Partner

Idaho National Laboratory

Objectives

- Remove barriers to EV adoption by quantifying the impacts of DC-Fast Charging an EV on battery pack capacity (vehicle range) and power capability (performance)
 - Barriers addressed: Cost, Risk Aversion, and Infrastructure
 - providing information to model cost-benefit trade-offs of fast charging
 - benefits PEV consumers and infrastructure providers
- Support modeling and study efforts by collecting complete driving, charging, and battery test data to be shared with VSST labs
 - Barriers addressed: *Constant Advances in Technology*
 - utilizing state-of-the-art test procedures
 - proving timely resultant data to support modeling/simulation

Timeline

On-Road Mileage Accumulation & Testing (4 vehicles/packs) 10/2012-10/2013

- Baseline lab and track testing
- 30k miles on-road data logging and monitoring
- Battery pack testing at 10k mile intervals
- End-of-test lab and track testing at 30k miles

Laboratory Cycling & Testing (2 vehicles/packs) 10/2012-4/2014

- Baseline lab and track testing
- 30k miles equivalent cycling
- Battery pack testing at 10k mile equivalent intervals
- End-of-test lab and track testing at 30k miles

On-Road Vehicle Cycling/Testing Approach

Four identical, dedicated 2012 Nissan Leafs

- **Track Testing** Baseline and End-

Constant Current
Discharge Test

ab Testing

- Pack removed and tested at 10k road

Accumulation

- DCFC and L2
- Vehicles at the
- Dedicated Drivers
- Mileage

- 2 Cars DC-Fast Charging

Laboratory Pack Cycling/Testing Approach

Two identical, dedicated 2012 Nissan Leafs

- -ab Testing
- Constant Current
 Discharge Test
- Electric Vehicle Power Characterization Test (EVPC)
 - Low Peak Power Test
- Tested at 0 and 10k road mile equivalent intervals

Cycle Accumulation

- Both packs cycled identically
- Constant Ambient Temp
 30 C
- Cycle profiles based on road vehicle testing

- 1 Pack DC-Fast Charge
 Only
- 1 Pack AC-Level 2 Charge
 Only
- Charging profiles reflect field charging data and pack charge power limits
- Charging immediately follows discharge

Technical Accomplishments – Baseline Track Testing

Baseline track testing - ✓ Complete

Minimal variation between test vehicles at BOT

VIN 1011 0-60 mph ^{1,2,3}	VIN 2078 0-60 mph ^{1,2,3}	VIN 2183 0-60 mph ^{1,2,3}	VIN 4582 0-60 mph ^{1,2,3}	
10.8 s	10.9 s	10.8 s	10.8 s	
89.7 kW	87.7 kW	88.7 kW	89.2 kW	
77.0 mph	76.6 mph	76.9 mph	76.8 mph	
92.4 mph	92.7 mph	92.7 mph	92.6 mph	
	VIN 1011 0-60 mph ^{1,2,3} 10.8 s 89.7 kW 77.0 mph 92.4 mph	VIN 1011 VIN 2078 0-60 mph ^{1,2,3} 0-60 mph ^{1,2,3} 10.8 s 10.9 s 89.7 kW 87.7 kW 77.0 mph 76.6 mph 92.4 mph 92.7 mph	VIN 1011 0-60 mph ^{1,2,3} VIN 2078 0-60 mph ^{1,2,3} VIN 2183 0-60 mph ^{1,2,3} 10.8 s10.9 s10.8 s89.7 kW87.7 kW88.7 kW77.0 mph76.6 mph76.9 mph92.4 mph92.7 mph92.7 mph	

NOTES:

1. Vehicle track testing at delivered curb weight plus 332 ± 10 lbs (including driver and test equipment), distributed in a manner similar to the original curb loading of the vehicle.

2. Performance numbers based on "Normal" vehicle mode.

3. The acceleration and maximum speed testing results were averaged from 12 runs in which the vehicle state of charge (SOC) at the beginning of the acceleration run was at 90.9%, 86.3%, 81.4%, 77.8%, 73.7%, 70.3%, 66.3%, 62.20%, 57.7%, 52.7%, 48.3%, and 44.4%, respectively.

4. The maximum speed was reached before the one-mile mark.

Technical Accomplishments – On-Road Operation and Data Logging

20k miles/car and lab testing scheduled mid-March

 Monitoring to ensure comparable energy and power use between cars

VIN	Charge Type	Miles	Charges	Avg Miles per Day
1011	AC L2	17858	255	140
4582	AC L2	17929	254	144
2183	DCFC	17699	258	139
2078	DCFC	17640	255	137

Two-Month Sample of Driving Charge Throughput by Current Magnitude

March 8, 2013 On-Road Mileage Accumulation

Technical Accomplishments – Baseline & 10k pack tests

Baseline and 10k laboratory pack testing (on-road packs) ✓ Complete

At 10k miles, no significant differences in Energy Capacity between L2 and DCFC groups

Full results of pack testing published in progressive reports (AVTA web)

Technical Accomplishments – Baseline & 10k pack tests (Continued)

- Static Capacity (C1/3 Constant Current Discharge Test)
 - Ah and kWh capacity
- Electric Vehicle Power Characterization Test
 - Charge and Discharge Internal resistance vs. SOC
 - Charge and Discharge Power Capability vs. SOC

Low Peak Power Test

Discharge Power Capability vs.
 SOC 300 ______

Collaboration

- Idaho National Laboratory is the prime, with ECOtality serving as the sole sub-contractor
 - ECOtality cycling/testing 4 on-road vehicles
 - INL cycling/testing 2 lab vehicle packs
 - Round-Robin testing of 2 packs at each facility at BOT, EOT
- Collaboration with USABC to utilize the state-of-the-art EV pack testing protocols for benchmark testing

Idaho National Laboratory

Future Work

FY13

- Complete 30k on-road testing, with laboratory pack testing at 20k and 30k
- Continue INL laboratory cycling and testing towards 30k on-road testing pack-cycling equivalent

FY14

- Complete laboratory pack testing
- Report on full results of on-road and lab testing
- Propose continuation of project and study to link cell or module testing to full-pack testing
- Planned peer-reviewed paper on key findings of study

Summary

- On-Road operation of 4 identical EVs, dedicated to DC-Fast or AC Level-2 Charged
- Laboratory cycling and testing of 2 identical EV packs: DC-Fast or AC Level-2 Charged

Jaho National Laboratory

- Comparison of battery performance between types of charging at 10, 20, and 30 thousand miles
- Lab testing at constant, moderate temps to remove temperature variability – compare trends back to on-road tested packs as secondary study
- Complete data logging on-board to understand ambient conditions and usage
- Additional EV and charging data available to AVTA partners

Technical Back-Up Slides

Technical Backup Slide 1

Description		VIN 4420	VIN 3143	VIN 1011		VIN 4582		VIN 2183		VIN 2078	
		Shipped to INL after Battery Test		AC Level 2 Charged			ed	DC Fast Charged			
Test	Measureable	вот	вот	вот	10K	вот	10K	вот	10K	вот	10K
Static	Ah Discharged (Ah)	64.30	64.59	63.95	59.73	64.81	61.19	64.28	60.32	63.86	60.24
Capacity	kWh Discharged (kWh)	23.40	23.47	23.31	21.75	23.59	22.30	23.38	21.97	23.24	21.93
	Charge Resistance (Ohm) @ 20% DOD (kW)	0.1132	0.1112	0.114 4	0.113 6	0.114 4	0.115 2	0.114 4	0.113 6	0.113 2	0.112 4
	Discharge Resistance (Ohm) @ 80% DOD (kW)	0.1360	0.1335	0.142 0	0.177 0	0.136 0	0.158 6	0.136 1	0.170 7	0.139 0	0.168 9
EVPC	Charge Power Capability @ 20% DOD (kW)	73.88	74.85	73.73	78.30	73.17	77.49	74.08	79.72	75.30	78.35
	Discharge Power Capability @ 80% DOD (kW)	198.46	202.52	190.3 9	141.9 6	198.2 5	164.9 3	197.7 1	150.1 3	193.1 3	152.9 4
LPP	Power Capability @ 80% DOD (kW)	198.44	201.77	182.3 5	134.7 3	198.3 8	151.8 9	195.5 5	135.6 9	186.4 3	145.2 5

Technical Backup Slide 2

Controls to minimize variation

- Fixed route
- L2, DCFC vehicle pairs run simultaneously
- Dedicated drivers
- Same climate control settings auto/72 F
- Electronic data logging and manual logs
- Power levels and energy throughput monitored by vehicle