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Overview

Timeline

* Project Start Date 9/2017
* Project End Date 3/2019
 Percent Complete: 100%

Barriers

Life—Need to be able to
predict life at an early stage In
order to drastically shorten
time required to test new
charging protocols
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Relevance

* Project Objective
* Drastically shorten the lab time required to test a new
(extreme fast) charging protocol.
» Goal
 Accurately predict the cycle life of a test battery even
before any fade has been detected
 Impact
 Enables identification of the best fast charge protocols
* Enables faster adoption of EVs



Approach

* Find the best extreme fast charge protocol
« A123 LFP high power cells

48 testing channels, 30A current per channel
« 36Cto6C

T-controlled environment, but up to 10° C rise for individual cells

Charging Protocol
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 2-step extreme fast charging protocol (10 minutes to 80% SOC)
« C1and C2 are the 15t and 2" currents, Q1 is the SOC at switch point.
« Beyond 80%, charge at 1C to 3.6 V, then potentiostatically at 3.6 V



Technical Accomplishments
Predicting Cycle Life

 Demonstrate that fallure in commercial cells is statistical,
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* Initially, all cells degrade linearly ~ the same rate. Then substantial
variability sets in.

* With everything under strict control, we still can’t predict a battery’s
life to much better than a factor of 2
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Technical Accomplishments
Predicting Cycle Life

ANALYSIS
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Cannot predict cycle life from capacity fade during the fist 100 cycles

How do we generate capacity fade data?
* By throwing away almost all our information
» All of the voltage information is ignored

Difference curves capture information from the
entire cycle
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Technical Accomplishments
Predicting Cycle Life

PREDICTIONS MADE AT CYCLE 100

* Variance alone can make excellent predictions

* Other features that can improve the predictions include

Min(Q;9p— Q10)
Slope of the discharge curve, cycles 2-100

Intercept of the discharge curve, cycles 2-100
Discharge capacity, cycle 2

Average charge time, first 5 cycles

Integral of temperature, cycles 2-100
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PREDICTIONS MADE AT CYCLE 5

Classify cells at the factory (a
few hours at 5C) into:

“Economy” cells for reduced
cost

“Premium” cells for improved
range (greater SOC window)

Probability(Cycle Life > 550 Cycles)
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INTERPRETATION

* How can we predict fade at cycle 100, before there is
any fade?

* Identify a degradation mode that changes’ the voltage
profile, but that does not affect the capacity
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Remaining Challenges and Barriers

A purely data-driven model made successful early
life predictions
 But only for a single battery chemistry, LFP
* Only for a specific pair of failure modes

 Can a data driven model be successful for other
chemistries and more complex failure modes?



Future Plans

» Test our data-driven approach for NMC

« How much can we rely on machine learning and how
much physical insight do we need?

» Determine best fast-charge protocols

* Where we require a relatively small number of cycles to
evaluate any given protocol

Any proposed future work is subject to change based on funding levels



Summary and Conclusions

Data-driven modelling can predict battery life

Early prediction (at 100 cycles) permits rapid
evaluation of new chemistries and protocols

In-factory classification (at 5 cycles) permits
cells to be labeled “economy” or “premium”

The secret? Don’t throw away all the voltage
data




