Cummins-ORNL\FEERC Combustion CRADA:

Characterization & Reduction of Combustion Variations

W.P. Partridge (PI), J. Yoo, R.M. Connatser, V. Prikhodko, R. S.-Gonzalez, J.E. Parks Oak Ridge National Laboratory

S. Geckler (PI), A. Perfetto, A. Beck, M. Dane, R. Booth, D. Koeberlein Cummins Inc.

Project ID: ACE077

Presenter: Bill Partridge partridgewp@ornl.gov

2013 DOE Vehicle Technologies Program Annual Merit Review May16, 2013, Arlington, Virginia

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- New SOW start: Sept. 2012
- Current end date: Sept. 2015
- ~13% Complete

Budget

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2011: \$400k
 - FY2012: \$300k
 - FY2013: \$300k

Barriers

- Engine combustion
 - Intake-charge uniformity
 - Combustion uniformity
 - Incomplete combustion
- Engine controls
 - Variability & diagnostics
 - Lower-penalty control methods
 - Diagnostics for demonstration of improved efficiency control methods
- Durability
 - Combustion instabilities
 - Corrosion, erosion etc. from nonuniformity induced condensation

Partners

- ORNL & Cummins Inc.
- Cummins HD SuperTruck project

Objectives & Relevance

Validate Numerical Design Tools

to Accelerate Development of Efficient EGR-Intake & Engine Systems

Objectives

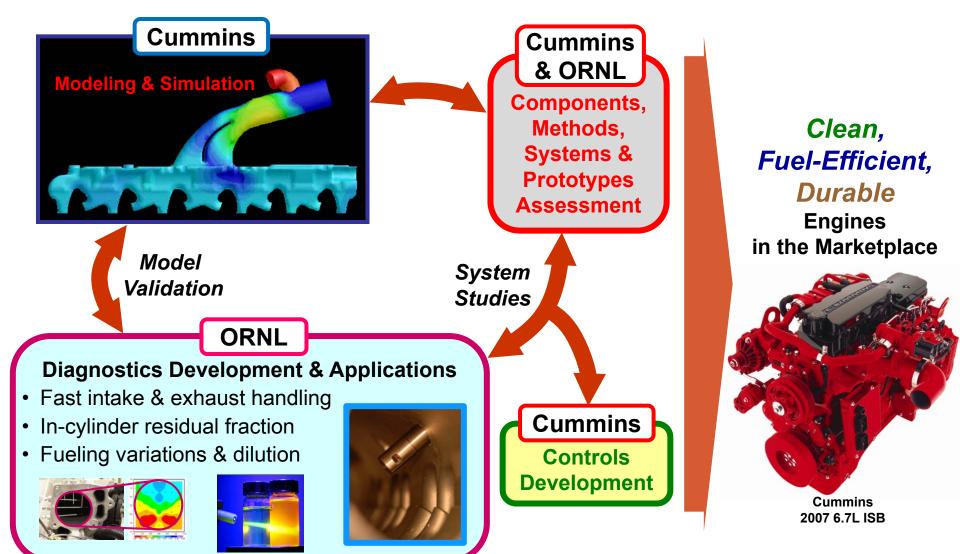
- Assess EGR uniformity & variations: amplitude, distribution & transients
- Correlate transients with exhaust and intake valve events
- Elucidate physics of EGR mixer performance
- Assess specific intake architectures

Relevance - EGR Performance & Uniformity impacts:

- Charge & combustion uniformity
- Required engineering margins (efficiency penalty, fuel economy)
- Ultimate efficiency limits across all cylinders
- Durability

Milestones

2012 Milestone:


- 2012 Willeston
 - Assess EGR uniformity under typical steady-state & transient conditions
 - Assess specific EGR injection/mixing designs
 - Spatiotemporal variations with conditions
 - Correlating EGR uniformity with combustion figures of merit

2013 Milestones (on target for Sept. 2013 completion):

- Apply EGR Probe to assess:
 - ✓ Spatiotemporal performance of advanced intake architectures,
 - Performance of numerical-simulation design tools used for development
- Follow-on campaign at Cummins to assess design modification
- Improve EGR Probe based on campaign findings:
 - Identify periodic interference
 - Resolved probe-to-probe variations

Global Approach for Improving Energy Security

Develop & apply advanced diagnostics for engine-system characterization to enable: <u>model validation</u>, <u>hardware development</u> & <u>controls</u> for <u>fuel-efficient engines</u>

Detailed Approach for 2013 Objectives

Develop & Apply Advanced Diagnosticsto Enable Next-Generation Engine-Efficiency Advances

- Identify efficiency barrier
 - Robust design tools needed to accelerate efficient engine development
- Apply Numerical Design Tools to:
 - Design intake-EGR architectures that stretch Tool applications
 - Predict characteristic behaviors & performance figures of merit
- Fabricate intake-EGR hardware & implement on engine
- Develop diagnostic to measure predicted performance figures of merit
 - Develop laser-based multiplex EGR Probe
 - Lab & Engine-based development at ORNL
- Apply EGR Probe at Cummins to characterize EGR performance
- Assess Design Tools based on measurements comparisons
- Accelerate development of low-cost Clean, Fuel-Efficient & Durable engines

Technical Progress: Summary

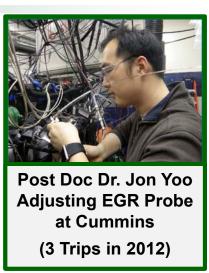
Background: EGR Probe based on 4.3μm MIR LED

- Robust, agile & spatially resolved measurement w/ EGR Probe
- Fast measurement resolves cycle, cylinder and valve events

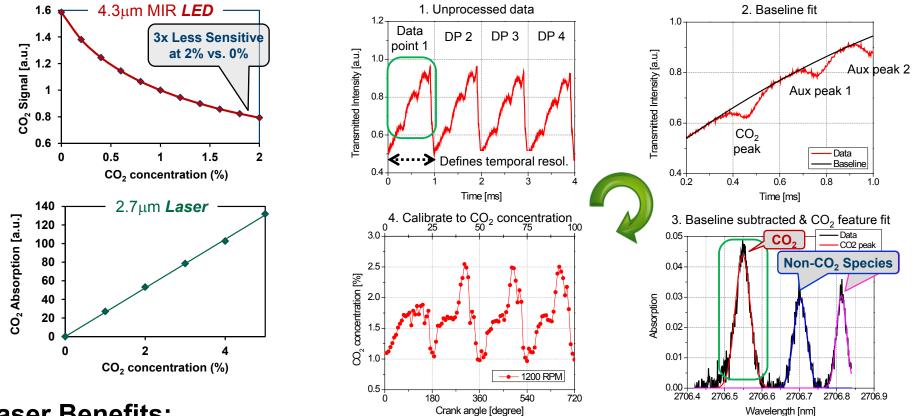
Switch to Narrow-Linewidth 2.7μm Laser Source

- Greater & linear sensitivity at higher EGR levels
- Faster temporal resolution
- Enables multiplexing
- Allows for simultaneous fast temperature & pressure measurements

Multiplex EGR Probes


- Multiple probes at different locations
- More extensive mapping & assessment

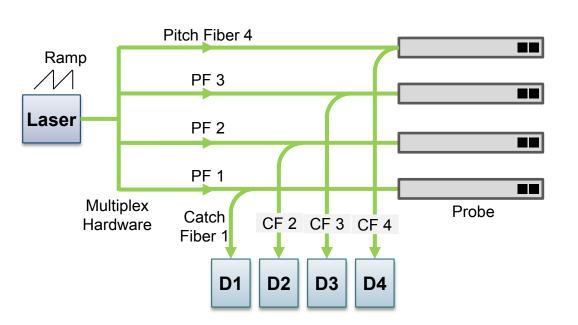
Map Spatiotemporal Nature of Advanced EGR-Intake Architecture

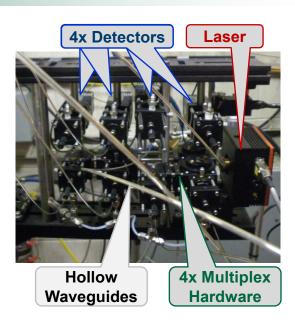

- Detailed results are CRADA protected
- Crank-angle and ~cm resolutions

Assess Numerical Design Tools for Specific Development Application

EGR Probe measured amplitude and temporal variations predicted by model

Improve EGR Probe by replacing MIR LEDs with 2.7µm Laser

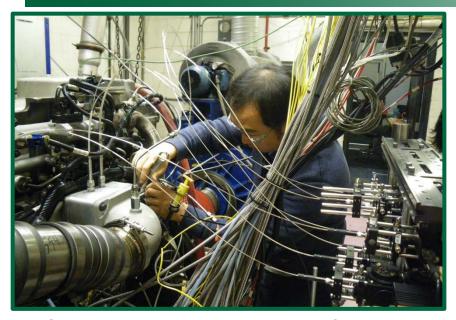



Laser Benefits:

- Linear sensitivity over wide CO₂ range
- More power, ca. 400x:
 - Better signal-to-noise
 - Faster measurements (~20-50X @ 100kHz)
 - Enables multi-probe multiplexing

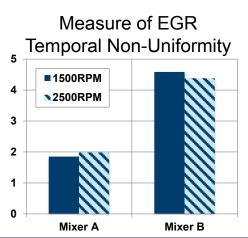
- Narrow linewidth
 - Spectrally discriminate interfering species
 - Detect CO₂ line broadening w/ Δ pressure
- Wavelength-Modulation Spectroscopy
 - Better SNR & less low-f interferences
- Simultaneous P & T measurements

Multiplex EGR Probes Accelerate Engine Design Advances


Multiplex Approach:

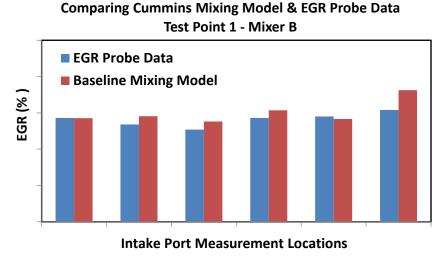
- Laser divided into 4 beams
- Each beam routed to an EGR Probe
- Dedicated detectors for each probe
- Simultaneous 4x measurements

Multiplex Benefits:

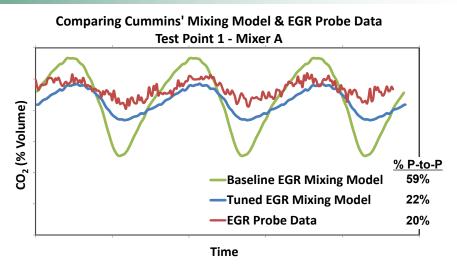

- Multiple probes at different locations
- More extensive uniformity mapping
- Accelerated validation & development

Map Spatiotemporal Nature of Advanced EGR-Intake Architecture

EGR Probe Measurements at Cummins



- Measurements at Cummins Oct., 2012
 - Next-generation efficiency platform
 - 2nd SuperTruck campaign in December
 - 55% Break Thermal Efficiency
 - See Koeberlein ACE057, Thursday 1:45pm
- Focus on spatial & temporal EGR mixing
 - Magnitude & frequency of dynamics
 - Timing vs. intake & exhaust valve events
- Numerical models used for design
 - Predicts EGR uniformity performance
 - Compare predictions to measurements


Cummins using data to assess design models & decisions

EGR Probe Improves Spatial-Temporal Mixing Model

Intake Runner-to-Runner variations:

- Ideally all bars are the same height
 - i.e., same R-to-R EGR charge
- Model & Measurement comparison
 - Same Max & Min cylinder predicted
 - Different R-to-R patterns
 - But differences are usually < 3-8%
- Certain ports have regularly greater variations

Temporal variations:

- Shows need to resolved EGR dynamics
 - e.g., vs. intake-valve timing
- Model & Measurement comparison
 - Same phase, frequency & shape
- Model tuned based on measurements
 - Improves amplitude & shape match
 - Tuning requirements give model insights
- Analysis ongoing for other conditions

EGR Probe Enables Design Model Improvement for Accelerating Development of Fuel-Efficient Engine systems

Collaborations & Coordination

Cummins

CRADA Partner, Sam Geckler (Co-PI)

- Cummins SuperTruck Program (ACE057, Thursday 1:45pm)
 - David Koeberlein (PI), Rick Booth
 - Multiplex EGR Probe applied to SuperTruck December 2012
 - Cooperative development of Multiplex EGR Probe
 - CRADA & SuperTruck projects share monthly telecons
 - Coordination of common development interests
 - Use of CRADA-developed technologies

Dissemination via Publications, Presentations and Patents

- 1 Patent allowed: re. transient particulate sensing
- 1 Invention Disclosure filed: re. multiplex laser-based EGR Probe
- 5 oral presentations (3 invited)
- 2 Invited Presentations of EGR Probe diagnostic & applications
 - CLEERS Teleconference, June 2012
 - ACEC & Diesel Crosscut Team meeting, January 2013
- 2 poster presentations
 - DEER, International Symposium on Combustion

Future Work

2013 Work:

- Assess performance numerical design tools
 - Finalize comparisons between measurement & models
- Assess detailed physics driving observed performance
 - Investigate EGR-Probe insights to enable further performance enhancement
- Assess EGR Probe interferences & probe-to-probe variations
- Study & downselect next major CRADA research thrust technology
 - Characterizing cylinder residual (ex- & in-cylinder methods)
 - In-cylinder temperatures
 - Ignition visualization
 - H₂ & HC characterization
- Initial development of down-selected technology

2014 Work:

- Develop down-selected technology
 - Iterating between lab & engine cell at ORNL
- Proof of principal demonstration at Cummins
 - Further refinement at ORNL as necessary
- Applications at Cummins for engine-technology development

Summary

Relevance

- CRADA work enables improved cylinder-to-cylinder & cycle-to-cycle combustion uniformity
- This in turn enables improved fuel efficiency and durability

Approach

- Develop diagnostic to characterize EGR spatial & temporal uniformity
- Apply EGR Probe to assess specific hardware architectures
- Apply EGR Probe data to validate and improve design models

Technical Accomplishments

- EGR Probe improved for more sensitive, accurate, interference free measurements
- 3 EGR Probe measurement campaigns at Cummins in 2012
- Data used to improve design models & accelerate development of efficient engine systems

Collaborations

- Application of EGR Probe to Cummins' SuperTruck 55% BTE Goals
- Presentations to CLEERS and ACEC Technical Team, Patents & Invention disclosures
- EGR Probe available to users outside the CRADA

Future Work

- Analysis & tuning of EGR mixing model identify mixing and model-data difference origins
- EGR Probe Improvements : interference identification & probe-to-probe variations
- Diagnostic identification & development for addressing next-generation efficiency barriers