Corrosion Control in Carbon Fiber Reinforced Plastic (CFRP) Composite-Aluminum Closure Panel Hem Joints

Project ID: MAT131 Award DE-EE0007760

Project Team:

PPG Industries – *Brian Okerberg (PI)*, Hyun Wook Ro, Loubna Pagnotti, Reza Rock, Masayuki Nakajima, Egle Puodziukynaite, Scott Benton

Ford Motor Company – Mark Nichols, Niamh Hosking, Jeremy Ritchey

Ohio State University – Gerald Frankel, Jenifer Locke, Priyanka Adapala, Katrina Catledge

June 2, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start 10/1/16
- Project end 9/30/20*
- Percent complete 95%*
 *Includes unanticipated COVID-19 delays and extension

Barriers addressed¹

- Corrosion evaluation of mixed material joints
- Predictive corrosion modeling
- High volume use of CFRP materials (automotive line)

¹ Source: 2017 U.S. Drive MTT Roadmap Report, Section 4.

Budget

- Total project funding \$2,950,025
 - DOE share \$2,212,519
 - Contractor share \$737,506
- Funding for FY 2019 through project completion \$637,568

Partners

Relevance & Objectives

Relevance

- Enable vehicle weight reduction by introducing CFRP
- Identify dissimilar material joining and corrosion protection challenges and predictive models
- Develop novel technologies to enable vehicle lightweighting

Objectives

- Understand the impact of CFRP on part distortion and corrosion
- Develop low-temperature cure solutions to mitigate CTE mismatch
- Improve understanding of corrosion involving lightweight materials (CFRP/AI), including mechanisms and test methods

temp cure adhesive

Challenges

- CFRP introduces a potential source of galvanic corrosion
- Thermal expansion mismatch (CTE) between CFRP and AI will impart dimensional stresses and displacement during the paint bake process
- Affordable CFRP matrix materials are not stable at current paint bake oven temperatures
- Conventional automotive coatings and adhesives are not compatible with CFRP or the required lower bake temperatures
- Predictive accelerated corrosion tests for automotive CFRP/aluminum joints have not been determined

Image provided by Ford Motor Company

Milestones & Approach

Budget Period 1: Understanding Nature/Extent of Problem	 Understand the extent of the corrosion problem Identify the susceptibility to galvanic corrosion and SCC Balance conductivity for painting/galvanic coupling Identify pathways to low-cure adhesives and coatings
Budget Period 2: Developing Solutions	 Develop conductive primers, adhesives, and electrocoats Identify hem geometries to mitigate corrosion/CTE Galvanic assessment of CFRP type and joined samples Accelerated testing of CFRP/AI couples
Budget Period 3: Optimization and Validation	 Optimize and validate the solutions developed in BP 2 Construct a surrogate aluminum outer/CFRP inner closure Process through a typical paint shop operation and corrosion test

Prior Technical Accomplishments

Substrate Characterization

Galvanic Corrosion & SCC Evaluation

Electrochemistry of CFRP/Al Coupons

Low Cure Electrocoat/Adhesive

CTE Mismatch Modeling

Prediction of Deflection

Room Temperature (mm)

(Commercial Material)

Comparison of maximum deflection

Validation (Bus Testing / Coupon Tests)

Accomplishments: Galvanic Corrosion Susceptibility

Galvanic Corrosion Susceptibility

Potentiodynamic polarization of unprimed CFRP random, fresh 100 conductive primed CFRP, primed CFRP after 1-year storage and AI alloy in 3.5 wt% NaCl

Differences between AA6111 and AA6022

Alloy/Element wt.%	Si	Fe	Cu	Mn	Mg	Cr	Zn	♦ Ţi Others	Al
6111	0.61	0.26	0.61	0.22	0.81	0.05	0.03	0.03	Bal.
6022	0.52	0.13	0.05	0.07	0.61	0.03	0.01	0.02	Bal.

Anodic polarization in aerated/deaerated conditions

Aging of the primed CFRP impacts the galvanic corrosion susceptibility AA6111 has higher OCP/pitting potential but greater corrosion susceptibility in cabinet tests

Accomplishments: Cabinet and On-Road Corrosion Testing

Accelerated Corrosion Testing

- L-467 accelerated chamber testing: 12 weeks
- On road tests on OSU busses: 13 months from Dec 2018 to Jan 2020

L467 testing of uncoated, e-coated AA6xxx-CFRP coupons

On-road testing of uncoated, e-coated AA6xxx-CFRP coupons

In L-467 testing and on-road testing, the blistering, and corrosion damage were highest for AA6111-CFRP random and minimum for AA6022-Twill

Images on this page provided by The Ohio State University

Excellent correlation between L467 and on-road testing AA6022-CFRP(twill) is the most corrosion resistant combination

Accomplishments: AA6111-T8-like SCC Behavior

At all tested K: -756 mV_{SCE}, -731 mV_{SCE}, -706 mV_{SCE} : **Below resolution limit** <u>At K = 15 MPa√m:</u> -681 mV_{SCE} : da/dt = 2.8 x 10⁻⁶ mm/s <u>At K = 12 MPa√m:</u> -681 mV_{SCE} : Average $da/dt = 2.3 \times 10^{-6} \text{ mm/s}$ At K = 8 MPa \sqrt{m} : -656 mV_{SCE} : Average $da/dt = 7.5 \times 10^{-6} \text{ mm/s}$

AA6111 is not highly susceptible to SCC at freely corroding conditions **Anodic polarization reduces SCC resistance**

ากก่าวก

Accomplishments: Liftgate Demonstration

Material	Standard Component (Control)	Prototype Part 1	Prototype Part 2	Prototype Part 3	Prototype Part 4					
Conductivity of Primer	High	Low	High	Low	High					
Conductive Primer Application	Outside only	Both sides	Outside only	Both sides	Both sides					
Adhesive Type	High Temp	Low Temp	Low Temp	High Temp	Low Temp					
E-Coat Type	High Temp	Low Temp	High Temp	High Temp	Low Temp					

Test Matrix

Assembly & Coating Process

Five prototype liftgates prepared according to standard automotive processes

Accomplishments: Liftgate Demonstration

Liftgate Assembly

- Inner and outer panels joined with adhesive
- Hem manually created to join CFRP inner and Al outer

Pretreatment & Electrocoat

- Liftgates pretreated and coated with conventional or low temp electrocoat
- Overlap coupons also prepared

Topcoat Application

 All liftgates topcoated with conventional topcoat system

Successful coating of the prototype parts

Accomplishments: Liftgate Demonstration

Corrosion Testing

- Mounted in "vehicle position" and subjected to Ford's full vehicle corrosion test protocol
 Liftgates examined after 6/12 weeks
- Performance Assessment Low Temperature Cure Control Ecoat/Adhesive Liftgates laser scanned to assess dimensional accuracy after manufacturing Corrosion assessed at hem joint (CFRP/AI)

Dimensional stability and corrosion assessed for each liftgate

Prototype Testing Summary

Adhesion

- Difficult to balance adhesion between adhesive/primer and adhesive/substrate interfaces
- More flow observed with conventional adhesive greater coverage of aluminum substrate and more encapsulation of CFRP possible

Dimensional Stability

- Improved dimensional stability (less deflection) observed on liftgates with flexible adhesive and low temp cure electrocoat
- Possible indication of separation of CFRP/AI on liftgate 5 (with rigid adhesive), where very low deflection was measured on one side

Corrosion

- More corrosion observed on liftgates with flexible adhesive and low temp cure electrocoat
- <u>Unexpected result and attributed to:</u>
 - · Lower adhesion and less flow with flexible adhesive
 - Less deflection, meaning greater CFRP aluminum contact, with flexible adhesive
- Both leading to stronger galvanic attack of aluminum by the CFRP cathode

Responses to Previous Year Reviewers' Comments

- It is not clear what experiments are planned to make the CFRP resin and adhesive withstand the paint bake temperature.
 - The CFRP resin was fixed due to cost constraints for high volume use. The paint and adhesive bake temperatures were reduced to meet the stability requirements of the CFRP.
- Size of the coupon may not be sufficient.
 - The initial CTE mismatch coupons was determined by our OEM partner based on their experience and chosen to enable lab-scale experimentation and adhesive development. Longer coupons were tested in follow-up studies before the prototype build.

Project Collaboration

PPG Industries, Inc.

- Project coordination
- Coating test coupons for corrosion evaluation at Ford
- Providing samples of conductive primers to OSU for electrochemical evaluations
- Prototype coating

Ford Motor Company

- Providing substrate materials for testing
- Conducting track testing of coated samples
- Providing input on electrochemical evaluations
- Modeling adhesive formulation / CTE mismatch
- Prototype development and testing

The Ohio State University

- Measuring uniformity of conductivity of Ford CFRP substrate
- Conducting electrochemical evaluation of corrosion panels during corrosion testing
- Outdoor exposure of test samples (OSU bus system)
- Understanding of stress-corrosion behavior

Remaining Challenges and Barriers

- Implementation of this concept would require additional development to develop a system of materials that were mutually compatible and possessed all processing performance characteristics of current generation materials:
 - Good adhesion between adhesive and all substrates/coatings
 - Surface preparation procedures
 - Optimized flow and wetting of adhesive
 - Optimized part design to aid in adhesive placement and hemming

Summary

Corrosion Fundamentals

- Aging of the primed CFRP impacted the galvanic corrosion susceptibility
- AI-6111 had a higher OCP/pitting potential but greater corrosion susceptibility
- AA6022-CFRP(twill) was the most corrosion resistant combination
- AA6111 was not highly susceptible to SCC at freely corroding conditions but anodic polarization reduced SCC resistance
- L467 and on-road testing resulted in similar amounts of corrosion

Prototype Part Demonstration

- Galvanically-accelerated corrosion of aluminum in CFRP/AI closure panels was conclusively demonstrated in coupons and prototype closure panels
- Mixed material coupon testing <u>demonstrated the benefit</u> of conductive primer with lower conductivity, flexible adhesive, and low temperature cure electrocoat
- Expected benefit of the new material system was not observed in prototype component testing due to secondary processing issues
- Processing variability prevented rigorous quantification of results

