

Super Truck Program: Vehicle Project Review

Recovery Act –Class 8 Truck Freight Efficiency Improvement Project

Derek Rotz (PI:Vehicle), Kevin Sisken (PI: Engine)

Presenter: Derek Rotz

Daimler Truck North America LLC

May 17th, 2012

Project ID: ARRAVT080

Timeline

Project start: April 2010

• Project end: March 2015

• Percent complete: 40%

Budget

• Total project \$79,119,736

- Vehicle Budget \$47,486,735
 - DOE Share^(*) \$6,100,000
 - DTNA Share (*) \$6,100,000

(*) through Feb, 2012 for vehicle R&D expenses only, engine R&D expenses reported separately

Barriers

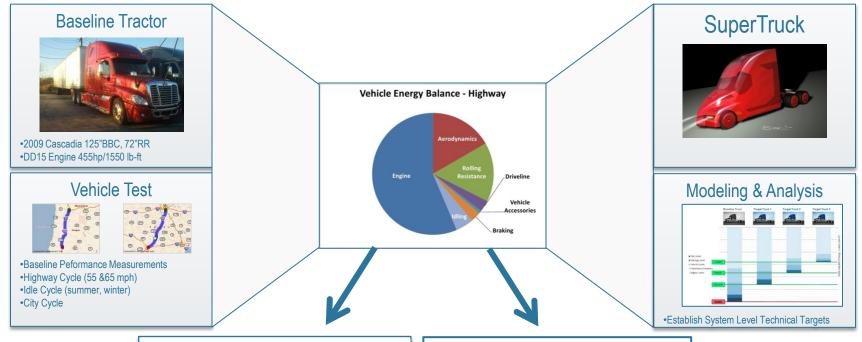
- Resolve thermal & fluid dynamics tradeoffs between Aero & cooling
- Rejecting more heat in a smaller, aerodynamic hood & engine compartment
- Development of safe and efficient High Voltage power distribution, integrating multiple HV energy sources
- Making tradeoffs between efficiency, cost and weight
- Vehicle controls integration (Aux, Hybrid, Powertrain, Waste Heat, Predictive)

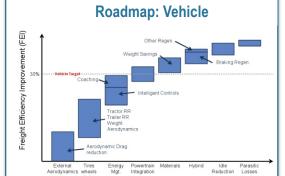
Partners

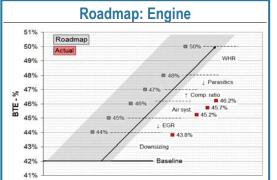
- Detroit Diesel
- · Schneider National, Walmart
- National Renewable Energy Lab
- Oregon State University
- Strick Trailer
- Michelin
- •

Objectives and Milestone

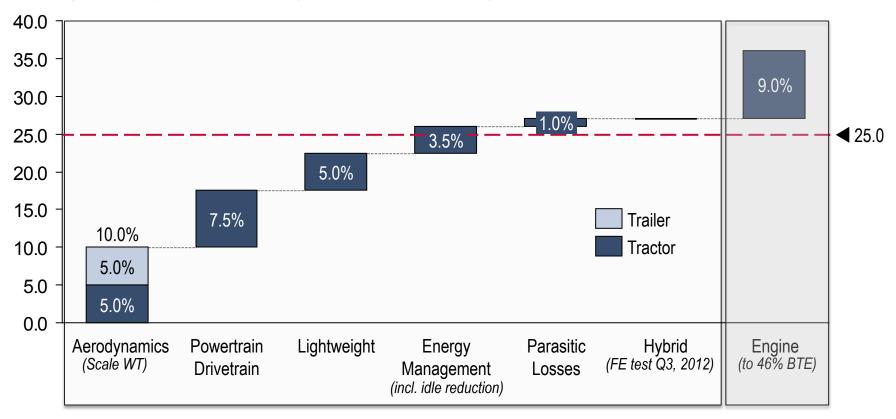
Develop and Demonstrate a 50% total increase in vehicle freight efficiency:


- At least 20% improvement through a heavy-duty diesel engine capable of achieving a 50% brake-thermal efficiency
- Identify key pathways towards achieving 55% through modeling and analysis


Timeline	Phase Description	Milestones		
4/10–3/11	Analysis: (1) Technology Modeling/Analysis and Initial Component Development and Demonstration	Develop analytical roadmap: • 50% vehicle freight efficiency improvement • 50% engine brake thermal efficiency		
4/11–3/12	Specification: (2) Experimental Demonstration of Technology Building Blocks for Intermediate Goals	Experimentally demonstrate technology building blocks: • 25% vehicle freight efficiency improvement (system level test) • 46% engine brake thermal efficiency		
4/12–5/13	Design: (3) Technology Identifications and Final Component Development and Demonstration	Identify and initially develop technology building blocks: • 50% vehicle freight efficiency improvement (system level test & analysis) • 50% engine brake thermal efficiency		
6/13–6/14	Build: (4) Experimental Demonstration of Technology Building Blocks for 50% Engine Thermal Efficiency and 50% Vehicle Efficiency	Experimentally demonstrate technology building blocks: • 50% vehicle freight efficiency improvement (system level test) • 50% engine brake thermal efficiency		
7/14–3/15	Test: (5) Final System Integration and Demonstration	Experimental demonstration: • 50% vehicle freight efficiency improvement (entire vehicle test) • 50% engine brake thermal efficiency (engine test) • 55% engine brake thermal efficiency (engine analysis)		



Phase I Milestone Completed



Phase 2 Milestone Status

Experimental testing to 25% vehicle freight efficiency

Freight Efficiency Improvement % - (system level measurements)

Anti-Idle

eHVAC

Cooling

Package

Experimental Tests Conducted on 'Tinker' Trucks

Hybrid 'Tinker' Truck

HEV / Engine controls Integration

HV Power Distn.

eMotor Starter

SAE Hybrid Committee

Standards development for electrification of Powertrain and Accessories

Rear Axle Config/ Ratio

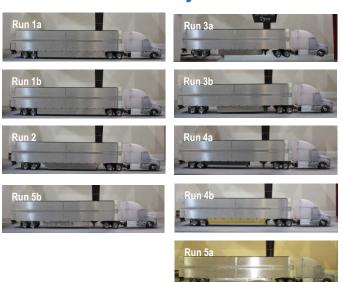
Direct Drive AMT w/ optimized shifting

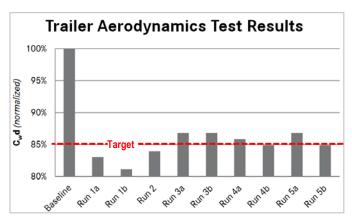
Powertrain & Parasitics 'Tinker' Truck

Predictive Torque Mgt.

AccuSteer

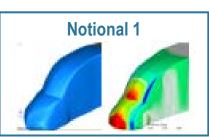
Clutched Air Comp.

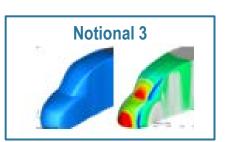

Electronic Air Control



External Aerodynamics

30% drag reduction target exceeded in CFD and Scale Wind Tunnel Tests


Trailer Aerodynamics



Tractor – Basic Shape Analysis

Scale Wind Tunnel

ΔCd

15% reduction

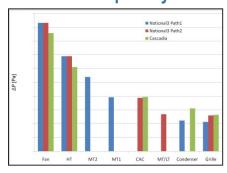
15% reduction

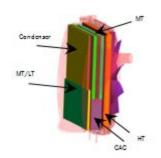
CFD and Scale Wind Tunnel Testing

- Conducted steady state, closed grill simulation & testing
- Conducted transient, open grill simulation & testing
- •Results correlate

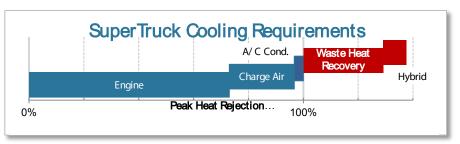
Thermal Management / Cooling

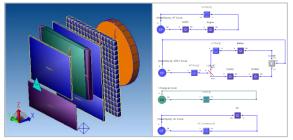
Cooling concept developed to meet add'I heat rejection while maintaining aero.


3D CFD Thermal Analysis



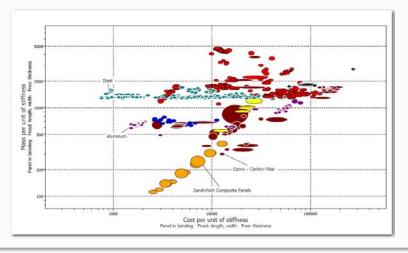
Analysis Study Complete


- WHR cooling circuit analysis
- Hybrid cooling circuit analysis
- Alternative layouts and packaging
- Cooling Performance analysis


Pressure Drop Analysis

1D Thermal Analysis

Lightweighting


Chassis analysis and tests to 4.5 – 5.8% FEI reduction, Cab analysis on-going

Cab Exterior

- · Target floor, side/backwall, roof, hood systems
- Evaluate & test lightweight, low cost sandwich structures
 - · Cores foams, honeycomb
 - Faces Al, FRP

Frame Rails

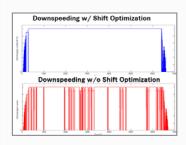
- · Composite designed, installed & tested
- · Low Cost Aluminum designed & installed

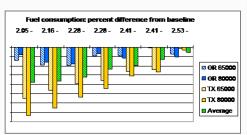
Next Steps

- · Cross member development
- Complete Load-Optimized frame design in conjunction with lightweight suspension

Physical Test of Composite Rail – 1st Revision

Mechanical	Symbol	Day Cab	Sleeper Cab
Property		Reqs.	Reqs.
→ Vertical Bending Stiffness	(EI _Y)	Exceeds	Meets
Lateral Bending Stiffness	(EI _Z)	Falls Between	Falls Between
Torsional Stiffness	(GJ _R)	Exceeds	Meets


Powertrain Drivetrain Integration

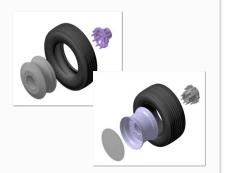

7.5% FEI measured with further tests scheduled

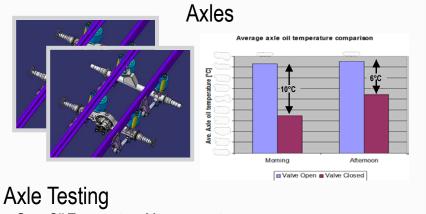
Engine Downspeeding

Modeling & Analysis

- Gear ratio Optimization on Transmission/Axle
- Shift strategy Optimization
- Gradeability / Startability

Testing

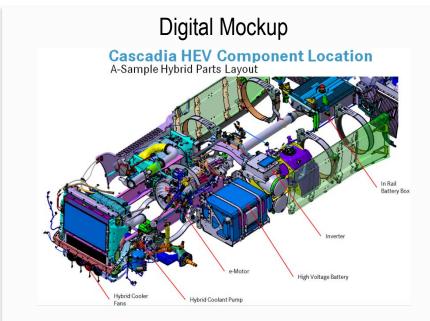

• Transmission/Axle Ratio Performance Q2, 2012


Tires/Wheels/Hubs

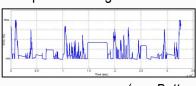
- Reduced Rolling Resistance
- Lightweight Wheels/Hubs
- Aero Enhancements

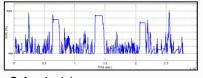
Testing

- 1st Round of Testing Complete
- 2nd Round of Testing Q4, 2012



- Gear Oil Temperature Management
- Gear Oil Formulations
- Axle Configurations (traction enhanced 6x2)


Hybrid A-Sample


Analysis complete for sizing & performance, tests scheduled in Q3 2012

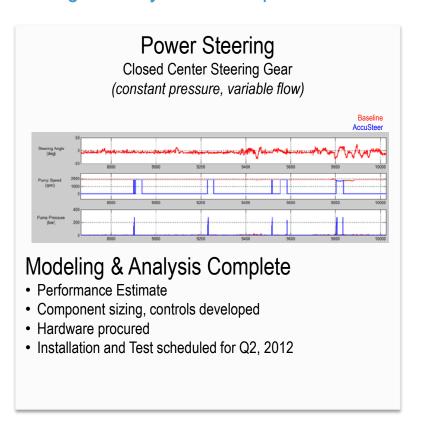
Modeling & Analysis

- Fuel Economy Estimation
- Component Sizing

(e.g. Battery SoC Analysis)

Hardware & Testing

- A-sample hardware installed
- Controls logic & EE integration (Hybrid + eHVAC)
- Functional testing on-going


Vehicle Testing

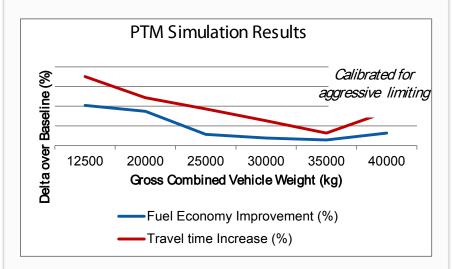
- eHVAC Q1, 2012
- Highway /City FE test scheduled Q3, 2012

Parasitic Losses

Testing & Analysis show up to combined 1.5% FEI potential

Air System Clutched Air Compressor + Electronic Air Dryer

Air System Testing Complete


- Significant reduction in purge cycles
- Lower average compressor power

Energy Management

Predictive Torque Management

Limits torque based on vehicle mass and road grade to limit excessive accelerations, via J1939 TSC1

Vehicle Testing Complete

- City Cycle route up to 2.4% savings measured
- Customer Field Test: 5 tractors, 3 mo, >100,000 miles
- Driver Survey

Eco-Driver Feedback

Development Status

- •A-Sample application complete, based on 4 criteria
- •Fuel & Fleet Test Scheduled
- Customer field Test

Predictive Auxiliary Load Mgt.

Intelligently controls thermostatic valve, coolant pump & fan based on predictive engine load, and 3D Digital Maps.

Development Status

- •2 state coolant Pump successfully tested
- •Controls developed, hardware installed & functionally tested
- •Fuel Economy Test for thermostat & full variable pump scheduled for Q2, 2012

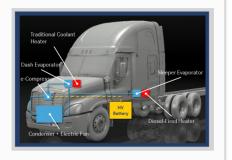
Energy Management Anti-Idling

Completed testing indicates program on track to meet 4% FEI targets

DELPHI

Solid Oxide Fuel Cell Testing

- · SOFC idle fuel consumption during overnight periods
- · Power output sweep
- SOFC max power output for prolonged time periods
- · Startup and shutdown measurements.



- Thermal Soak
- Heat Transfer
- Thermal Imaging
- Air Exchange
- Insulation /Radiant Barrier

Hybrid & Parked eHVAC

- Controls development complete
 - e-fan
 - e-compressor
 - engine start/stop
- eHVAC Test scheduled end Q1, 2012

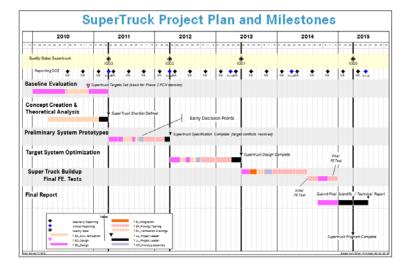
SuperTruck Partnerships and Collaborations

Department of Energy:

- → Roland Gravel
- → Gurpreet Singh
- → Carl Maronde

Vehicle Summary and Future Work

Successful completion of phase 1 & phase 2 targets on schedule

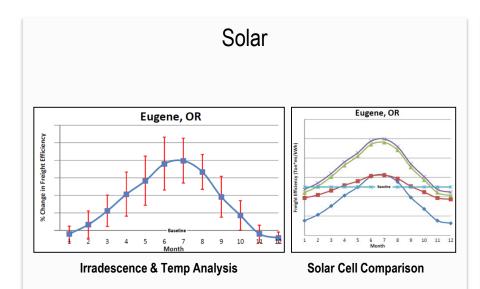

Technology Building blocks to 25% FEI measured

- Aerodynamics / Cooling
- Powertrain / Parasitics
- Anti-idling
- Lightweighting

• ..

Next Steps

- Continued System Level Testing
- Complete Full-Scale Cab Exterior Model for Aero
- Buildup of preliminary ST Chassis for System Integration
- Complete Integrated Tractor/Trailer Development for Lightweighting & Aero


DAIMLER

Technical Backup Slides

Energy Management

Modeling & Analysis

- · Freight Efficiency potential identified
- high-variability in performance

Vehicle Testing

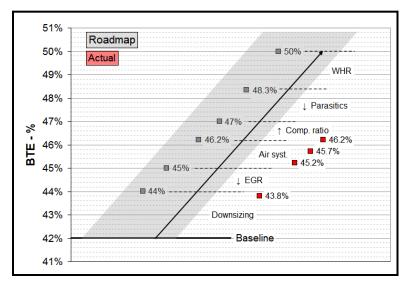
• Scheduled Q2, 2012

Efficient Operations

Algorithm Develompent Complete

· Routing based on fuel consumption

Verification/Validation & Tests


- Simulation-Routing Verification work on-going
- Fleet Analysis, Q2 2012

Engine Summary and Future Work

- Engine has demonstrated 46.2% brake thermal efficiency
- •Plans firmly in place for next level of performance improvement:
 - Higher compression ratio including new piston bowl and injector tip
 - Iterate SCR design for lower pressure drop
 - Reduced engine parasitics
 - Continue controls development and refinement
 - Waste heat regeneration development
 - Expander and generator
 - Add EGR waste heat recovery
 - Integrate onto vehicle

