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Overview

• Project provides fundamental research to 
support DOE/ industry advanced engine 
projects

• Project directions and continuation are 
evaluated annually

 Technical Barrier: Increases in engine 
efficiency and decreases in engine 
emissions are being inhibited by an 
inadequate ability to simulate in-cylinder 
combustion and emission formation 
processes
• Chemical kinetic models for fuels are a 

critical part of engine models
 Targets: Meeting the targets below relies 

heavily on predictive engine models for 
optimization of engine design:
• Fuel economy improvement of 25 and 40% 

for gasoline/diesel by 2015
• Increase heavy duty engine thermal 

efficiency to 55% by 2018.
• Attain 0.2 g/bhp-h NOx and 0.01 g/bhp-h PM 

for heavy duty trucks by 2018

Project funded by DOE/VT:
• FY11: 500K
• FY12: 640K

Timeline

Budget

Barriers/Targets

• Project Lead: LLNL – W. J. Pitz (PI), C. K. Westbrook, 
M. Mehl,  S. M. Sarathy

• Part of Advanced Engine Combustion (AEC) working 
group:

• – 15 Industrial partners: auto, engine & energy
• – 5 National Labs & 2 Univ. Consortiums
• Sandia: Provides HCCI Engine data for validation of 

detailed chemical kinetic mechanisms
• FACE Working group

Partners
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Objectives and relevance to DOE objectives
 Objectives:

• Develop predictive chemical kinetic models for gasoline, diesel and next 
generation fuels so that simulations can be used to overcome technical 
barriers to low temperature combustion in engines and needed gains in 
engine efficiency and reductions in pollutant emissions

 FY12 Objectives:
• Develop detailed chemical kinetic models for larger alkyl aromatics
• Develop a reduced surrogate mechanism for diesel to be used for 

multidimensional CFD simulations                      
• Develop more accurate surrogate kinetics models for gasoline                                                
• Develop a functional group method to represent cycloalkanes in diesel 

fuel
• Validate and improve 2- and 3-methyl alkanes mechanisms with new 

data from shock tubes, jet-stirred reactors, counterflow flames, and 
premixed flames
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Chemical kinetic milestones
 January, 2012

Develop more accurate surrogate kinetics models for gasoline 
• June, 2012

Develop a functional group method to represent cycloalkanes in diesel fuel
• June, 2012                  

Develop detailed chemical kinetic models for larger alkyl aromatics
• September, 2012

Develop a reduced surrogate mechanism for diesel to be used for 
multidimensional CFD simulations 

• September, 2012
Validate and improve 2- and 3-methyl alkanes mechanisms with new data 
from shock tubes, jet-stirred reactors, counterflow flames, and premixed 
flames
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Approach
 Develop chemical kinetic reaction models for each individual fuel component of 

importance for fuel surrogates of gasoline, diesel, and next generation fuels

 Combine mechanisms for representative fuel components to provide surrogate 
models for practical fuels
• diesel fuel
• gasoline (HCCI and/or SI engines)
• Fischer-Tropsch derived fuels
• Biodiesel, ethanol and other biofuels

 Reduce mechanisms for use in CFD and multizone HCCI codes to improve the 
capability to simulate in-cylinder combustion and emission formation/destruction 
processes in engines

 Use the resulting models to simulate practical applications in engines, including 
diesel, HCCI and spark-ignition, as needed

 Iteratively improve models as needed for applications
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Technical Accomplishment Summary

 Development of chemical kinetic model 
for larger aromatics

 Determined effect of branching for alkanes on 
ignition under engine conditions

 Validated approach and mechanism for 
gasoline surrogate fuels

RCM
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 Developing reduced chemical kinetic 
model for diesel for engine combustion 
network (ECN)

0

200

400

600

800

1000

1200

550 600 650 700 750 800 850

Temperature [K]

C
O

 [p
pm

]

Flow Reactor Data
8 bar

Ф = 0.23
(23% m-xylene / 

77% n-dodecane)



7LLNL-PRES- 543385 2012 DOE Merit Review

Lawrence Livermore National Laboratory

Fuel Surrogate Palette for Diesel

n-alkane
branched alkane
cycloalkanes
aromatics
others

butylcyclohexane
decalin

hepta-methyl-nonane

n-decyl-benzene
alpha-methyl-naphthalene

n-dodecane
n-tridecane
n-tetradecane
n-pentadecane
n-hexadecane

tetralin

Need representative component models to fill out
the diesel fuel surrogate palette:

trimethyl-

2,9-dimethyldecane

2-methylpentadecane

3-methyldodecane

Lightly methylated iso-alkanes 

Large 
aromatics
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Jet Stirred Reactors

• Idealized chemical reactors with/without simplified transport 
phenomenon

Non Premixed Flames

Premixed Laminar Flames

Engine 
Combustion

Combustion Parameters

Temperature

Pressure

Mixture fraction (air-fuel ratio)

Mixing of fuel and air

Need to validate the fuel component and 
surrogate models

Shock tube

 

Electric Resistance
Heater

Evaporator

Fuel Inlet

Slide Table

Oxidizer Injector

Optical Access Ports

Sample Probe
Wall Heaters

 

High pressure flow reactors

Rapid Compression Machine
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Modeling of 3-methylheptane Ignition 
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W. Wang, Li, Oehlschlaeger, Healy, Curran, Sarathy, Mehl,  
Pitz, Westbrook, Proc. Combust. Inst. (2012). 
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Modeling the effect of branching on ignition
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Jet Stirred Reactor (JSR)  
3-methylheptane  CNRS Orleans, France 

•! The zero dimensional 
perfectly system is 
ideal for modeling. 

•! The products species 
profiles are dependent 
on chemical kinetics 
due to the perfectly 
mixed homogeneous 
environment. 
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Model simulations and experiments show decrease in 
laminar flame speeds with branching for octane isomers 

#!Important to properly predict flame speeds for gas turbine applications 

#!Location of single methyl branch has minimal effect on flame speed 
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Developed new procedure to formulate gasoline surrogates
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40 different gasoline surrogates were simulated

Slope in NTC region correlates to octane sensitivity = RON - MON

Ignition delay at 825K correlates to octane number

FY2011
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A correlation between the octane rating and the autoignition propensity 
of gasoline surrogate fuels has been identified

y = -0.60x2 + 2.64x + 8.86
R² = 0.79
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Surrogate  
(%Vol)

RD387 Gasoline 
(%Vol)

i-Alkanes 57
n- Alkanes 16
Aromatics 23 23

Olefins 4.0 4.2

73

Matched gasoline properties with a surrogate
Alkanes

Aromatics

Olefins

FY2011

A/F Ratio 14.6 14.8
H/C 1.93 1.95

Octane index 87 87
Sensitivity 8.0 7.6

Composition:

Other properties:
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Simulations of real gasoline (RD387) experiments 
using LLNL surrogate model
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RCM experiments: G. Kukkadapu, K. Kumar, C.-J. Sung, Univ. of Connecticut
Shock tube experiments: Gauthier, Davidson and Hanson, 2004
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Curves: 
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Curves: 
LLNL model
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○ Univ. Conn. experiments
□ Stanford experiments

RCM

Shock tube RCM model

Constant 
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Purely experimental comparisons of LLNL and Stanford surrogate formulation with 
real gasoline:  LLNL formulation matches well real gasoline
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Surrogate for larger alkyl aromatics: 
n-heptane + n-propylbenzene

6 7 8 9 10 11 12 13 14 15 16
0.01

0.1

1

10

100

   1 atm
 10 atm
 30 atm

Ig
ni

tio
n 

de
la

y 
tim

e 
/ m

s

10,000 K / T

Curves: NUIG-LLNL model

Experiments: NUIG

1 atm

10 atm

30 atmshock tube

Rapid compression machine

with heat loss model

Experimental RCM data:  Darcy and Curran, NUIG, 2011

Shock tube

10 atm

ɸ= 0.98

43% n-heptane /57% n-propylbenzene in air
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Larger aromatics: Shock tube ignition of      
n-butyl benzene at high pressure

n-butylbenzene

Experiments: Tobin,Yasunaga and Curran, NUIG, Ireland (Combust. Flame 2011)
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Developing reduced model for diesel surrogate for Engine 
Combustion Network (ECN) (23% m-xylene / 77% n-dodecane)

(by liquid volume)

CO formation is a good index of the reactivity of the mixture
Good predictions on the peak value, but shifted by 40K 
Reasonable agreement on the flame speed measurements

Flow reactor data: Natelson, Kurman, Johnson, Cernansky, and Miller, Combust. Sci. Tech. (2011)
Flame data: Ji, Moheet, Wang, Colket, Wang, Egolfopoulos, Combustion Meeting, 2011
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Mechanisms are available on LLNL website and by email

LLNL-PRES-427539

http://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion
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Collaborations
 Our major current industry collaboration is via the DOE working groups on HCCI 

and diesel engines 
• All results presented at Advanced Engine Combustion Working group meetings 

(Industry, National labs, U. of Wisc., U. of Mich.)
• Collaboration with John Dec at Sandia on HCCI engine experiments with 

gasoline 
• Collaboration with Sibendu Som at Argonne on diesel reacting sprays

 Second interaction is collaboration with many universities
• Prof. Sung’s group, U of Conn. on gasoline surrogates
• 2-methyl, 3-methyl and dimethyl alkanes:

− Prof. Oehlschlaeger at RPI, shock tube ignition at engine pressures 
− Prof. Egolfopoulos at USC flame speed, ignition and extinction
− Prof. Seshadri at UC San Diego: flame ignition and extinction
− Dr. Dagaut, CNRS, Orleans, France 

• Dr. Curran at Nat’l Univ. of Ireland on 2-methyl, 3-methyl heptane, n-propyl 
benzene and n-butyl benzene in RCM and shock tube

• Prof. Lu, U. of Conn. on mechanism reduction
 Participation in other working groups with industrial representation

• Fuels for Advanced Combustion Engines (FACE) Working group and AVFL-18 
(Surrogate fuels for kinetic modeling)

• Engine combustion network (ECN)
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Activities for Next Fiscal Year

 Develop detailed chemical kinetic models for: 
• larger alkyl aromatics

• larger n-alkanes (above C16)(important to get end of distillation 
curve)

(both coordinated with CRC AVFL-18, “Surrogate fuels for kinetic 
modeling”)

 Modeling of engine combustion with reduced models for diesel 
surrogate fuels for the Engine Combustion Network

 Gasoline surrogate work with Prof. Sung (UConn) for RCM ignition 
and Egolfopoulos (USC) for flame speeds
• Look at the effect of EGR
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Summary
 Approach to research

• Continue development of surrogate fuel mechanisms to improve 
engine models for HCCI and diesel engines

 Technical accomplishments:
• We validated our 3-methyl, 2-5-dimethyl alkane, and alkylated 

aromatics mechanisms by comparison to experimental data at 
engine-like pressures and temperatures

 Collaborations/Interactions
• Collaboration through AEC working group and FACE working 

group with industry.  Many collaborators from national labs and 
universities

 Plans for Next Fiscal Year:
• Larger alkyl aromatics:
• Reduced models for engine combustion network (ECN)
• Validate gasoline surrogate mechanism with experiments 

including EGR


