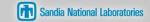


Automotive HCCI Engine Research

Richard Steeper
Sandia National Laboratories


2013 DOE Vehicle Technologies Annual Merit Review Arlington, VA
May 14, 2013

Program Manager: Gurpreet Singh DOE Office of Vehicle Technologies

Project ID: ACE006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project provides fundamental research supporting DOE/industry advanced engine development projects.
- Project directions and continuation are evaluated annually.

Budget

- Project funded by DOE/VT
- FY12 funding: \$680k
- FY13 funding: \$670k

Barriers identified in VT Multi-Year Program Plan

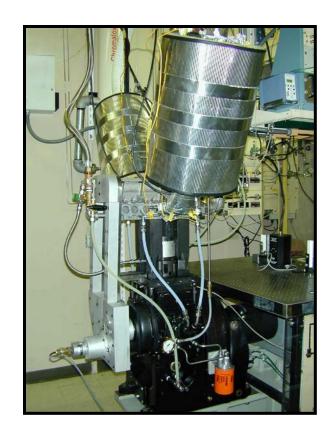
- Inadequate fundamental knowledge of engine combustion:
 - -Fuel injection, evaporation, and mixing;
 - Heat transfer and thermal stratification:
 - Ignition, low-temperature combustion, and emissions formation.
- Target goals for Advanced Combustion R&D (2015):
 - -25% Gasoline fuel economy improvement;
 - -Achieve Tier II, Bin 2 emissions with < 1% thermal eff. penalty.

Partners

- Project lead: Richard Steeper, Sandia
- Industry:
 - -GM & Ford: technical guidance
 - −15 Industry partners in DOE Working Group.
- University/National Lab:
 - Oak Ridge National Lab
 - Joint experiments on NVO fueling
 - -Lawrence Livermore National Lab:
 - Chemical analysis, chemical kinetics models
 - −6 National labs and 5 universities in DOE Working Group.

Relevance: Objectives and Milestones

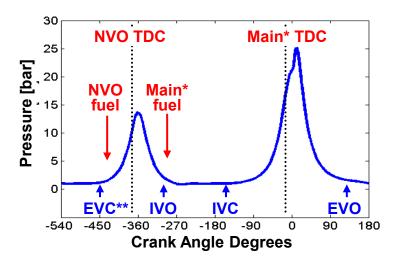
»Overall objective:


Expand our fundamental understanding of low-temperature combustion (LTC) processes needed to achieve clean and fuel-efficient automotive HCCI engines.

»Specific objectives:

- Characterize negative valve overlap (NVO) strategy for control of HCCI combustion under low-load conditions.
 - o Milestone: Perform engine experiments to identify chemical effects of NVO fueling on main combustion phasing.
 - o Milestone: Perform seeding experiments to quantify combustion enhancement due to specific NVO product species.
- Apply computer models to understand and guide our automotive HCCI experiments.
 - o Milestone: Apply Chemkin-Pro piston/cylinder model of main combustion to clarify NVO enhancement chemistry.

- »Perform <u>experiments</u> in an optical engine equipped and configured for automotive HCCI combustion strategies.
- »Develop and apply <u>diagnostics</u> to acquire in-cylinder measurements of fundamental physical processes.
- »Apply suite of <u>computer models</u> to guide and interpret engine experiments.
- »Leverage <u>knowledge gained</u> through technical exchange with DOE Vehicle Technologies program participants.



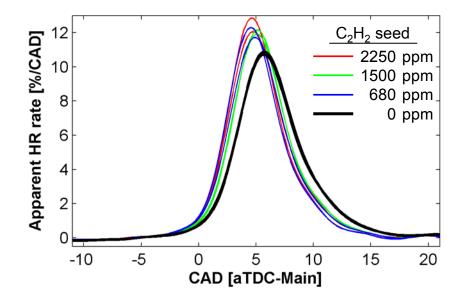
Technical accomplishments

»Background – Gasoline HCCI-NVO research:

- NVO strategy is of current interest for SI mixed-mode engines:
 - The engines produce high specific output while in SI stoichiometric mode;
 - At low load, NVO enables HCCI combustion, thereby gaining efficiency and emissions advantages.
- Overall advantages have been demonstrated, but chemical and physical details are poorly understood.
- Determining those details will allow efficiency gains to be optimized over the widest range of conditions possible.

»FY13 accomplishments are divided into four topics:

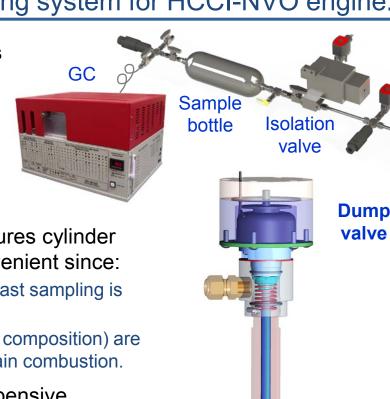
- Completion of acetylene seeding study.
- Design and development of a gas sampling system for research engine.
- Deployment of sampling system to probe chemistry of NVO-fueled operation.
- Application of models to expand understanding of NVO reactions.


^{*} Main is used throughout to distinguish the Main versus NVO portions of cycle.

^{**} EVC, IVO, etc.: Exhaust/Intake Valve Closing/Opening.

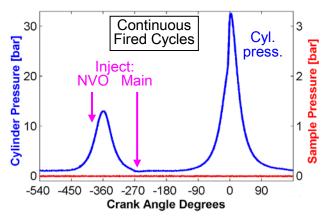
Technical accomplishments: Completion of acetylene seeding project.

- »Project presented in detail at last merit review.
- »Final analysis completed Fall 2012.
- »Results published/presented at SAE Malmo meeting.
- »Observed combustion enhancement due to acetylene is relevant to our newer projects and will be referenced in this presentation.


Technical accomplishments: Implemented cylinder gas sampling system for HCCI-NVO engine.

- »Previously, we have applied multiple techniques to probe engine combustion:
 - Laser-induced fluorescence, laser-absorption, high-speed imaging, seeding experiments.
 - Cylinder sampling is a natural complement:
 - o Done rarely and typically limited to micro-sampling.
 - o If done well, can provide desired details of NVO chemistry.
- »We designed a cylinder-dump system that captures cylinder contents during main compression. This is convenient since:
 - Any NVO reactions are quenched during intake, so fast sampling is unnecessary.
 - NVO species are diluted, but details of this mix (IVC composition) are desired for analyzing chemical effects of NVO on main combustion.

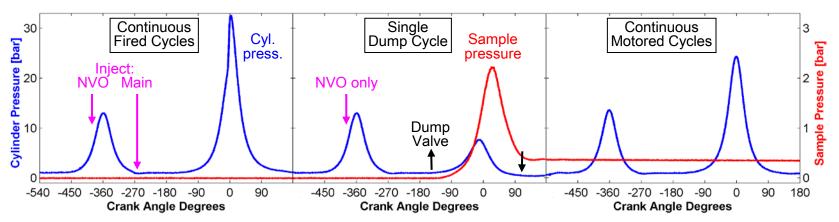
Technical accomplishments: Implemented cylinder gas sampling system for HCCI-NVO engine.


- »Previously, we have applied multiple techniques to probe engine combustion:
 - Laser-induced fluorescence, laser-absorption, high-speed imaging, seeding experiments.
 - Cylinder sampling is a natural complement:
 - o Done rarely and typically limited to micro-sampling.
 - o If done well, can provide desired details of NVO chemistry.
- »We designed a cylinder-dump system that captures cylinder contents during main compression. This is convenient since:
 - Any NVO reactions are quenched during intake, so fast sampling is unnecessary.
 - NVO species are diluted, but details of this mix (IVC composition) are desired for analyzing chemical effects of NVO on main combustion.
- »Completed system is relatively simple and inexpensive.
 - Dump valve:
 - o Custom valve, but stock spark-plug threads and stock spring assembly.
 - o Driven by low-voltage, commercial solenoid;
 - Gas manifold:
 - o Heated tubing and hardware connects dump valve to sample bottle and GC.
 - Gas chromatograph (GC):
 - Twin detectors (FID/TCD*) and columns.

^{*} FID/TCD: Flame Ionization and Thermal Conductivity detectors

Verified performance of dump valve during fired NVO operation.

»Above pressure record illustrates the sequence of cycles used for sampling:


- Once steady firing is established, we perform the single-cycle sample by cutting main fuel inject and opening dump valve.
- Pressure in engine cylinder drops during dump cycle and pressure in collection manifold spikes.

»System collects significant fraction of cylinder gas contents at IVC:

- 150-300 ml per dump event (i.e., quarter to half the contents).
- Sample bottle accumulates multiple dumps, assuring a cycle-averaged composition.

Verified performance of dump valve during fired NVO operation.

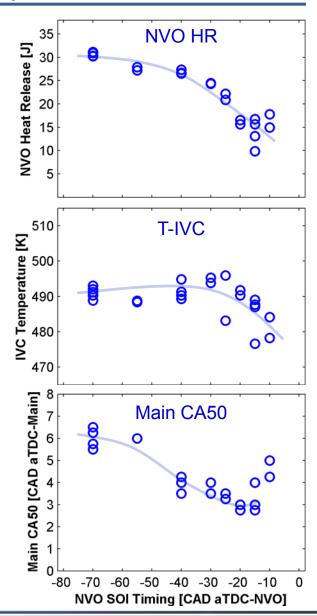
»Above pressure record illustrates the sequence of cycles used for sampling:

- Once steady firing is established, we perform the single-cycle sample by cutting main fuel inject and opening dump valve.
- Pressure in engine cylinder drops during dump cycle and pressure in collection manifold spikes.

»System collects significant fraction of cylinder gas contents at IVC:

- 150-300 ml per dump event (i.e., quarter to half the contents).
- Sample bottle accumulates multiple dumps, assuring a cycle-averaged composition.

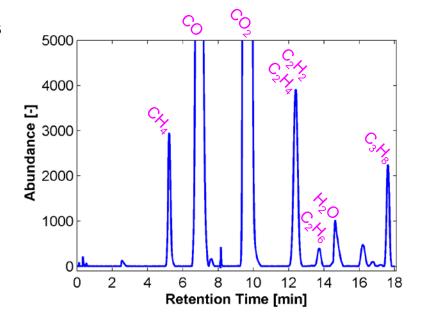
Technical accomplishments: Series of NVO sampling experiments completed.


- »Experiments designed to measure effects of NVO fueling as injection timing is varied (SOI sweep):
 - Results show strong trends in both engine performance and sample composition.
- »Plots summarize engine performance as SOI is retarded:
 - Heat release during NVO drops steadily as available reaction time decreases and piston wetting increases;
 - Temperature at IVC falls off as SOI approaches TDC;
 - Despite both of these effects, which should act to retard main combustion, location of 50% burn (CA50) primarily advances.

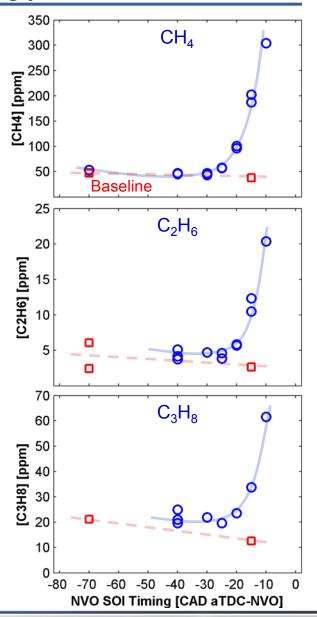
»Results reinforce conclusions from past experiments:

- Observed advance of CA50 with SOI retard suggests a chemical rather than thermal effect of late NVO fueling.
- Cylinder sampling is meant to clarify that trend...

Low-load operating conditions:


- · All-metal engine
- NVO: 150 CAD; RGF ~ 50%
- T_{INTAKE} = 120 °C
- Split inject: 1.2 + 8.4 mg iso-octane; ϕ = 0.6
- IMEP = 190 kPa; COV < 3%

Speciation of NVO products performed using multiple GCs.


- »We calibrated our GC/FID to speciate fixed gases and small hydrocarbons.
 - Repeated chromatograms were run following each experiment.
 - Measurement repeatability is better than ±10% for all but weakest peaks.
 - Trends are summarized on next slide.
- »Additionally, samples were analyzed at LLNL in collaboration with Lee Davisson:
 - GC/mass spectrometry used to extend the list of identified species, including:
 - o 2,2,4-Trimethylpentane (parent fuel),
 - o Formaldehyde and acetaldehyde,
 - o Propene and 2-methylpropene.

NVO product composition correlates strongly with SOI.

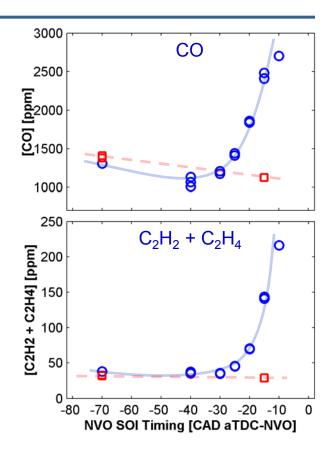
- »Baseline composition for comparing with NVO products obtained by modifying the dump cycle:
 - By suppressing both NVO and main fuel injections (instead of just main), baseline represents species carried over from the previous main combustion.
- »For early-to-mid SOI timing, NVO production of small alkanes is minimal, adding little to the baseline.
- »However, for NVO injections later than 30 degrees bTDC, there is a distinct spike in production.
- »This rise in composition adds to our list of observed trends associated with late NVO injection:
 - Trends in engine performance data,
 - Trends in laser-based measurements of CO,
 - Observations of piston wetting and pool fires.

Other NVO product species of interest.

»Carbon monoxide:

- CO (and C₂H₂) profiles mirror trends of alkanes.
- Prior seeding experiments determined that increased [CO] at IVC has little influence on main combustion phasing. But CO data are needed as a metric of reaction extent during NVO.
- Further, GC data show excellent agreement with prior incylinder measurements of CO made using a laser-absorption diagnostic.*

»Acetylene:


- Past experiments determined that 680 ppm C₂H₂ seeded into the intake enhances main ignition.**
- While our sampling experiments do not show [C₂H₂] as high as that, we still see a correlation of increasing C₂H₂ production and advancing CA50 with late NVO fueling.

»Formaldehyde:

Data limited, but [CH₂O] decreases for late NVO fueling.

»Significance of sampling experiments:

- Our SOI sweep data contribute to evidence of chemical effects of late NVO fueling on main combustion phasing;
- Data can assist the tuning of NVO reaction models;
- Details of composition at IVC facilitate modeling main combustion...

^{*} SAE Int. J. Engines, doi:10.4271/2010-01-2254; ** SAE Int. J. Engines, doi:10.4271/2012-01-1574

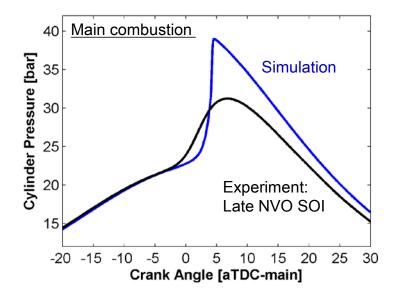
Technical accomplishments: Model development and application.

»We employ multiple engine models to guide and interpret experiments:

- In-house cycle-temperature analysis program.
- Chemkin Pro piston/cylinder reactor model.
- GT Power engine system simulation.
- KIVA CFD/kinetics model of optical engine created by LLNL and University Of Wisconsin.

»Accomplishments this year include:

- Adapting our cycle-temperature program to estimate engine parameters for cylinder sampling experiments and modeling.
- Applying Chemkin model to simulate enhancement of main combustion by NVO products...


Chemkin simulations make use of cylinder sampling data.

»Chemkin simulation setup:

- Single-zone piston/cylinder model of IVC to EVO.
- LLNL detailed iso-octane mechanism.
- Initial composition (IVC) based on sampling results.

»Single-zone model is simplistic, but results prove useful:

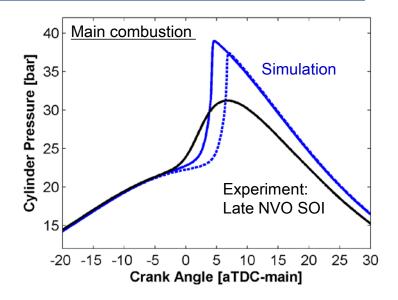
- Late-injection experiment shown along with simulation.
- Temperature offset (55 K) is needed to match CA50s.
- Initial composition of simulation = major species plus the measured trace species shown in table.

Sampling experiment trace species:

- C₂H₂ 142 ppm
- CH₂O 122 ppm
- CH₄ 195 ppm
- C₂H₆ 10 ppm
- C₃H₈ 34 ppm

Chemkin simulations make use of cylinder sampling data.

»Chemkin simulation setup:


- Single-zone piston/cylinder model of IVC to EVO.
- LLNL detailed iso-octane mechanism.
- Initial composition (IVC) based on sampling results.

»Single-zone model is simplistic, but results prove useful:

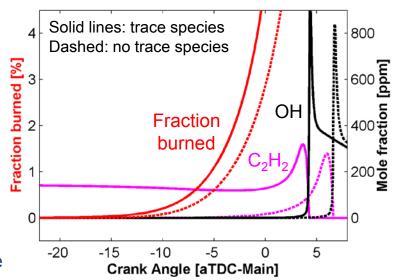
- Late-injection experiment shown along with simulation.
- Temperature offset (55 K) is needed to match CA50s.
- Initial composition of simulation = major species plus the measured trace species shown in table.

»Adding second simulation enables an assessment of effect of trace species on CA50:

- Dashed line represents simulation using baseline initial composition, i.e. with none of the trace species.
- CA50 is significantly retarded, indicating that trace species are responsible for combustion enhancement.
- Further simulations reveal that C₂H₂ is the dominant species advancing CA50, with CH₂O showing a significant but reduced effect.

Sampling experiment trace species:

- C₂H₂ 142 ppm
- CH₂O 122 ppm
- CH₄ 195 ppm
- C₂H₆ 10 ppm
- C₃H₈ 34 ppm


Simulations add to evidence of C₂H₂ combustion enhancement.

»Species profiles are displayed for the same pair of simulations.

- The two OH profiles, which mark high-temp. reactions, quantify the phasing advance for late NVO injection.
- Comparing fraction-burned and C₂H₂ curves indicates that the initial rise of the fraction-burned curve coincides with early consumption of C₂H₂ – further evidence of ignition enhancement.

»Significance of modeling results:

- Chemkin predicts significant chemical effects of acetylene on main combustion in agreement with experiment.
- These results increase confidence that the model can identify other reactive species of interest, contributing to knowledge of NVO chemistry.
- Using a single-zone model allows simulation of homogeneous main combustion. Progressing to a multi-zone model will enable simulation of NVO reactions by capturing the inhomogeneous rich combustion associated with late injection.

Collaborations

»National Lab partners:

- Oak Ridge National Lab:
 - We both are conducting NVO sampling experiments:
 - · Oak Ridge using a custom 6-stroke cycle, and
 - Sandia using the cylinder-dump technology.
 - o We are collaborating on areas of overlap.
- Lawrence Livermore National Lab:
 - o Currently providing chemical analysis expertise for engine sampling experiments.
 - o Ongoing development and support for chemical kinetics models.
 - o Development of KIVA model of our optical engine (with University of Wisconsin).

»Automotive OEM partners:

- <u>GM Research</u>: Extensive interactions include regularly scheduled teleconferences, exchange of technical results, hardware support, and active feedback on HCCI research directions.
- Ford Research: On-going interactions on topics of mutual interest.

»DOE Working Group partners:

Research results are shared with DOE's <u>Advanced Engine Combustion</u> and <u>University HCCI Working Groups</u> that meet semi-annually.

Future Work

»Remainder of FY13

- Extend the range of operating conditions for NVO sampling experiments. Complete analysis and modeling. Assimilate results from parallel sampling experiments at ORNL.
- Initiate an investigation of advanced ignition technologies:
 - o Determine the evolving ignition demands of lean- and dilute-combustion engines.
 - o Identify innovative technologies that address these demands including cool plasma, microwave, laser, and spark-assisted compression ignition.

»FY14:

- Incorporate new ignition technologies into experiments focused on improving control of dilute and low-temperature combustion.
 - o Probe fundamental ignition processes for selected technologies.
 - o Apply technology to enhance HCCI-NVO and other combustion strategies.

»Our current work focuses on achieving combustion control using NVO. The strategy facilitates efficient and clean HCCI combustion for low-load operation in mixed-mode (SI-HCCI) engines.

»Progress this year includes:

- Completed study characterizing combustion enhancement effects of acetylene seeding.
- Fabricated a cylinder-dump sampling system to extract cylinder contents following NVO.
- Conducted sampling experiments using a sweep of NVO injection timings. We found that:
 - Concentrations of small hydrocarbons, including acetylene/ethylene, increase rapidly as NVO SOI approaches TDC.
 - o Observations add to evidence from multiple earlier experiments that products from late NVO fueling can chemically enhance main combustion.
 - o Chemkin simulations support the theory that acetylene is an important contributor to that enhancement.
- »Clarifying the chemistry of NVO reactions enables optimization of NVO technology, thereby enhancing its contributions to engine efficiency and low emissions.