Analytical Modeling and Simulation of Thermoelectric Devices

Jordan Chase, Dr. Jean-Pierre Fleurial, Dr. Thierry Calliat, Samad Firdosy, Dr. Vilapanur Ravi, Bill Nesmith

JET PROPULSION LABORATORY
PASADENA, CA

Lina Maricic, Keith van der Walde

ATA ANAYSIS SAN DIEGO, CA

Thermoelectric Applications Workshop III

Department of Energy Baltimore, MD March 19th-22nd 2012

Outline



- System level methodology
 - Top-down method of design
- Device level methodology
 - Bottom-up method of simulation
- TE Performance Simulation
 - Defining Operating Conditions
- Thermomechanical Device Simulation
 - Optimizing the couple structure
- System Level Simulation
 - Feedback for integrating simulation tools

System Level Methodology

From Heat Source to Exhaust

Specific Power/Voltage
Bus/Lifetime/Duty Cycle or Steady

State

Thermal Circuit Model: ChemCAD + CFD

Heat Delivery Requirements:

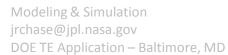
Heat Exchangers/Flow

Rates/Fluxes/Temperatures/Geomet

ry

Converter Requirements:

Power/Voltage/Thermomechanical


Integration

Thermoelectric
Performance Model:
Analytical/Empirical

Converter Geometry Specifications/Fill Factor/ Modularity/ Heat Concentration/

TE Material Selection

Device Level Methodology

Couple or array thereof

Generic TE Mod Design

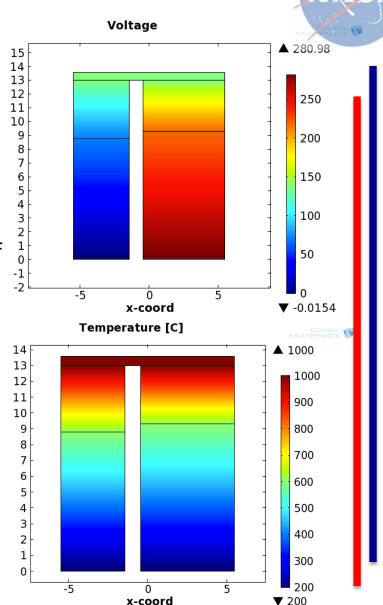
Device Requirements:

Demonstrated Efficiency/Life-Time

Material Definition (previous):

Thermal/Mechanical Stability

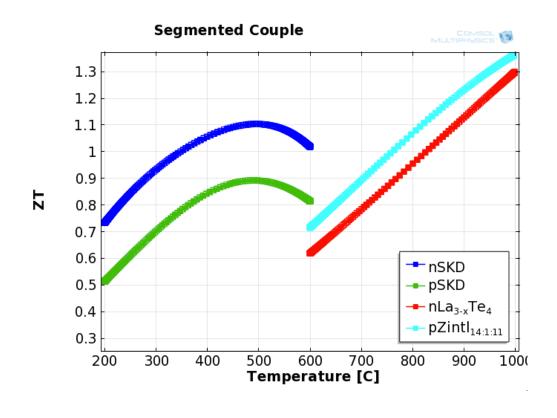
TE Mod / Semi-Empirical Tools / **COMSOL Transport Model COMSOL** Thermomechanical Simulation


Heat Delivery Requirements: Heat Flux/Leg Footprint/ Packaging or **Encapsulation Requirements**

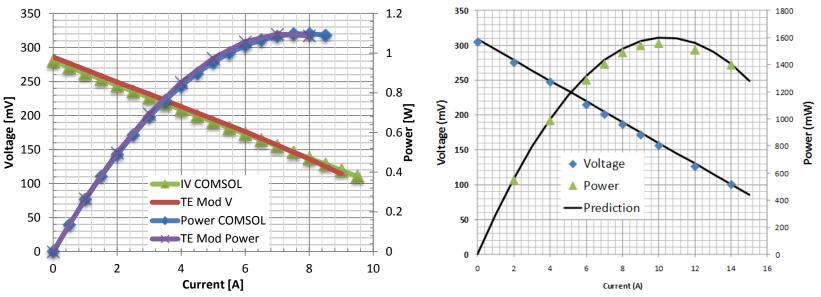
Device Geometry Specifications/ Segmentation/Interface Temperatures

Performance Model Simulation

- TE Mod used as empirical tool to roughly optimize device efficiency and geometry based on segment temperature inputs.
- Several geometric options are catalogued in Excel for selection.
- COMSOL solves for exact, analytical solution of temperature dependent transport equations to provide TE performance conditions: heat flux and open-circuit voltage.
- V₀ and integrated device resistance in COMSOL used for Excel model of predicted Power Curve
- This provides data for comparison to what is actual measured directly from the device once on test

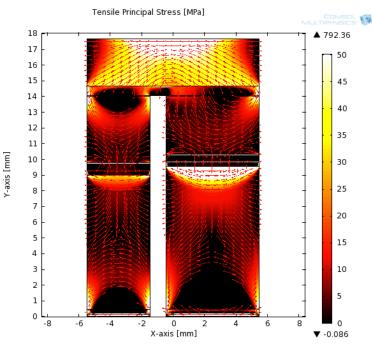


Performance Model & Simulation



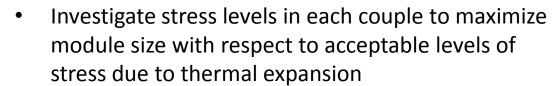
- Tools are highly flexible for use against broad geometries and degrees of system sophistication
- Performance simulation initially performed on TE + electrodes - later compared to final structure

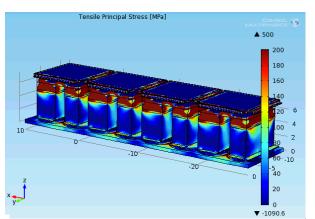
Comparison with Measurements

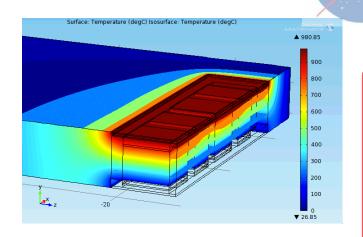


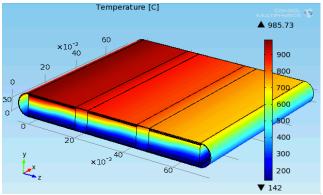
 Comprehensive library of temperature dependent thermal and mechanical properties for thermoelectric, non-TE engineering, and refractory materials/alloys.

Thermomechanical Device Simulation

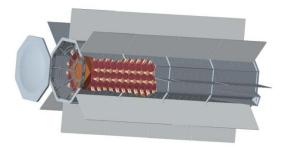

- Temperature Field / Heat flux from performance model is applied to a structural mechanics model to asses stress state in operation of a single couple at each interface.
- Metallization layers, electrodes, insulators, and other mechanical features are included to study robustness realistically.
- Residual stresses from temperature and pressure at each bonding step are included.
- Model is used as parametric tool to show effects of inter-layer thicknesses:
 - Stress increase or relief
 - Voltage drop from additional resistances in series
 - Reduced ΔT across TE segments



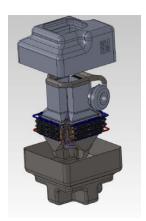



Thermomechanical Converter Simulation

- Thermal gradient conditions are later applied to a converter level / module model:
 - Couple-couple interactions
 - Thermal losses and shunting define insulation requirements
 - Provide prediction of macroscopic heat flux for feedback to system models


As the true operating conditions / performance of the converter is understood – effects on the balance of plant come into focus.

Ongoing Work


- Coupling of mechanical simulation with equation-based thermoelectric performance to create a more complete system simulation model
- Rapid feedback simulation tools for coupling heat exchangers with TE devices/modules for understanding transients and cycle-time.

kW-class Fission Reactor Power System

Auxiliary and waste heat recovery power systems

Summary

- A high-level strategy for use of semi-empirical modeling and numerical simulation tools has been outlined
- A top-down approach is typically employed at JPL in order to define operating conditions for the TE device/converter design
- Simulation is then used on a bottom up approach to optimize couple structure and fabrication for implementation in a specific system.
- Iteration and feedback to the system design is then required to optimize on the larger scale – this can be accomplished through coupling of outputs from focused modeling and simulation.

Acknowledgements

Thierry Caillat, Jean-Piere Fleurial

Dr. V. Ravi, Samad Firdosy – Vast Library of Temperature Dependent Properties

M. Jaegle, Fraunhofer-Institute for Physical Measurement Techniques – Multiphysics Simulation of Thermoelectric Systems

Jeff Snyder – Key contributor to the development of TE Mod

Work funded under NASA, US Army

Thank you.

