

Analysis of Electric Vehicle Battery Performance Targets

Jeremy Neubauer National Renewable Energy Laboratory May 15, 2013

Project #ES174

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

BOM Timeline

Project Start Date:	2010
Project End Date:	2015
Percent Complete:	60%

BOM Budget*

Total Project Funding:

DOE Share:\$600,000Contractor Share:\$0

Funding Received in FY12:

\$200,000

Funding for FY13:

\$200,000 (anticipated)

Barriers

- Battery Cost
- Battery Performance

Partners

- United States Advanced Battery Consortium (USABC)
- Chrysler
- Ford
- GM
- NREL Vehicle System Analysis (VSA) Team

* NOTE: Budget and timeline are for the full scope of the Battery Ownership Model (BOM) project. The BEV battery performance target work is a subset of this effort.

Relevance: BOM

- NREL's Battery Ownership Model overall project objectives:
 - Quantify the total cost of ownership and fuel consumption of electric vehicle technologies under traditional and advanced operational strategies.
 - Identify optimal vehicle use strategies to meet DOE light duty vehicle goals.
- Specific Battery Ownership Model objectives in FY13:
 - Quantify impact of driver aggression, climate, HVAC, and battery thermal management on electric vehicle performance and costs.
 - Compare advanced range extension technologies for battery electric vehicles.
 - Provide technical analysis to support updating USABC and DOE battery electric vehicle (BEV) battery technical targets.

Relevance: BEV Technology Targets

- Battery technology targets are necessary to drive development towards commercially successful battery electric vehicles (BEVs) under DOE's EV Everywhere Grand Challenge and USABC projects
- The last USABC BEV battery technology target (right) was created in the early 90's, and its calculation is poorly documented.
- **NREL's Role:** Provide technical analysis support to USABC and DOE for updating BEV battery technical targets.

Parameter(Units) of fully burdened system	Minimum Goals for Long Term Commercialization	Long Term Goal
Power Density(W/L)	460	600
Specific Power – Discharge, 80% DOD/30 sec(W/kg)	300	400
Specific Power - Regen, 20% DOD/10 secW/kg	150	200
Energy Density - C/3 Discharge Rate(Wh/L)	230	300
Specific Energy - C/3 Discharge Rate(Wh/kg)	150	200
Specific Power/Specific Energy Ratio	2:1	2:1
Total Pack Size(kWh)	40	40
Life(Years)	10	10
Cycle Life - 80% DOD (Cycles)	1,000	1,000
Power & Capacity Degradation(% of rated spec)	20	20
Selling Price - 25,000 units @ 40 kWh(\$/kWh)	<150	100
Operating Environment(°C)	-40 to +50	-40 to +85
	20% Performance Loss (10% Desired)	
Normal Recharge Time	6 hours (4 hours Desired)	3 to 6 hours
High Rate Charge	20-70% SOC in <30 minutes @ 150W/kg (<20min @ 270W/kg	40-80% SOC in15 minutes
Continuous discharge in 1 hour - No Failure(% of rated energy capacity)	Desired) 75	75

Relevance: NREL's History of Target Analysis

- NREL has provided technical support and analysis to USABC and DOE for setting battery technology targets for multiple drivetrain architectures, including:
 - 42 V Micro Hybrids
 - Fuel Cell Hybrid Electric Vehicles (HEVs)
 - 12V Start-Stop systems
 - Plug-in Hybrid Electric Vehicles (PHEVs)
 - Lower Energy, Energy Storage Systems (LEESS)

Milestones

Month / Year	Milestone or Go/No-Go Decision	Description	Status
3/2013	Milestone	Complete study on driver aggression, climate, HVAC, and battery thermal management	Completed
9/2013	Milestone	Complete study on range extension technologies	On-track
9/2013	Milestone	Publish new BEV battery technology targets	On-track

Relevant to the analysis for BEV battery technical target setting being reported in this presentation

Approach: Overview for Tech Target Analysis

- After exploring multiple alternatives and considerable deliberation with the USABC BEV Battery workgroup and NREL System Analysis Team, we found the following approach to be the most justifiable:
 - Select a conventional vehicle (CV) to benchmark against
 - Select vehicle mass factor to set total BEV mass
 - Simulate vehicle to calculate efficiency (kWh/mi), required motor power, and required battery power
 - Calculate allowable battery mass using mass of motor, power electronics and glider (includes mass compounding effects)
 - Specify required range, then use vehicle efficiency and mass properties to compute required specific energy and energy density
 - Compute battery cost that provides a simple 5 year payback versus a CV

Approach: Benchmark Vehicles

- OEM and DOE workgroup partners provided technical data for vehicle platforms to consider
 - Two timeframes: 2015 & 2020
 - Three technology forecasts: Optimistic, Average, & Pessimistic
 - Obtained many important values for this analysis
 - Platform aerodynamics
 - CV mass and efficiency (miles per gallon)
 - BEV glider mass
 - Mass and cost coefficients for BEV motor and power electronics

Approach: Vehicle Simulation

• Provides vehicle efficiency and required motor power as a function of vehicle platform and mass

Approach: Battery Mass and Volume

- Parameters supplied from OEM and DOE workgroup partners and NREL VSA
 - Electric motor and power electronics mass coefficient
 - CV vehicle and drivetrain mass
 - BEV glider mass
 - Allowable battery volume

Parameters from other sources

- Mass compounding factor (0.57*): scales glider mass with increases in battery, electric motor, and/or power electronics mass
- Allowable Battery Mass Calculation:

$$m_{v} = m_{mpcs} + m_{b} + m_{g}$$

$$m_{g} = m_{g,0} + 0.57 (m_{mpcs} + m_{b} - m_{d,0})$$

$$m_{b} = (m_{v} - 1.57 m_{mpcs} - m_{g,0} + 0.57 m_{d,0}) / 1.57$$

 m_v = total mass of vehicle m_{mpcs} = mass of motor and power electronics m_b = mass of battery m_g = mass of BEV glider $m_{g,0}$ = mass of CV glider $m_{d,0}$ = mass of CV drivetrain

*From D. Malen and K Reddy, "Preliminary Vehicle Mass Estimation Using Empirical Subsystem Influence Coefficients," prepared for the FGCP-Mass Compounding Project Team of the Auto/Steel Partnership, May 2007.

Approach: Cost Calculations

$$MSRP_{CV} + S_{fuel} = MSRP_{BEV}$$

 S_{fuel} = 5 yr simple fuel savings MSRP_{BEV} = price of BEV

$$MSRP_{BEV} = G + m \times \left(C_{mpcs} \times P_{motor} + C_{batt} \times E_{batt}\right)$$

G = price of glider m = mfg-to-retail markup factor = 1.5**** $C_{mpcs} = cost of motor and power electronics = $8/kW*****$ $P_{motor} = motor power$ $C_{batt} = allowable battery cost$ $E_{batt} = battery energy$

$$MSRP_{CV} = G + m \times \left(C_{CV1} + C_{CV2} \times P_{engine}\right)$$

 $\begin{array}{l} G = price \ of \ glider \\ m = mfg-to-retail \ markup \ factor = 1.5^{****} \\ C_{CV1} = non-scaling \ engine \ cost = \$531^{*} \\ C_{CV2} = scaling \ engine \ cost = \$14.5/kW^{*} \\ P_{engine} = engine \ power \end{array}$

Note: we assume the glider cost for the CV and BEV to be equivalent

$$S_{fuel} = VMT_5 \times (P_{gas} / mpg - P_{elec} \times kpm)$$

 $VMT_5 = 5$ year vehicle miles travelled= 60,000 P_{gas} = average price of gas = \$5.32/gal ** mpg = miles per gallon of CV^{***} P_{elec} = average price of electricity = \$0.117/kWh ** kpm = kWh per mile of BEV

- Identifying cost is challenging, as there are many approaches – some of which are rather complex.
- We propose a simple approach that sets the upfront cost of the BEV equal to the upfront cost of a comparable CV plus five years of (undiscounted) fuel savings.

* Results of separate NREL study ** Average of prices reported in 2012 dollars from EIA's 2011 high oil price scenario from 2020 to 2025 *** Data from OEM and DOE workgroup partners **** Reference available upon request ***** DOE cost target for 2020 cost of automotive motors and power electronics

Progress: Discharge Power Requirements

Example: 2020 Mid-Size Sedan, 1.2 times the mass of a comparable CV

• Required discharge power is a strong function of duration, highly sensitive to drive cycle

*40 minute selection of sustained high-speed climbing

Progress: Charge Power Requirements

Example: 2020 Mid-Size Sedan, 1.2 times the mass of a comparable CV

• Regen requirements are also a function of duration, but high rate charging requirements (i.e. fast charge) can negate the need to consider regen in detail.

Progress: End-of-Life Pack Specific Energy

- Mid-size sedan offers least aggressive target for a given range and vehicle mass factor
 - Compact car platform has a small battery mass budget for a given VMF
 - Small SUV requires a lot of battery due to mass and aerodynamics

Progress: End-of-Life Pack Energy Density

• Small-SUV offers least aggressive target for a given range and vehicle mass factor

 Allowable volume for each vehicle (125 L for compact car, 140 L for mid-size sedan, and 175 L for small SUV) needs confirmation though

Progress: Pack Cost

- Mid-size sedan offers least aggressive target for a given range and vehicle mass factor
 - Fuel economy of compact car is high, lowering the potential savings of a BEV
 - Small SUV requires a lot of battery

Progress: Translating Requirements

- All discussion of battery energy is with respect to AVAILABLE ENERGY at END-OF-LIFE. As such, our results are time, environment, and chemistry agnostic. Considerations for SOC windows less than 100%, thru-life degradation, temperature sensitivity, etc. must be made separately.
- All calculations are for the complete battery PACK, encompassing cells, structure, battery management system, thermal systems, etc. Results must be scaled separately to acquire cell-level requirements/test conditions.
- In context of BEGINNING-OF-LIFE CELL performance, these considerations can double the aggressiveness of end-of-life pack level values reported here. For example:
 - A pack level end-of-life specific energy requirement of 200 Wh/kg may require cells with a beginning-of-life specific energy of 400 Wh/kg
 - A pack level cost requirement of \$140/Wh may require a cell that costs \$70/Wh

Future FY13 Work: Down Select for Targets

- Analyze vehicle utility factor as a function of range
- Workgroup selection of vehicle platform, range, and other properties to be used for target calculation
- Obtained feed back from stakeholders (USABC MC, DOE VTP, etc,)
- Calculation of target values based on these selections
- Journal publication of methods and results

Summary

- Worked closely with stakeholders to define approach for updating battery targets for the USABC and DOE EV Everywhere Grand Challenge battery R&D
- Provided technical analysis and support to USABC and DOE for updating BEV battery technical targets within the scope of NREL's broader Battery Ownership Model project.
 - Developed a framework to calculate BEV battery technology target
 - Calculated targets as a function of vehicle platform, mass, range, and other parameters
 - Currently reviewing results with the USABC workgroup and DOE en route to finalizing targets and publishing our findings