

# Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

Sibendu Som

Douglas E. Longman Argonne National Laboratory

15<sup>th</sup> May, 2012

Team Leader: Gurpreet Singh

**Project ID # ACE075** 

This presentation does not contain any proprietary, confidential, or otherwise restricted information



#### Overview

#### **Timeline**

Past Funding: FY 09, FY 10 Project start: April 1<sup>st</sup> 2012

#### **Partners**

**Argonne National Laboratory**Chemical Science and Engineering
Mathematics and Computing Science

Convergent Science Inc.

Lawrence Livermore National Laboratory
Caterpillar Inc.

Sandia National Laboratory (Engine
Combustion Network [ECN])
University of Connecticut
Cummins (Pending)

#### **Barriers**

- ☐ "Inadequate understanding of stochastics of fuel injection"
- "Improving the predictive nature of spray and combustion models"
- "Incorporating more detailed chemical kinetics into fluid dynamics simulations"

#### **Budget**

FY 12: 350 K Starting April 1st 2012



# Objectives/Relevance - 1

- Development of dynamically-coupled nozzle flow and spray simulations through improvements in <u>Kelvin Helmholtz – Aerodynamic Cavitation</u> <u>Turbulence (KH-ACT) model</u>
- Extensive validation of the dynamically coupled KH-ACT model:
  - □ X-ray radiography data from Argonne National Laboratory in the near nozzle region
  - □ Optical constant volume data from Sandia National Laboratory through the Engine Combustion Network (ECN) under evaporating and combustion conditions
- Fuel spray breakup in the near nozzle region plays a central role in combustion and emission processes, and is governed by <a href="mailto:primary breakup">primary breakup</a> <a href="mailto:mechanism">mechanism</a> caused by:

Turbulend

Cavitation

Current spray models only account for aerodynamic breakup, hence, are not predictive in nature with changing fuel types and nozzle orifice geometries

Aerodynamic

# Objectives/Relevance - 2

- "Building a bridge" between fundamental chemical-kinetics (DOE Office of Science) and applied combustion research through computational combustion modeling of more realistic fuel surrogates
- Implementing and validating reduced mechanisms for diesel fuel surrogates against ECN data
  - □ n-dodecane
  - □ n-dodecane + m-xylene
- N-heptane is used as a diesel fuel surrogate. Not an ideal choice due to its high-volatility and low carbon content
- N-dodecane + m-xylene is a suitable diesel surrogate since it better mimics diesel Cetane characteristics
- Detailed chemical kinetic models are large, mechanism reduction is necessary
  - Computational-time scales with  $N^2 \sim N^3$  where 'N' is number of species

# Objectives/Relevance - 3

- <u>High Performance Computing (HPC):</u>
  - □ Demonstrate scalability up to 1000 processors
  - Demonstrate grid-independence of spray and combustion parameters
- Current state-of-the-art for engine simulations in OEMs involve up to 50 processors only
- DEMs prefer quick turn-around times for engine simulations which may not be possible as the resolution, spray, turbulence, and chemical kinetic models become more detailed
- > This is possible if scalable simulations are feasible by increasing the number of processors by a factor of 5

# Milestones, FY 12

- <u>Task 1:</u> Dynamic coupling of injector nozzle and spray processes: Extension of KH-ACT model
  - □ Improving the predictive capability of KH-ACT primary breakup model (September 2012)
- <u>Task 2:</u> Develop a surrogate mechanism for diesel fuel for multi-dimensional CFD simulations
  - □ Updating the 103-species n-dodecane reduced mechanism (May 2012)
  - □ Validation and improvements in combustion modeling based on ECN data (August 2012)
- <u>Task 3:</u> Simulation of Internal combustion engines with HPC tools
  - ☐ Assess grid independence of spray and combustion parameters (June 2012)
  - □ Assess scalability of CONVERGE tool on (up to) 100-500 processors (July 2012)

# Integrated Modeling Approach

Influence of <u>fuel properties and nozzle orifice geometry</u> on nozzle flow, spray, and combustion characteristics!!



#### 6-hole production Injector



- Aerodynamics, Cavitation, Turbulence
- ☐ Detailed inner-nozzle flow modeling with realistic fuel properties
- Dynamic coupling of inner nozzle flow and spray simulations
- ☐ Spray Validation:

**X-ray radiography** data provides information in the near nozzle region

# Primary Breakup Model

#### KH-ACT (Kelvin-Helmholtz-Aerodynamics Cavitation Turbulence) Model\*

☐ Length and time scales are calculated



#### **Aerodynamically**

induced breakup:
Based on Kelvin-Helmholtz (KH)
and Rayleigh Taylor (RT)
instability



#### **Cavitation**

induced breakup:
Based on bubble
collapse and burst
times



#### **Turbulence**

induced breakup: Based on k-ε model

- Dominant ratio of length/time scale causes breakup
- ☐ Different combinations of length and time scales for ACT model will be tested (more information in back-up slides)

\*Som et al., SAE 2009-01-0838, Combustion and Flame 2010, Fuel 2010, Fuel 2011



# Detailed Chemical Mechanisms in Engine Simulations

Typical LLNL mechanism
~1000 species, ~10000
reactions
Ideal for <u>OD</u>, <u>1D</u> simulations



#### **Reduced mechanism**

~150 species, ~1000 reactions Ideal for <u>3D-CFD</u> simulations

Research on mechanism reduction techniques is funded by DOE office of Science at Chemistry group at Argonne, and University of Connecticut

#### **Our Approach:**

- Provide the mechanism reductionists with fuel surrogates of interest for the transportation sector
- Extensive validation against ECN spray-combustion and engine data
- Provide feedback on the performance of the reduced mechanism to the mechanism developers, based on 3D-CFD simulations

n-Dodecane Mechanism (from LLNL) 2115 species, 8157 reactions



**Reduced Mechanism** 

103 species, 370 reactions

- \* Z Luo, M Plomer, T Lu, M Maciaszek, S Som, DE Longman. *Energy and Fuels* (24) 2010
- \* T. Lu, M. Plomer, Z. Luo, S.M. Sarathy, W.J. Pitz, S. Som, D.E. Longman,. US Combustion meeting, 2011



# KH-ACT Model Validation against X-ray Data\*



## \*X-ray radiography Data: Ramirez et al., JEF 2009





- ☐ The spray loses half of its initial velocity within the first 6 mm
- ☐ Simulation capture the Gaussian mass distributions from x-ray data well
- Spray Dispersion accurately captured by only the KH-ACT model. KH model underpredicts spray spreading

# **Effect of Conicity on Inner Nozzle Flow**

| Geometrical           | Cylindrical | Conical |
|-----------------------|-------------|---------|
| Characteristics       | Nozzle      | Nozzle  |
| D <sub>in</sub> (μm)  | 169         | 169     |
| D <sub>out</sub> (μm) | 169         | 149     |
| K <sub>factor</sub>   | 0           | 2       |
| L/D                   | 4.2         | 4.7     |

$$K_{factor} = \left(\frac{D_{in} - D_{out}}{10}\right) \mu m$$







# KH-ACT model Accurately Predicting the Influence of Nozzle Geometry



#### F Payri, V Bermudez, R Payri, FJ Salvador: FUEL (2004)



- ☐ Penetration characteristics of cylindrical and conical nozzles predicted by KH-ACT model (only) are consistent with experimental trends observed by Payri et al.
- □ Cylindrical nozzle predicts fastest breakup. This is due to enhanced cavitation and turbulence thus: 1) SMD, 2) Spray penetration are lower

\*S Som, DE Longman, Al Ramirez, SK Aggarwal. FUEL 2011



# Combustion modeling with n-dodecane



#### **Experiments:**

(Conditions available in back-up slides)

#### **Simulation:**

Temperature contours plotted to capture ignition location and delay simulated using the 103 species n-dodecane reduced mechanism (cf. Slide 9)

Spray and Combustion modeling able to predict the liquid fuel distribution, ignition location, ignition time, flame shape, etc.

http://www.sandia.gov/ecn/

# Identify Appropriate Definitions for Ignition Delay and Flame Lift-off Length



- ☐ Differences are observed in predicted ignition delays and flame lift-off lengths based on definitions chosen
- ☐ Most relevant definitions for ignition delay and flame lift-off lengths identified.

  This will be proposed to the Engine Combustion Network



# Computational Cost & Scalability

Increasing the number of species results in rapid decrease in scalability and efficiency.

Our focus is on improving the load-balancing schemes to obtain better scalability.



Scalability per node =  $T_1/T_n$ Efficiency per node =  $T_1x100/nT_n$ n = Number of compute nodes  $T_1$  = Wall-clock time on 1 node  $T_n$  = Wall-clock time on n nodes Each node has 8 processors

| Mechanisms               | Wall-clock Time<br>(for node) |
|--------------------------|-------------------------------|
| ~40 species: n-heptane   | ~ 42 hours                    |
| ~100 species: n-dodecane | ~ 120 hours                   |



#### **Collaborations**

#### **Argonne National Laboratory**

**Engine and Emissions Group: (Provide data for model validation)** 

**Chemical Science and Engineering Group: (Mechanism development and reduction)** 

**Mathematics and Computing Science: (HPC resources)** 

**Convergent Science Inc. (Algorithm and code development in CONVERGE)** 

Sandia National Laboratory (Provide experimental data through the ECN)

Lawrence Livermore National Laboratory (Mechanism development)

**University of Connecticut (Mechanism Reduction)** 

**Cummins** (Provide experimental data, alpha testing) {Pending}

**Caterpillar Inc.** (Testing and implementation of HPC tools)



# **ECN Modeling Coordination**

University of Wisconsin (USA)

Sandia National Laboratory (USA)

Argonne National Laboratory (USA)

Cambridge University (UK)

J – Findhoven

TU – Eindhoven (Netherland)

IFP (France)

UNSW (Australia)

#### **Objectives**

- 1) Standardization of spray and combustion parameter definitions
- 2) Development of engine models
- 3) Assessing capabilities of different open source and commercial engine modeling codes

CMT (Spain)

Politecnico di Milano (Italy)

> KAIST (Korea)

Penn. State (USA)

Purdue
University (USA)

- ☐ Coordinated Spray A modeling session in ECN 1 (Ventura, May 2011): 9 groups
- ☐ Coordinating modeling sessions in ECN 2 (Heidelberg, September 2012): 12-15 groups expected

# **Proposed Future Work in FY13**

- Task 1: Dynamic coupling of injector nozzle and spray processes: Extension of KH-ACT model
  - □ Implement an improved nozzle flow model with moving needle capability
  - ☐ Implement and test a dynamic-coupling approach
  - □ Validation against x-ray radiography data
- <u>Task 2:</u> Develop a surrogate mechanism for diesel fuel for multi-dimensional CFD simulations Validation against ECN data
  - □ Further reduction and testing of the 103 species n-dodecane mechanism
  - □ Implement and test n-dodecane + m-xylene reduced mechanism for 3D combustion simulations
  - □ Capture the influence of ambient temperature and density variations on combustion characteristics such as ignition delay, flame lift-off length etc.
- <u>Task 3:</u> Simulation of Internal combustion engines with high-performance computing tools
  - □ Demonstrate grid independence for multi-cylinder simulations involving intake and exhaust ports
  - ☐ Assess scalability of CONVERGE tool on (up to) 1000 1500 processors



# **Summary**

#### **□** Objective

Development of predictive spray and combustion models aided by highperformance computing tools and robust validation

#### □ Approach

➤ Coupling expertise from DOE Office of Science on fundamental chemical kinetics and HPC resources for development of robust engine models

#### ☐ Technical Accomplishment

- KH-ACT model performs static coupling of nozzle flow and spray simulations
- n-dodecane reduced mechanism captures combustion characteristics well

#### Collaborations and coordination

- with industry, academia, and national laboratories in US
- > through ECN with researchers world-wide

#### ☐ Future Work - FY13

- Dynamic coupling of nozzle flow and spray
- Development of realistic diesel surrogate model
- Demonstrate scalability of engine models on 1000-1500 processors



# Technical Back-Up Slides

(Note: please include this "separator" slide if you are including back-up technical slides (maximum of five). These back-up technical slides will be available for your presentation and will be included in the DVD and Web PDF files released to the public.)

# **3D Spray-Combustion Modeling Set-up**

| Modeling Tool                       | CONVERGE                                                  |  |
|-------------------------------------|-----------------------------------------------------------|--|
| Dimensionality and type of grid     | 3D, structured with Adaptive Mesh Resolution              |  |
| Spatial discretization approach     | 2 <sup>nd</sup> order finite volume                       |  |
| Smallest and largest characteristic | Base grid size: 2mm                                       |  |
| grid size(s)                        | Finest grid size: 0.25mm                                  |  |
|                                     | Gradient based AMR on the velocity and temperature fields |  |
|                                     | Fixed embedding in the near nozzle region to ensure the   |  |
|                                     | finest grid sizes                                         |  |
| Total grid number                   | 550K-650K for 0.25mm – RANS simulations                   |  |
| Parallelizability                   | Good scalability up to 48 processors                      |  |

| Turbulence and scalar transport model(s) | RNG k-ε                                                                 |  |
|------------------------------------------|-------------------------------------------------------------------------|--|
| Spray models                             | Breakup: KH-RT with breakup length concept                              |  |
|                                          | Collision model: NTC, O'Rourke                                          |  |
|                                          | Coalescence model: Post Collision outcomes                              |  |
|                                          | Drag-law: Dynamic model                                                 |  |
| Time step                                | Variable based on spray, evaporation, combustion processes              |  |
| Turbulence-chemistry interactions model  | Direct Integration of detailed chemistry well-mixed (no sub-grid model) |  |
| Time discretization scheme               | PISO (Pressure Implicit with Splitting of Operators)                    |  |

<sup>\*</sup> Senecal et al., SAE 2007-01-0159; Som ,PhD. Thesis 2009

## Primary Breakup Model: KH-ACT Model

Characteristic time scale due to cavitation is assumed to be the smaller of bubble collapse time and bubble burst time:

$$\tau_{CAV} = \min(\tau_{Collapse} : \tau_{Burst})$$

Effective radius of an equivalent bubble from the nozzle calculated as:  $(L_{CAV})$ 

$$R_{CAV} = r_{hole} \sqrt{\left(1 - C_a\right)}$$

Length and time scale for turbulence induced breakup:

$$K(t) = \left\{ \frac{\left(K_0\right)^{C_{\varepsilon}}}{K_0 \left(1 + C_{\mu} - C_{\mu}C_{\varepsilon}\right) + \varepsilon_0 t \left(C_{\varepsilon} - 1\right)} \right\}^{\frac{1}{(1 - C_{\varepsilon})}} \qquad \varepsilon(t) = \varepsilon_0 \left\{ \frac{K(t)}{K_0} \right\}^{C_{\varepsilon}}$$

#### **Obtained from KH model**

$$\frac{L_{A}}{\tau_{A}} = \max \left\{ \frac{L_{KH}}{\tau_{KH}}; \frac{L_{CAV}}{\tau_{CAV}}; \frac{L_{T}(t)}{\tau_{T}(t)} \right\}$$

**Further information available\*:** 

- 1) S. Som, Ph.D thesis University of Illinois at Chicago, 2009
- 2) S. Som, et al. *Combustion and Flame* (157), 2010
- 3) S. Som, et al. Fuel (90), 2011

Due to breakup the radius of the parent droplet 'r' decreases continuously with time according to:

$$\frac{dr}{dt} = -C_{T,CAV} \frac{L_A}{\tau_A}$$
Model constant

 $K_0, \mathcal{E}_0, C_a$  are obtained from nozzle flow modeling

### 3D Simulations: Standard Definitions Used



Spray penetration @ 2 ms

# Sandia Image 22.3 mm

 $Y_{OH} = 5\% (Y_{OH})_{max}$ 

**Lift-off length** 



**Ignition delay**: Ignition is said to occur when T ≥ 2000 K in a particular cell. Usually, coincides with appearance of OH.

# Experimental Conditions: X-ray radiography data\*

| Parameter                      | Quantity                   |
|--------------------------------|----------------------------|
| Injection System               | Caterpillar HEUI 315B      |
| Number of Orifices             | 6                          |
| Orifice Diameter               | 169 μm<br>with L/D = 4.412 |
| Oil Rail Pressure              | Case 1: 17 MPa             |
| Pressure Intensification ratio | 6.6                        |
| Fill Gas                       | Nitrogen (N <sub>2</sub> ) |
| Chamber Density                | 34.13 kg/m <sup>3</sup>    |
| Fuel Density                   | 865.4 kg/m <sup>3</sup>    |
| Fuel Temperature               | 40 °C                      |
| Fuel Injection Quantity        | 100 [mm³/stroke]           |

#### Further information available\*:

- 1) A.I. Ramirez, S. Som, et al. *Experiments in Fluids* 47: 119-134, 2009.
- 2) A.I. Ramirez, S. Som, et al. *SAE Paper No.* 2009-01-0846, 2009.



Number of x-rays absorbed indicates the quantity of fuel.



- Experiments performed under nonevaporating conditions at engine relevant densities
- Data available for : Spray penetration, cone-angle, fuel mass distribution near nozzle, normalized spray axial velocity, transverse integrated mass

# **Experimental Conditions from ECN**

| Parameter                            | Quantity               |
|--------------------------------------|------------------------|
| Fuel                                 | n-dodecane             |
| Nozzle outlet diameter               | 90 μm                  |
| Nozzle K-factor                      | 1.5                    |
| Nozzle shaping                       | Hydro-eroded           |
| Discharge coefficient                | 0.86                   |
| Fuel injection pressure              | 150 MPa                |
| Fuel temperature                     | 363 K                  |
| Injection duration                   | 1.5 ms                 |
| Injected fuel mass                   | 3.5 mg                 |
| Injection rate shape                 | Square                 |
| Ambient temperature                  | 800 - 1200 K           |
| Ambient gas density                  | 22.8 Kg/m <sup>3</sup> |
| Ambient O <sub>2</sub> Concentration | 15 %                   |

http://www.sandia.gov/ecn/

- Experiments performed under both evaporating and combusting conditions.
- Data available for: Spray penetration, liquid length, vapor penetration, mixture fraction, ignition delay, flame lift-off length, soot distribution, highspeed movies

