

Advanced Lean-Burn DI Spark Ignition Fuels Research

Magnus Sjöberg
Sandia National Laboratories
May 15th, 2012

Project ID: FT006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project provides science to support industry to develop advanced lean/dilute-burn SI engines for nonpetroleum fuels.
- Project directions and continuation are reviewed annually.

Barriers

- Inadequate data and predictive tools for fuel property effects on combustion and engine efficiency optimization.
- Evaluate new fuels and fuel blends for efficiency, emissions, and operating stability with advanced SI combustion.
 - 1. <u>Lean, unthrottled DISI with spray-guided combustion.</u>
 - 2. Well-mixed charge and high boost.

Budget

- Project funded by DOE/VT via Kevin Stork.
- FY11 \$650 K
- FY12 \$750 K

Partners / Collaborators

- PI: Sandia (M. Sjöberg)
- 15 Industry partners in the Advanced Engine Combustion MOU.
- General Motors Hardware.
- D.L. Reuss (formerly at GM).
- LLNL (Pitz et al.) Mechanisms and Flame-Speed Calculations.
- LLNL (Aceves et al.) CFD Modeling.
- Sandia Spray Combustion & Heavy-Duty Diesel Labs (Pickett & Musculus).
- USC-LA (Egolfopoulos) Flame Measurements.

Objectives - Relevance

Project goals are to provide the science-base needed to understand:

- How emerging future fuels will impact the combustion systems of new highly-efficient DISI light-duty engines currently being developed.
- How the fuels and combustion systems can be tailored to each other to maximize thermal efficiency.
- Current focus is on E85 and gasoline. Expand to other fuel blends (e.g. E15-E30) and components (e.g. butanol and iso-pentanol) based on industry interest.

DISI with spray-guided stratified charge combustion system

- Has demonstrated strong potential for throttle-less high-efficiency engine operation.
- − Plagued by misfires and partial burns, especially for low-NO_x operation.
- Mastering NO_x / Soot / Combustion Stability trade-offs is key to success.
- These processes are strongly affected by fuel properties.
- Study performance and exhaust emissions for lean stratified operation and examine the effects of fuel properties.
- Develop / employ high-speed optical diagnostics to understand advanced combustion and mitigate potential barriers (e.g. ensure robust combustion).
- Conduct supporting modeling for understanding of governing fundamentals.

PE

Approach

- Combine metal- and optical-engine experiments and modeling to develop a broad understanding of the impact of fuel properties on DISI combustion processes.
- First, conduct performance testing with a state-of-the-art all-metal engine configuration over wide ranges of operating conditions and alternative fuels.
 - Speed, load, intake pressure, EGR, and stratification level. Quantify engine operation and develop combustion statistics.
- Second, apply a combination of optical and conventional diagnostics to develop the understanding needed to mitigate barriers to high efficiency, robustness, and low emissions.
 - Include full spectrum of phenomena; from intake flow, fuel-air mixing and ignition, to development of flame, and endgas autoignition (knock).

Supporting modeling:

- Conduct chemical-kinetics modeling of flame-speed for detailed knowledge of governing fundamentals.
 - Collaborate on validation experiments and mechanism development.
 - Collaborate on the thermodynamics of fuel-air mixing and vaporization.
- Collaborate on CFD modeling of in-cylinder flows and combustion.

CRF

Approach / Research Engine

Two configurations of drop-down single-cylinder engine. Bore = 86.0 mm, Stroke = 95.1 mm, 0.55 liter swept volume.

- All-metal: Metal-ring pack and air/oil-jet cooling of piston.
- Optical: Pent-roof window, piston-bowl window, and 45° Bowditch mirror.
- Identical geometry for both configurations, so minimal discrepancy between performance testing and optical tests.
- 8-hole injector with 60° included angle ⇒
 22° between each pair of spray center lines.
 Spark gap is in between two sprays.

Technical Accomplishments

- Performed a comparative study of stratified operation with E85 and gasoline, examining the potential to accomplish low NO_x / PM operation.
 - Demonstrated the use of near-TDC fuel injection to enable ultra-low NO and soot with E85.
 - Optical engine experiments:
 - Commissioned optical version of the engine.
 - → Performed high-speed imaging studies of stratified E85 operation.
 - → Natural luminosity, Mie-imaging of fuel-spray development, and initial fuel-PLIF.
 - Identified ignition and flame-spread issues leading to partial burns.
 - Characterized laser-sheet quality of high-speed PIV laser.
- Used CHEMKIN to investigate the influence of E85's strong vaporization cooling on the laminar flame speed for wide ranges of ϕ .
 - Set up and validated GT-Power model over wide ranges of speed and boost.
 - Used high-speed imaging of valve motion as model input.
- Continued the examination of the direct effect of vaporization cooling on the thermal efficiency for E85 and gasoline.
 - Quantified the effects of injection timing and pressure.

Emissions Study

- The traditional SI engine has poor thermal efficiency at low loads.
- Overall lean but stratified combustion can improve fuel economy.
- Low engine-out NO_x and PM is required to avoid expensive lean-NO_x aftertreatment and particulate filter.
- The parameter space is huge.
- Grouped as hardware, static parameters & operating variables.
- Relatively low in-cylinder temperatures.
- Acquired data for 500 cycles per steadystate operating point.
- Unless noted, stratified cases have spark timing (ST) for lowest standard deviation (SD) of $IMEP_n$.

Parameter	Current Study
CR	12
Piston Bowl	Ø 46 mm
Swirl Index	0 or <u>2.7</u> (most data)
Valve Timings	For Minimal Residual Level
Injector & Spray Targeting	Bosch 8 x 60° Straddling Spark
Injection Pressure	170 bar
# of Injections	Single
Spark Energy	106 mJ
T _{coolant}	60°C
T _{in}	26-28°C
Engine Speed	1000 rpm
Intake Pressure	95 kPa
P _{exhaust}	100 kPa
IMEP _n	250-380 kPa
Start of Injection (SOI)	-37 to -5°CA
Spark Timing (ST)	-36 to 1°CA
EGR / [O ₂] _{in}	21 – 14.5% O ₂
Fuel Type	E85, Gasoline

PDF

Reaching Inside the NO/PM Box

- Apply N₂ dilution to examine potential for low NO_x operation.
- Gasoline shows clear trade-off. Engineout soot is governed by soot burn-out?
- Low NO is possible, but at the expense of soot and stability.

- With E85, can reach inside the US2010 NO/PM box, <u>using near-TDC injection</u>.
 - NO₂ contribution may be substantial.
 - Future study.

Effects of Injection Timing Retard

- a. SOI retard strongly reduces NO emissions.
- **b.** Lower average peak combustion temperatures.
- **c.** Later CA50, so less time for thermal NO formation.
- d. Closely-coupled injection and combustion.
 - Higher mixing rates may limit time spent at NO-producing temperatures.
- **e.** Compared to gasoline, E85 generally requires earlier spark for highest stability.
 - This difference is accentuated for SOI retard.
 - For near-TDC injection, spark discharge starts well before fuel is present in the cylinder!
- **f.** How can this help stability?
 - Use high-speed imaging.
- Spark at SOI or earlier counteracts CA50 retard with SOI retard.
 - Spark of gasoline is near
 EOI, so does not allow
 much SOI retard.

N_2 -sweep for SOI = -6°CA

- SOI = -6°CA can provide single-digit NO.
- N₂-dilution sweep shows trade-offs between NO-Stability-CE-TE.
- The NO-Stability trade-off is superior to other conditions with earlier SOI.
- Study 19% point further.
- Has very low NO, but increased combustion efficiency and stability would enable more fuel-economy gain.
 - Up to +27% relative stoichiometric operation.

Imaging Setup / Spark-Sweep

- Bowditch: Phantom v7.10 with f = 180 mm lens.
 - Wide-angle view using concave window.
- Side window: Phantom v7.1 with f = 50 mm lens.
- Broadband imaging CMOS chip.
- Pulsed high-intensity LED for Mie-scattering.
 - 5μs or 10μs pulse length.
 - Skip-illumination for near-simultaneous
 Mie-scattering and flame imaging.
- 3/12 skipfire operation for realistic residuals.
- Spark = -12°CA consistently misfire-free.
- Spark during fuel injection leads to high misfire rate.

High-Speed Imaging, SOI = -6 #°

- Statistically selected cycle.
- Combined Mie and natural luminosity.
- Closely coupled injection and ignition leads to highly turbulent combustion.

Spark = -12°CA, Intake [O₂] = 19%, Exhaust NO = 6 ppm

PE

Imaging of Cyclic Variability

- SOI = -6°CA, spark = -12°CA.
- Correlation with IMEP.
 - Total Burn.
 - Early flame intensity.
- Weak cycles have odd flow near spark gap.
- Shows need to manage stochastic processes for better engine performance.

Preliminary High-Speed Fuel-PLIF of E85

- High-speed tripled Nd:YAG laser, exciting gasoline components with 355 nm.
- Collecting red shifted fluorescence via 395 nm long-wavelength pass filter.
- Tests indicate strong O₂ quenching, so start with inert conditions for decent S/N.
- Cyclic variability is evident, even with the limited view into bowl.
- Combine PLIF with NL & Mie for characterization of combustion mode.
- PLIF: Will perform calibration and spectroscopic characterization.
- Add high-speed PIV diagnostics for identifying sources of cyclic variability.

Fuel Vaporization / Flame Speed

- E85 experiments with near-TDC fuel injection beg for more insights. For example:
- What enables E85 to be ignited in the head of fuel jet, while gasoline fuel jets misfire?
- Why are exhaust soot levels so low, despite flame spread prior to fuel/air mixing?
- Why are NO levels so low?
- Use optical techniques and modeling to answer these questions (future work).
- First, however, examine some of the fundamentals.
- E85's large latent heat of vaporization and high oxygen content:
- 1. Prevents very rich gas-phase mixtures. For E85 $\phi_{\text{max}} \approx 5$, whereas $\phi_{\text{max}} \approx 15$ for gasoline.
- 2. Makes richer zones much cooler. CHEMKIN predicts strongly suppressed combustion activity in these rich zones. Contributes to suppress soot formation.

Fuel Vaporization / Thermal Efficiency

- Efficiency study at IMEP_n = 370 kPa shows that <u>TE-gain</u> of stratified operation <u>relative</u> stoichiometric operation is 4% lower for E85.
 - +24% for gasoline, +20% for E85.
- Study SOI-effects on IMEP of non-fired operation.
 - Shows combined effect of fuel vaporization and γ .
- Higher IMEP for early injection.
 - Lower temperature thanks to vaporization cooling, so less heat-transfer losses.
- Lower IMEP for near-TDC injection.
 - Wasting valuable exergy for vaporization.
- Relative magnitude of effects \approx 4% of fired IMEP_n.
 - Explains 4% lower TE-gain for stratified E85.
- Injection retard towards TDC comes with TE penalty for fuels with strong vaporization cooling.
- Higher injection pressure leads to reduction of IMEP for near-TDC injection.
 - Indicates enhanced heat-transfer losses.
 - Demonstrates one drawback of increased P_{ini}.

Collaborations / Interactions

- General Motors.
 - Hardware, discussion partner of results, and for development of diagnostics.
- D.L. Reuss (formerly at GM, now at UM).
 - Development of optical diagnostics for high-speed PIV and PLIF.
- 15 Industry partners in the Advanced Engine Combustion MOU.
 - Biannual meetings with 10 OEMs and 5 energy companies.
- Sandia Spray Combustion (L. Pickett)
 & Heavy-Duty Diesel Lab (M. Musculus).
 - Computation of spray penetration,
 vaporization, fuel/air-equivalence ratio, etc.

- LLNL (W. Pitz and M. Mehl).
 - Chemical-kinetics mechanisms and flame-speed calculations for gasoline-ethanol mixtures.
- USC-Los Angeles (Prof. Egolfopoulos) (not VT)
 - Flame speed and extinction measurements for gasoline/ethanol blends.
- LLNL (S. Aceves and R. Whitesides).
 - Converge-CFD.

Future Work FY 2012 - FY 2013

- Examine effects of intake air temperature on stratified low- NO_x / soot operation with E85 and gasoline. Study T_{in} effects on stable load range.
- Examine the use of early spark to ignite the head of fuel jet for gasoline.
- Continue the development of the fuel-PLIF technique.
 - Apply PLIF to measure ϕ –fields for better understanding of low-emissions operation, and sources of cyclic variability.
- Perform initial PIV measurements of intake and compression flows.
 - Examine correlation between flow field and variability of combustion.
- Use CHEMKIN to investigate flame-extinction fundamentals.
 - Compare with measurements at USC-Los Angeles.
 - Provide better understanding of in-cylinder turbulence on flame quenching and ignition of fuel jets.
- Continue examination of fuel-vaporization effects on thermal efficiency.
 - Boosted operation.
- For well-mixed operation, initialize study of fuel effects on endgas autoignition (knock) under boosted conditions.
 - Trade-offs between ethanol content and octane rating of gasoline base fuel.

Summary

- This project is contributing to the science-base for the impact of alternative fuel blends on advanced SI engine combustion.
- Under the current operating conditions (single fuel injection and low residuals) gasoline cannot achieve low NO_x and soot simultaneously.
 - Using a typical injection timing, neither can E85.
- E85 responds favorably to SOI retard \Rightarrow enables very low exhaust NO and soot.
 - Lower peak temperatures, and less residence time.
- Stable operation with near-TDC fuel injection is possible for E85.
 - E85 allows and requires spark ignition of the head of the fuel jets, and strong spray/plasma interactions create large amounts of early flame spread prior to onset of main heat release.
- Short delay from injection to combustion likely leads to high turbulence levels.
 - May contribute to low thermal NO formation for operation with late SOI.
- Cycle-to-cycle variations of IMEP can be significant for low-NO_x operation.
 - Flow variations even prior to fuel injection play a substantial role for the combustion event, as indicated by strong variations of spark-plasma motion.
- Strong vap. cooling of E85 likely limits combustion activity in very rich zones.
 - Contributes to low soot emissions, in addition to the effects of high oxygen content.
- Strong vap. cooling of E85 during intake stroke tends to improve thermal efficiency.
 - Near-TDC injection hurts thermal efficiency, with additional penalty from high P_{inj} .

Technical Back-Up Slides

PDE

Gasoline & E85, SOI = -31°CA

- NO / PM trade-offs are different.
- But none can reach inside NO-PM box.
- Trade-offs between NO and stability are similar for both fuels at this SOI.
- Partial-burn cycles prevent NO_x compliance.

• Many weak cycles have slow or incomplete flame spread to 5 o'clock position.

E85, Natural Luminosity

CRE

SOI-sweep for Gasoline, O_2 = 21\%

- Gasoline does not allow SOI retard for these no-EGR conditions.
 - Misfire cycles appear.
- IMEP_n and TE could benefit from SOI retard.
 - Better-phased combustion.

PDE

SOI-sweep for Gasoline, O_2 = 16.5\%

- For $[O_2]$ = 16.5%, gasoline shows decent tolerance to SOI retard.
- Strong NO benefit, but soot increases strongly.
- No TE benefit.
 - Already well-phased combustion.
- Gasoline shows no stable operation for SOI > -23°CA.

Spark Timing for Gasoline

- Earlier ST for 16.5% cases contributes to better success with SOI retard.
- However, no STs were found that provide stable operation for SOIs later than -23°CA.
- "Spark window" is 3°CA wide for 16.5%
 O₂ and SOI = -31°CA.
- Ignition of head of gasoline fuel jet was not possible under these conditions.

CRF

Spark During Fuel Injection for E85

- Spark during fuel injection leads to high misfire rate.
- However, if ignition is successful no effect on AHRR is detected in ST = -12° to -4°CA range.

Ensemble-averaged. Excluding Misfire Cycles for ST = -4°CA.

 For ST = -4°CA, side-view imaging shows 100% correlation between misfire and lack of plasma formation.

