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Overview: New exploratory effort from *subtask 2B1 in 
Powertrain Materials Core Program (PMCP)

Barriers

• Changing internal combustion 
engine regimes requiring higher-

temperature capable materials

• Development time/cost of new 

materials

Budget

• Total effort funding: $75k in FY20

Collaboration

• Thermo-Calc Software

• Internal ORNL Collaboration Among 

Computational Science and 

Materials Science Organizations

Timeline

• Effort start: Mar 2020

• Effort end: Sept 2020 (may be 

extended depending on results)

• Percent complete: 20% (1month)

* Exploratory effort to demonstrate a novel machine learning alloy design approach in support of 
Subtask 2B1 Development of Cast, Higher Temperature Austenitic Alloys.
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Increased temperatures and pressures to enable cleaner, more 
efficient engines with alumina-forming austenitic (AFA) alloys

• Current exhaust component alloys: lose oxidation resistance and strength ≥ ~800°C

• Ni-base alloys: meet these targets but are too costly (≥ 3 - 10x Fe-base)

2B1 Objective: Develop low-cost “Fe-base alloys” for 
“>900-950°C”

– Improved oxidation resistance by forming protective 
Al2O3 scale formation (→ AFA) instead of Cr2O3

– Increased strength & creep by nano-precipitates

Objective: Demonstrate machine learning accelerated 
design of AFA-type alloys

– Leverage 10 years of creep data over multiple 
wrought AFA alloys previously developed at ORNL

– Couple high-throughput computational 
thermodynamics with machine learning in the AFA 
dataset to train for prediction of creep resistance

– Predict creep resistance of millions of systematically 
generated hypothetical AFA alloys
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LMP*=(T(°C)+273)x(20+log trupture[h])

*Larson-Miller Parameter: time-temperature correlative 

approach based on the Arrhenius rate equation for creep 

rupture life prediction at a given stress

ORNL AFA alloys creep data
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Rapidly exploring high-dimensional multi-component alloy 
space with high-throughput data analytics approaches

Processing 
Conditions +

Degree of 
Supersaturation*

Virtually validated 
new “recipes”

2,000,000 
hypothetical

AFA alloy 
compositions

Composition 

ranges from

ORNL AFA 

experts

High-throughput 
Computational 

Thermodynamics

800-1,200 calculations/min.
with ~1,000 cores

15 elements, 5 variants 
~ 515=30,517,578,125(!)

Design of 
Experiments 

(DOE)
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*D. Shin, et al., 
Acta Mater. 168 
(2019) 321-330

wt.% Max Min wt.% Max Min

Fe Bal Bal V 0.3 0

Cr 25 12 Ti 1 0

Mn 7 0 Mo 2 0

Ni 40 15 W 2 0

Cu 3 0 Zr 0.2 0

Al 6 2.5 C 0.2 0

Si 1 0 B 0.02 0

Nb 3.5 0.3

Impossible to search all these

Pre-trained
Machine
Learning 

(ML)
Model

input

input
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Highly relevant features from computational 
thermodynamics have been used to train ML models 

LR: linear regression, BR: Bayesian ridge, NN: 
k-nearest neighbor, RF: random forest and 
SVM: support vector machines regression
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Machine Learning (ML)_ Models

Correlation Analysis Methods
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Linear regression-based models (BR and LR )outperform 
other ML models in predicting LMPs of new* AFA alloys 
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* Alloys that are not in the training dataset

• The accuracy of trained 
models for non-linear 
regression based MLs are 
better than BR and LR. 

• It is possible that non-
linear ML models have 
been over fitted.

LR and BR models to 
predict LMPs of 2M 

hypothetical AFA alloys
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Bayesian Ridge Regression

Predicted to be
better AFA alloys

ML trained with key microstructure features identified a 
range of hypothetical AFA alloys with better & worse LMPs

Linear Regression

Small subset of predicted hypothetical alloys will be experimentally 
validated to evaluate effectiveness of alloy design via ML methods

Predicted to be
worse AFA alloys
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h Collaboration and Coordination with Other Institutions

• Thermo-Calc Software: high throughput 
computational thermodynamic calculations of 
millions of hypothetical AFA alloys

• ORNL CADES (Compute And Data Environment for 
Science) 

– AWS-like cloud computing

• ORNL Computational Sciences Division: for Data 
Analytics Expertise

• ORNL Materials Science for computational 
thermodynamics and alloy design, alloy 
manufacture, and creep evaluation expertise
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• Experimental validation of alloys with predicted 
good LMPs

– Manufacture 0.5 kg lab heats of select predicted alloys 
and creep test under an accelerated test conditions of 
750°C and 130 MPa.

– Success is defined by extent to which the predicted 
alloys exceeds creep resistance of best previously 
developed AFA alloys to date

• Uncertainty quantification to assign error bars of 
ML predicted LMPs by considering different 
number of features for a given ML model

Any proposed future work is subject to change based on funding levels. 
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Summary • New high-fidelity machine 
learning models have been 
trained with ORNL AFA creep 
data and key microstructure 
features.

• Creep properties (i.e., LMP) of 2 
million hypothetical AFA alloys 
have been predicted.

• Small subset of identified AFA 
alloys with improved creep will be 
experimentally validated.



Technical 
Back-Up Slides



12

Alumina-Forming Austenitic (AFA) Alloy Family: a Lower Cost, Fe-Base Alloys with 
Improved Oxidation Resistance + Strength

• AFA Strengthening: nano-carbides ± intermetallics
while forming protective alumina

• Wide composition range (wt.%) :  

Fe-(10-25)Cr-(2-5)Al-(12-35)Ni-(0.6-3)Nb-(0.05-0.5)C+(B, Hf, Mn, Mo, Si, Ta, Ti, V, W, Y, Zr, …)

AFA (14Cr-3.5Al) Alloy 120  (25Cr)

Al-rich scale

Internal oxidation

Cr-rich scale

800 °C, 10,000 h in air

• Good oxidation resistance

Commercialization of 

1st Generation AFA 

in progress

Yamamoto et al., Science 316 (80) (2007) 433, Brady et al., JOM 60 (2008) 12

Design better AFA alloys

by machine learning?
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Data Collection/Population Machine LearningCorrelation Analysis

Coupling physics into the machine learning predictions

Composition Creep (LMP)
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Microstructure related features

• Degree of supersaturation

input

output
High-throughput 
data population

ORNL Alumina-forming Austenitic 
(AFA) alloys ~ a decade work

D. Shin, et al., Acta Mater. 168 (2019) 321-330 

Compositions
+

Processing conditions

Processing conditions
+

Degree of supersaturation
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Elements Fe, Cr, Mn, Ni, Cu, Al, Si, Nb, V, Ti, Mo, W, Y, Zr, Hf, C, B

T1 (solutionizing, °C) 1100, 1150, 1200, 1250 

T2 (creep test, °C) 650, 700, 750, 800 

Stress (MPa) 70, 100, 130, 170, 200, 250, 300 

Phases

FCC Austenite (FCC matrix), NbC, L12 

BCC (B2, A2) NiAl, FeCr

C14 Laves NiZr, FeNb

others M23C6, M7C3, M2B, M3B2, MB2_C32, Ni3Ta_D0A, Sigma 

w{Elements} Elemental composition in weight percent

T1, T2, dT Solutionizing, creep test temperatures, dT=T1-T2 

NB_C Ratio between Nb and C 

Creep stress Stress 

LMP Larson–Miller parameter

{Temperature}_VPV_{Phases} Volume fractions of phases at T1 and T2

{Temperature}_X_{Phases}_{Elements} Concentrations of elements in phases at T1 and T2 

d{Phases} Degree of supersaturation (volume fraction difference between T1 and T2) 

Target

Experimental details

Phases determined by
thermodynamic calculations

Features 
in the dataset
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