

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview: New exploratory effort from *subtask 2B1 in Powertrain Materials Core Program (PMCP)

Timeline

- Effort start: Mar 2020
- Effort end: Sept 2020 (may be extended depending on results)
- Percent complete: 20% (1month)

Budget

Total effort funding: \$75k in FY20

Barriers

- Changing internal combustion engine regimes requiring highertemperature capable materials
- Development time/cost of new materials

Collaboration

- Thermo-Calc Software
- Internal ORNL Collaboration Among Computational Science and Materials Science Organizations

^{*} Exploratory effort to demonstrate a novel machine learning alloy design approach in support of Subtask 2B1 Development of Cast, Higher Temperature Austenitic Alloys.

Increased temperatures and pressures to enable cleaner, more efficient engines with <u>alumina-forming austenitic (AFA)</u> alloys

- Current exhaust component alloys: lose oxidation resistance and strength ≥ ~800°C
- Ni-base alloys: meet these targets but are too costly (≥ 3 10x Fe-base)

<u>2B1 Objective</u>: Develop low-cost "Fe-base alloys" for ">900-950°C"

- Improved oxidation resistance by forming protective Al_2O_3 scale formation (\rightarrow AFA) instead of Cr_2O_3
- Increased strength & creep by nano-precipitates

Objective: Demonstrate machine learning accelerated design of AFA-type alloys

- Leverage 10 years of creep data over multiple wrought AFA alloys previously developed at ORNL
- Couple high-throughput computational thermodynamics with machine learning in the AFA dataset to train for <u>prediction of creep resistance</u>
- Predict creep resistance of millions of systematically generated hypothetical AFA alloys

ORNL AFA alloys creep data

$$LMP*=(T(^{\circ}C)+273)\times(20+\log t_{rupture}[h])$$

^{*}Larson-Miller Parameter: time-temperature correlative approach based on the Arrhenius rate equation for creep rupture life prediction at a given stress

Rapidly exploring high-dimensional multi-component alloy space with high-throughput data analytics approaches

Composition ranges from **ORNL AFA** experts

2,000,000 hypothetical **AFA alloy** compositions

High-throughput Computational **Thermodynamics**

wt.%	Мах	Min	wt.%	Мах	Min
Fe	Bal	Bal	V	0.3	0
Cr	25	12	Ti	1	0
Mn	7	0	Мо	2	0
Ni	40	15	W	2	0
Cu	3	0	Zr	0.2	0
Al	6	2.5	С	0.2	0
Si	1	0	В	0.02	0
Nb	3.5	0.3			

15 elements, 5 variants $\sim 5^{15}=30,517,578,125(!)$

Impossible to search all these

Processing Conditions + **Degree of Supersaturation**

800-1,200 calculations/min. with ~1,000 cores

Virtually validated new "recipes"

*D. Shin, et al., Acta Mater, 168 (2019) 321-330

Highly relevant features from computational thermodynamics have been used to train ML models

| PCC |: The absolute value of \underline{P} earson's \underline{C} orrelation \underline{C} oefficient

MIC: Maximal Information Coefficient

Machine Learning (ML) Models

LR: linear regression, **BR**: Bayesian ridge, **NN**: *k*-nearest neighbor, **RF**: random forest and **SVM**: support vector machines regression

Linear regression-based models (BR and LR)outperform other ML models in predicting LMPs of new* AFA alloys

- * Alloys that are not in the training dataset
- The accuracy of trained models for non-linear regression based MLs are better than BR and LR.
- It is possible that nonlinear ML models have been over fitted.

LR and BR models to predict LMPs of 2M hypothetical AFA alloys

ML trained with key microstructure features identified a range of hypothetical AFA alloys with better & worse LMPs

Small subset of predicted hypothetical alloys will be experimentally validated to evaluate effectiveness of alloy design via ML methods

Collaboration and Coordination with Other Institutions

• Thermo-Calc Software: high throughput computational thermodynamic calculations of millions of hypothetical AFA alloys

- ORNL CADES (<u>C</u>ompute <u>And Data Environment for Science)
 </u>
 - AWS-like cloud computing

 ORNL Materials Science for computational thermodynamics and alloy design, alloy manufacture, and creep evaluation expertise

Proposed Future Research

- Experimental validation of alloys with predicted good LMPs
 - Manufacture 0.5 kg lab heats of select predicted alloys and creep test under an accelerated test conditions of 750°C and 130 MPa.
 - Success is defined by extent to which the predicted alloys exceeds creep resistance of best previously developed AFA alloys to date
- Uncertainty quantification to assign error bars of ML predicted LMPs by considering different number of features for a given ML model

Summary

- New high-fidelity machine learning models have been trained with ORNL AFA creep data and key microstructure features.
- Creep properties (i.e., LMP) of 2 million hypothetical AFA alloys have been predicted.
- Small subset of identified AFA alloys with improved creep will be experimentally validated.

Technical Back-Up Slides

Alumina-Forming Austenitic (AFA) Alloy Family: a Lower Cost, Fe-Base Alloys with Improved Oxidation Resistance + Strength

- Wide composition range (wt.%):
 Fe-(10-25)Cr-(2-5)Al-(12-35)Ni-(0.6-3)Nb-(0.05-0.5)C+(B, Hf, Mn, Mo, Si, Ta, Ti, V, W, Y, Zr, ...)
- AFA Strengthening: nano-carbides ± intermetallics while forming protective alumina

Design better AFA alloys by machine learning?

Good oxidation resistance

Commercialization of 1st Generation AFA in progress

800 °C, 10,000 h in air

Coupling physics into the machine learning predictions

Data Collection/Population

Correlation Analysis Compositions 0.6 0.5 **Processing conditions** 0.4 0.3 **Processing conditions Degree of supersaturation** 0.4

D. Shin, et al., Acta Mater. 168 (2019) 321-330

Augment experimental data with scientific features

Elements		Fe, Cr, Mn, Ni, Cu, Al, Si, Nb, V, Ti, Mo, W, Y, Zr, Hf, C, B		
T1 (solutionizing, °C)		1100, 1150, 1200, 1250		
T2 (creep test, °C)		650, 700, 750, 800	Experimental details	
Stress (MPa)		70, 100, 130, 170, 200, 250, 300		
Phases	FCC	Austenite (FCC matrix), NbC, L12		
	BCC (B2, A2)	NiAl, FeCr NiZr, FeNb Phases determined by thermodynamic calculations		
	C14 Laves			
	others	M23C6, M7C3, M2B, M3B2, MB2_C32, Ni3Ta_D0A, Sigma		
w{Elements}		Elemental composition in weight percent		
T1, T2, dT		Solutionizing, creep test temperatures, dT=T1-T2		
NB_C		Ratio between Nb and C		
Creep stress		Stress		
LMP ← Target		Larson–Miller parameter	Features	
{Temperature}_VPV_{Phases}		Volume fractions of phases at T1 and T2	in the dataset	
{Temperature}_X_{Phases}_{Elements}		Concentrations of elements in phases at T1 and T2		

Degree of supersaturation (volume fraction difference between T1 and T2)

Controlitio

cienticos cientificos contractos contractos

d{Phases}