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Executive Summary 

Lighting systems are increasingly incorporating network interfaces and sensors, and metamorphosing 

into data collection platforms that can implement advanced adaptive lighting strategies, enabling 

data-driven lighting energy management in buildings and cities, and can deliver other potentially 

high-value services, ranging from space utilization and office scheduling to asset or inventory 

management and many other functions. Although such connected lighting systems (CLS) might 

enable dramatic improvements in the energy performance of lighting and other energy-intensive 

systems or services, at this early stage in their development, that potential is limited by significant 

fragmentation of the underlying technologies and interfaces. As a result, today’s CLS are generally 

not natively interoperable, meaning they cannot be assumed to work well together or be capable of 

exchanging the data that they collect with one another or other systems.  

As the lighting industry brings connectivity to more products, their interoperability becomes key to 

leveraging that capability – specifically, the data that might be exchanged between devices and 

systems – towards better energy efficiency, lighting quality, user experiences, and perhaps other non-

energy or non-lighting value propositions. Without sufficient interoperability, connected lighting 

systems may see limited market adoption. Devices need to use common communication protocols 

and information models in order for the number of valuable applications to grow and reach the 

critical mass that will drive adoption. Although owners of devices and systems that produce 

information are generally understood to own that information, the utility of that ownership is limited 

if the information is locked up in a proprietary data model. Interoperability unlocks the data in a 

system by allowing it to be communicated to and used by other systems, analyzed by other 

applications, and managed or archived in other ways, thereby enabling true ownership.  

The main goal of this series of studies is to discern and document the state of CLS interoperability in 

this early stage, multi-vendor, multi-technology, and multi-business-model landscape. Although a 

number of industry consortia are developing frameworks or technologies that facilitate more native 

interoperability, at present these efforts are either incomplete or immature, do not support lighting 

applications sufficiently, or are not adopted by a significant number of lighting manufacturers. At 

present, interoperability between CLS offered by different vendors – or, in some cases, even between 

different solutions from the same vendor – is facilitated primarily through application programming 

interfaces (APIs), or not at all.  

This initial study, which focuses on interoperability as realized by the use of APIs, explores the 

diversity of such interfaces in several CLS; characterizes the extent of interoperability that they 

provide; and illustrates challenges, limitations, and tradeoffs that were encountered during this 

exploration. More specifically, the system architectures and API structure, nomenclature, and 

information models were characterized; the development of a common integration platform was 

investigated; and two real-life use-cases were simulated to illustrate the relative effort required to use 

APIs to enable new features and capabilities facilitated by information exchange. Commonly 

observed issues, such as the challenge of integrating heterogeneous and asynchronous data and 

resources from multiple origins, are discussed in detail in this report, and suggestions are made for 

how API architectures and information models might be more coordinated, and thereby lower 

barriers to interoperability and enable increased CLS adoption. 
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Key Findings and Lessons Learned, Recommendations, and Next 
Steps 

Although APIs and web services enable a certain level of interaction between heterogeneous systems 

on the Internet, they require some effort and skill to use effectively and efficiently, and they do not 

serve all interoperability goals. Integrating multiple CLS through APIs does not result in a 

homogenous system; at best it yields a common user interface and experience. However, effectively 

abstracting any underlying heterogeneous characteristics that do not serve the end user in some 

tangible way can require a significant amount of integration work. Managing what functionally 

remains a distributed system at one or more interoperability layers can be challenging and can require 

substantial effort. Differences among network protocols, device representations, and access policies 

that affect performance must be understood, addressed (if possible), and managed – not only initially, 

but over the course of hardware, firmware, and software upgrades. Asynchronous data flow can lead 

to latency issues and bandwidth bottlenecks. Integrated system failures and performance issues can 

be very difficult to debug and subsequently isolate and mitigate, without taking down the entire 

system. Implementing mechanisms and policies that maximize reliability and quality of service while 

still allowing the integrated system to scale and simultaneously continue to deliver end-use 

functionality requires advanced developer skills. Further, at present, system integrators may have to 

navigate API implementations that are poorly or insufficiently documented, or have not been well-

exercised, rendering them immature or, in some cases, unusable.  

APIs are becoming increasingly available for connected lighting systems. The APIs provided by 

current market-available CLS vendors can be utilized to facilitate enough interoperability between 

lighting systems to enable lighting-system owners and operators to implement some level of multi-

vendor integration and some remote configuration and management services, as well as some 

adaptive lighting strategies. However, in many instances, API inconsistency and immaturity 

unnecessarily increase the effort required to implement these services and strategies, and reduce the 

value and performance that they deliver. API developers are encouraged to provide up-to-date and 

comprehensive API documentation and to support the efficient identification of bugs. Further, they 

should explore and attempt to implement common approaches to naming and organizing resources, 

as well as common information and data models – which are key to both minimizing the effort 

required to integrate heterogeneous systems and enabling functional, high-value use-cases.  

The U.S. Department of Energy (DOE) intends to support improved interoperability by continuing to 

investigate approaches to realizing interoperability between CLS from different providers, as well as 

between connected lighting and non-lighting systems. Without more effective, efficient, and, 

ultimately, native interoperability, connected lighting technologies may see limited deployment, 

unable to go beyond simple connectivity and to fulfill their energy efficiency and transformative 

potential. Lighting industry stakeholders and system integrators are encouraged to provide DOE with 

investigation recommendations and to propose collaborations that might best contribute to realizing 

these goals. 
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1  Introduction 

The intersection of still-evolving solid-state lighting technology and the emerging Internet of Things 

(IoT) is giving rise to a new breed of lighting system. Connected lighting systems (CLS) – composed 

of intelligent light-emitting diode (LED) luminaires with one or more modern network interfaces and 

one or more sensors – hold the potential to deliver improved energy performance and to become 

platforms for the collection of data relevant to their surrounding environment. Although the ability to 

control lighting and implement energy-saving strategies is not new, many of today’s lighting systems 

and their underlying technologies are rooted in outdated command-and-control architectures that 

require significant configuration effort, and that centralize information and intelligence. In contrast, 

IoT systems are being built on the most modern and mature communication technologies, with 

architectures that allow for information and intelligence to be more distributed and extensible. 

Improved connectivity and the ability to collect and use more and new types of data could reduce 

historical cost and complexity barriers to the implementation of energy-saving adaptive lighting 

strategies. Because data are also the fuel powering emerging IoT capabilities (e.g., space utilization, 

location-based services), delivering data can add significant value to lighting systems.  

The IoT is not a new concept, and is more or less consistent with the ongoing pursuits of networking, 

automation, machine-to-machine communication, and cloud computing. However, the IoT is 

receiving increasing attention and business focus, and is being described and marketed by many 

different industry stakeholders, resulting in myriad definitions in a wide range of contexts, from 

research publications to marketing material. The following examples of definitions show the 

diversity in focus1: 

The  

Internet 

of Things  

is… 

…the network of physical objects that contain embedded technology to communicate and 

sense or interact with their internal states or the external environment. 

…the internetworking of physical devices … embedded with electronics, software, 

sensors, actuators and network connectivity that enable these objects to collect and 

exchange data. 

…an infrastructure of interconnected objects, people, systems and information resources 

together with intelligent services to allow them to process information of the physical and 

the virtual world and react. 

…a network that connects uniquely identifiable things to the internet. The things have 

sensing/actuation and potential programmability capabilities. … Information about the 

thing can be collected and the state of the thing can be changed …. 

Many industry forecasters are predicting exponential growth in IoT devices over the next few years, 

resulting from rapidly falling economic and technological barriers, improved autonomous and self-

learning technologies, and more mature and interoperable communication protocols. The 

development and success of new innovative business models are seen as a key catalyst to this 

growth; if the value of a network grows with the square of the number of connected nodes,2 the IoT 

has a lot of business potential to unlock. Such opportunities are expected to heavily leverage data 

                                                   
1
 ISO/IEC JTC-1. 2015. Internet of Things (IoT): Preliminary Report 2015. International Organization for 

Standardization, Geneva. https://www.iso.org/files/live/sites/isoorg/files/developing_standards/ 

docs/%20en/internet_of_things_report-jtc1.pdf.  
2
 Wikipedia, Metcalfe’s law: wikipedia.org/wiki/Metcalfe's_law. 

https://www.iso.org/files/live/sites/isoorg/files/developing_standards/docs/%20en/internet_of_things_report-jtc1.pdf
https://www.iso.org/files/live/sites/isoorg/files/developing_standards/docs/%20en/internet_of_things_report-jtc1.pdf
file:///C:/Projects/2017/20170915%20Interoperability%20Study%20-%20Michael%20Poplawski/wikipedia.org/wiki/Metcalfe's_law
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collection and analytics towards high-value knowledge that might not only result in improved energy 

performance, but also give rise to automation or service optimization in any number of traditionally 

vertical industries (e.g., consumer, municipal infrastructure, building, transportation, healthcare). 

Connected lighting systems are uniquely positioned to be a backbone of the IoT and change the way 

people interact with their surroundings. Lighting is ubiquitous – it exists everywhere that people 

gather – and often has a near-ideal viewpoint from which to monitor surrounding conditions, making 

it perhaps the most attractive infrastructure for developing sensing platforms. Further, the same 

electronics that regulate the delivery of low-voltage power to LEDs can easily be modified to provide 

power to embedded sensors, microcontrollers, and network interfaces. In addition to occupancy and 

daylight sensors that have traditionally been used to implement energy-saving lighting-control 

strategies, other sensors that might be integrated into lighting devices include, for example, those to 

measure carbon dioxide, vibration, and sound – resulting in such “smart building” or “smart city” 

benefits as air quality monitoring, theft detection, and guidance to available spaces (e.g., office, 

parking). CLS are already being used as a platform for monitoring occupant position and movement 

in retail environments and other heavy-traffic buildings (e.g., shopping malls, airports, universities, 

healthcare facilities, and warehouses) by using Bluetooth beacon and/or visible-light communication 

technologies. This data is then analyzed to provide personalized location-based services to help 

occupants navigate in the building, and space-utilization and occupant-flow services to help building 

owners improve operational efficiencies, enhance safety, and increase revenues. A comparison of 

LED conversion forecasts (progressing from 424 million devices installed in the U.S. in 2015 to 

2,740 million devices in 20203) and predictions of how many IoT devices might be deployed over the 

next few years (increasing from 4,902 million devices worldwide in 2015 to 20,797 million in 2020
4
) 

suggests strong alignment between the race to convert lighting devices and the forecasted 

deployment of IoT devices.  

Many industry experts believe that interoperability is the pivotal enabler of and catalyst for IoT 

deployment5,6 and, thus, CLS adoption and associated energy savings. One analysis7 predicts that 

interoperability will be key to accessing 40% of the potential future economic value enabled by the 

IoT, accounting for more than an estimated $4 trillion per year starting 2025. However, the decision 

of whether, when, and how to pursue interoperability is not trivial for technology developers, who 

must juggle the technical challenges of developing and implementing the scalable communication 

protocols and inclusive data models that can deliver interoperability with many other needs and 

concerns, including cybersecurity risks, privacy, data ownership, and, of course, the viability and 

sustainability of their business model.  

                                                   
3
 DOE. 2016. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, U.S. 

Department of Energy, Washington, D.C. energy.gov/sites/prod/files/2016/10/ 

f33/energysavingsforecast16_0.pdf. 
4
 Gartner. 2015. “Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use in 2016, Up 30 Percent From 2015.” 

Press Release, November 10, 2015. gartner.com/newsroom/id/3165317. 
5
 OCF. 2017. New Survey Highlights Importance of Interoperability in the Internet of Things, Open Connectivity 

Foundation, Beaverton, OR. https://openconnectivity.org/announcements/new-survey-highlights-importance-

interoperability-internet-things 
6
 AHA. 2015. Why Interoperability Matters, American Hospital Association, Chicago, IL 

www.aha.org/content/15/interoperabilitymatters.pdf 
7
 McKinzey & Company. 2015. Unlocking the Potential of the Internet of Things. mckinsey.com/business-

functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world. 

https://energy.gov/sites/prod/files/2016/09/f33/energysavingsforecast16_2.pdf
https://energy.gov/sites/prod/files/2016/09/f33/energysavingsforecast16_2.pdf
file:///C:/Projects/2017/20170915%20Interoperability%20Study%20-%20Michael%20Poplawski/gartner.com/newsroom/id/3165317
file:///C:/Projects/2017/20170915%20Interoperability%20Study%20-%20Michael%20Poplawski/mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
file:///C:/Projects/2017/20170915%20Interoperability%20Study%20-%20Michael%20Poplawski/mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
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In the early development days of other technology ecosystems (e.g., personal computing, Internet 

access, mobile phones), many technology providers initially attempted to chart their own course and 

win a competitive advantage by becoming the de facto standard. Although this approach can be 

successful, it is the exception rather than the rule. Many technology providers overestimate the value 

of their in-house solution8 and are unsuccessful in establishing it as a de facto standard. CLS, and 

especially the IoT in its fully imagined form, are arguably more complex technology ecosystems than 

any developed previously – spanning dozens if not hundreds of applications, and significantly more 

use-cases and device and data types. This suggests that the pursuit of proprietary systems and 

“walled-garden” strategies will only limit the potential of connected lighting and the IoT, if not 

prevent them from getting off the ground. However, because the IoT market is still relatively young, 

highly competitive, and at least perceived as being driven by both cost and time-to-market, market 

forces are currently working against interoperability. Many manufacturers are pursuing proprietary 

approaches in hopes of becoming a de facto standard and achieving a significant competitive 

advantage over other solutions,9 and open specifications and standards have thus far seen a slow 

adoption rate. 

At present, CLS vendors are addressing interoperability in myriad ways, often pursuing multiple 

paths simultaneously. Although some are implementing open specifications or standards, others are 

continuing to implement or develop proprietary ones. Some are waiting for specific standards to 

develop market momentum, or for competing efforts to converge. In the meantime, end users who 

want to install CLS from multiple vendors or integrate their CLS with non-lighting systems must, in 

general, develop their own interoperability strategy. Technology providers are primarily supporting 

such needs by providing technical assistance for specific integrations, developing and releasing 

interfaces for legacy protocols (e.g., DALI, BACnet), and developing and releasing one or more 

APIs, by which a CLS can interact with the Internet and, in doing so, communicate and exchange 

data with other devices and systems or cloud applications. APIs can come in many flavors, but 

effectively they spell out what can be communicated and how communication requests should be 

made. More specifically, they comprise a set of data structure and protocol specifications that enable 

software applications to expose and share resources.  

Consistent with its longstanding mission to accelerate the development of energy-saving 

technologies, the U.S. Department of Energy (DOE) is undertaking a series of research studies 

focused on CLS interoperability. These studies will characterize the interoperable performance of 

emerging systems and highlight the benefits of an interoperable approach and increasing levels of 

interoperability. The studies will focus on qualitatively evaluating the interoperability enabled by 

consensus industry efforts (e.g., frameworks, specifications, standards), and not on whether, or how 

well, specific devices and/or systems comply with said frameworks or platforms, specifications, or 

standards. In the early days of LED general lighting technology, immature performance claims were 

often misunderstood or, even worse, misleading. Such issues inhibited adoption and slowed the 

realization of energy savings, and DOE efforts played a role in identifying and addressing them. 

DOE aims, through its research, to play a similar role in studying early interoperability claims. While 

these studies may identify interoperability issues that contradict, or are otherwise inconsistent with, 

the claims made for a specific framework or platform, specification, or standard, they will not 

                                                   
8
 Wikipedia, Not invented here, en.wikipedia.org/wiki/Not_invented_here; 

people.hbs.edu/mnorton/norton%20ariely.pdf. 
9
 Fältström P. 2016. Market-driven Challenges to Open Internet Standards. Paper Series: No. 33 - May 2016, Global 

Commission on Internet Governance, Waterloo, Ontario, Canada. 

cigionline.org/sites/default/files/gcig_no33web.pdf. 

https://en.wikipedia.org/wiki/Not_invented_here
http://www.people.hbs.edu/mnorton/norton%20ariely.pdf
http://www.cigionline.org/sites/default/files/gcig_no33web.pdf
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determine whether a device or system complies with a given framework or platform, specification, or 

standard – that is the role of certification testing and programs. 

This first study is focused on the development and use of APIs to achieve interoperability between 

CLS. The anticipated impacts of this study include the following: 

1. Provide feedback to technology developers on the capabilities and limitations of currently 

available APIs. 

2. Educate potential CLS owners and operators on what type of data exchange is enabled by 

currently available APIs, and the relative effort required to use APIs to realize new features 

and capabilities facilitated by such information exchange. 

3. Accelerate the development of interoperability frameworks or platforms, specifications, and 

standards. 

4. Educate (non-lighting) IoT stakeholders about the needs of and opportunities offered by CLS.  

 

2  Interoperability Background 

One of the defining attributes of the Internet is the interoperability of devices that comprise it. 

Internet hardware and software evolve without requiring a revision of the basic Internet architecture, 

and information crosses technology boundaries (e.g., from Ethernet to Wi-Fi) seamlessly. In many 

ways, today’s IoT is comparable to the early years of the Internet, when there were several types of 

computers and networks, and custom hardware was required to bridge otherwise isolated islands. 

Although interoperability has been defined many ways by many authorities, perhaps the most elegant 

definition was put forward the European Research Cluster on the Internet of Things, which defines 

interoperability simply as the ability of two or more systems or components to exchange data and use 

information.10 Regardless of the exact definition, it is important to differentiate interoperability from 

the ability to physically exchange systems or components and maintain a defined level of identical 

operation (sometimes referred to as interchangeability) and the ability to merely coexist in the same 

physical environment (sometimes referred to as compatibility).  

Interoperability implies communication in a form and format that can be understood and processed 

across heterogeneous software, operating systems, network communication hardware, and protocols. 

As shown in Figure 2.1, when viewed at different depths, it can be broken down into at least three 

categories. 

                                                   
10

 IERC. 2016. Internet of Things. IoT Semantic Interoperability: Research Challenges, Best Practices, 

Recommendations and Next Steps. M Serrano, P Barnaghi, F Carrez, P Cousin, O Vermesan, and P Friess (eds). 

European Research Cluster on the Internet of Things, Oslo, Norway. internet-of-things-

research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf.   

http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf
http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf
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Figure 2.1. Three conceptual layers of communication-system interoperability 

Limited interoperability can manifest itself in many different ways:  

 reliability, scalability, and latency issues 

 difficulty developing cross-platform applications 

 difficulty maintaining a functioning communication network 

 slower identification of failure modes and cybersecurity issues  

 limited reusability of technical solutions  

 higher costs, lower adoption rates, and higher user dissatisfaction 

On the other hand, deeper and more mature interoperability can reduce integration/operation costs; 

accelerate competition and innovation; and facilitate more robust security, privacy, and data 

management.  

2.1  Interoperability Frameworks and Specifications  

Many industry associations and standards development bodies are working on interoperability 

frameworks and specifications for the IoT. A comprehensive comparison or detailed description of 

the technical details that comprise any of them is beyond the scope of this study, as many useful 

references exist elsewhere. For example, a high-level overview of many of these efforts can be found 

on the website of the Internet Architecture Board committee of the Internet Engineering Task Force 

(IETF).11 As a prelude to this exploration of APIs, however, it is useful for understanding some of 

the different approaches taken towards harmonization of application layer protocols, and the 

definition of common information and data models. 

Although some interoperability frameworks and specifications for connected systems have been 

under development for years (e.g., Wi-Fi Alliance, ZigBee Alliance), new contenders more focused 

on IoT devices are emerging. Historically, adoption and success come to those frameworks and 

                                                   
11

 Groves C, L Yan, and Y Weiwei. 2016. Overview of IoT semantics landscape. Huawei Technologies, Plano, TX.  

iab.org/wp-content/IAB-uploads/2016/03/IoTSemanticLandscape_HW_v2.pdf. 

Semantic interoperability addresses the actual meaning and interpretation of the 
communicated information. It is the ability to share a common understanding between 
entities about the content and meaning of the information exchanged. Data can be 
understood. 

Syntactic interoperability introduces a common structure to the communication. Two 
syntactically interoperable entities will share the same data format, syntax, encoding, 
and perhaps compression and encryption. Data can be read. 

Technical interoperability covers the technical issues of linking communicating entities 
together. Two technically interoperable devices will share a communication protocol 
and the hardware and software needed for this communication to take place. Data can 
be exchanged. 

http://www.iab.org/wp-content/IAB-uploads/2016/03/IoTSemanticLandscape_HW_v2.pdf
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specifications that best meet true market needs and are most efficiently validated by user experience 

and real-life applications. Products and standards typically evolve in parallel and require efficient 

cross-cutting feedback loops, whereby new learning in the development of either informs the other. 

The following examples of industry associations working on interoperability illustrate a diversity in 

approaches being pursued, as well as in market adoption status. 

The Open Connectivity Foundation (OCF), a cross-industry consortium with over 300 members 

(including Intel, Qualcomm, Broadcom, Cisco, and Microsoft12), is one of the most active. It is 

promoting IoT interoperability around the Constrained Application Protocol (CoAP) by providing 

specifications,13,14,15 open-source reference implementations (IoTivity), a collaborative tool for 

crowd-sourcing the design of data models (oneIoTa), and a certification program.  

Project Haystack,16 a partnership of several industry leaders created to streamline the integration 

of IoT data, is focusing on the development of semantic data models and web services 

specifications for building systems and intelligent devices.  

The FIWARE platform, driven by the European Union with a focus on smart cities, sustainable 

transport, and renewable energy, strives “to build an open sustainable ecosystem around public, 

royalty-free and implementation-driven software platform standards that will ease the 

development of new smart applications in multiple sectors.”17  

Google is pursuing an approach that relies on the Android developer community and the 

widespread deployment of Google services. They have released a stripped-down embedded 

operating system for IoT devices (Android Things) and a communication platform (Weave18), 

along with developer tools and device schemas, including provisions for lighting devices. 

Application layers in interoperability frameworks essentially define how data should be represented, 

structured, and understood. They are often further broken down into (1) information models, which 

define schemas for conceptual objects separately from any underlying architecture, interface, or 

protocol; and (2) data models, which define those objects at a lower level of abstraction and can 

include implementation-specific details.19 There are many different application layer protocols that 

could conceivably be used for IoT device communication, and most industry experts do not believe 

that a single Internet application layer protocol will be well-suited for all conceivable IoT use-cases. 

Although there is some overlap, the fundamental goals, architectures, and capabilities behind each 

protocol differ in important ways. The following list briefly describes some of the ones that are 

currently most popular: 

 

                                                   
12

 Open Connectivity Foundation: Membership List, openconnectivity.org/about/membership-list. 
13

 Open Connectivity Foundation: Specifications, openconnectivity.org/resources/specifications.  
14

 Linux Foundation Collaborative Projects: IoTivity: About, iotivity.org/about. 
15

 Open Connectivity Foundation: oneIoTA Data Model Tool, openconnectivity.org/resources/oneiota-data-model-

tool. 
16

 Project Haystack, project-haystack.org.  
17

 FIWARE: About Us, fiware.org/about-us.  
18

 Nest Developers: Weave, https://developers.nest.com/weave/?nav=true&hl=zh-CN.  
19

 Internet Engineering Task Force: On the Difference between Information Models and Data Models, 

tools.ietf.org/html/rfc3444.  

http://www.openconnectivity.org/about/membership-list
http://www.openconnectivity.org/resources/specifications
http://www.iotivity.org/about
http://www.openconnectivity.org/resources/oneiota-data-model-tool
http://www.openconnectivity.org/resources/oneiota-data-model-tool
http://www.project-haystack.org/
http://www.fiware.org/about-us
https://developers.nest.com/weave/?nav=true&hl=zh-CN
http://www.tools.ietf.org/html/rfc3444
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HTTP (Hypertext Transfer Protocol, developed by the IETF and the World Wide Web Consortium 

[W3C]) underpins client/server interactions on the Internet. Each resource is identified by a 

Uniform Resource Locator (URL) and is accessed and manipulated through request/response 

methods (e.g., GET, PUT, POST) over the Transmission Control Protocol (TCP) transport layer.20 

MQTT (Message Queue Telemetry Transport) is an International Organization for 

Standardization (ISO) standard asynchronous publish/subscribe protocol that runs over TCP. It 

was initially developed by IBM for satellite monitoring of oil pipelines and is commonly used in 

today’s building-automation and online messaging services. Specifications are available via ISO 

and OASIS.21 

XMPP (Extensible Messaging and Presence Protocol) is another mature IETF development,22 

initially designed for online messaging (originally known as Jabber) and later extended to social 

networking, Voice over Internet Protocol (VoIP), and IoT applications. It provides both 

request/response and publish/subscribe methods over TCP using eXtensive Markup Language 

(XML) payloads.  

Websocket is a real-time full-duplex (pub/sub-ish) communication protocol that runs over TCP 

and was standardized by the IETF23and W3C as part of the HTML5 specifications, with the goal of 

achieving very low-latency connections and real-time web applications.  

CoAP was also developed by the IETF24 for use with constrained devices and networks. It is a 

lightweight request/response protocol with built-in discovery and multicast support over the UDP 

(User Datagram Protocol) transport layer. 

Application layers often have dependencies on lower-layer protocols or assumptions regarding their 

nature. The underlying dependency on how data is communicated – specifically the transport layer –  

is particularly relevant. As noted in the given examples, this is typically a choice between TCP and 

UDP. With three-way handshake and error checking, TCP is used when an emphasis is placed on 

reliability; in contrast, UDP, which is connectionless and uses smaller headers, is more appropriate 

when speed and network efficiency are priorities. Another important distinction is the choice 

between request/response and publish/subscribe architectures. Request/response is valued for its 

simplicity, but may not be well-suited for IoT use-cases where ecosystems need to scale, not all 

messages need to be responded to, or constant polling to request updates might overburden available 

central processing unit (CPU) time and network bandwidth. For example, although HTTP might 

work well for devices that exchange considerable amounts of data, require a web interface, and are 

connected to a reliable source of power, a large constellation of small, limited-CPU, battery-powered 

devices might require more lightweight and scalable solutions. 

2.2  RESTful APIs 

Although there are many ways to implement an API, perhaps the most common technique is to 

utilize a Representational State Transfer (REST) architecture that implements resource-oriented 

                                                   
20

 Internet Engineering Task Force: Hypertext Transfer Protocol - HTTP/1.1, tools.ietf.org/html/rfc2616. 
21

 Oasis: MQTT Version 3.1.1 Plus Errata 01, https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html. 
22

 Internet Engineering Task Force: Extensible Messaging and Presence Protocol (XMPP): Core, 

tools.ietf.org/html/rfc6120.  
23

 Internet Engineering Task Force: The WebSocket Protocol, tools.ietf.org/html/rfc6455. 
24

 Internet Engineering Task Force: The Constrained Application Protocol (CoAP), tools.ietf.org/html/rfc7252. 

http://www.tools.ietf.org/html/rfc2616
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.tools.ietf.org/html/rfc6120
http://www.tools.ietf.org/html/rfc6455
http://www.tools.ietf.org/html/rfc7252
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client-server interactions. Such RESTful approaches are commonly used to implement the web 

services that allow, for example, one website to access information from another website. REST is 

not a standard or even a contained specification in and of itself; rather, it comprises a fundamental set 

of architectural principles and best practices. Although not all self-proclaimed REST services are 

created equal, in general, RESTful practices adhere to two defining implementation constraints25: 

 Addressability: Each resource or representation of it should be identifiable and accessible. 

Uniform Resource Identifiers should define a global namespace and use consistent 

nomenclature. Resources can comprise individual items or collections of items, virtual or 

physical objects, or computation results.  

 Statelessness: Each communication should always contain all information and metadata 

needed to perform the request. Messages should be self-descriptive and cacheable. Clients 

should not need prior context or knowledge of the service to execute the request, and should 

be able to dynamically discover available resources and possible actions. 

Although REST is not a perfect solution for every real or imagined web service, it is valued for its 

flexibility and simplicity. REST is considered lightweight in terms of bandwidth usage, relative to 

other web service architectures like SOAP (Simple Object Access Protocol) and RPC (Remote 

Procedure Call), and it makes full use of the underlying HTTP transport layer, methods, and 

responses. An example of a RESTful request to and response from the Wikipedia public API26 is 

shown in Table 2.1 to illustrate the underlying mechanism. 

In this example, the API request performs a Wikipedia search for the term “json” and asks for the 

results of the search in the JavaScript Object Notation (JSON) data format. JSON is an open, 

programming-language-independent data format that uses text that is human-readable and 

simultaneously easy for machines to parse to generate data objects. It is based around two structures: 

(1) unordered sets of key and value pairs separated by a colon and between braces; and (2) ordered 

arrays of values, separated by a colon and between brackets (for example {‘key’: ‘value’, ‘key’: 

[‘value’, ’value’]}). JSON is commonly supported by CLS and other IoT systems, because it is less 

verbose than many other data formats, such as XML. 

GET is the HTTP method used to retrieve a representation of a given resource. Notably, this method 

is characterized as safe (will not change the state of the server), idempotent (multiple identical 

requests will generate the same response), and cacheable (allowed to be stored for future use). A 

characterization of all methods defined by the HTTP/1.127 specification is provided in Table 2.2. 

                                                   
25

 Wikipedia: Representational state transfer, wikipedia.org/wiki/Representational_state_transfer. 
26

 MediaWiki: API:Opensearch, mediawiki.org/wiki/API:Opensearch.  
27

 Internet Engineering Task Force: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, 

tools.ietf.org/html/rfc7231.  

http://www.wikipedia.org/wiki/Representational_state_transfer
http://www.mediawiki.org/wiki/API:Opensearch
http://www.tools.ietf.org/html/rfc7231
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Table 2.1. Example of an RESTful API, showing a HTTPS GET request and 200 (OK) response from the Wikipedia API. Note that in some 

instances, text that is not essential to the example has been removed and replaced with [….] to improve readability. 

Request 

Method Base URL Parameters Headers 
 
GET 

 
https://en.wikipedia.org/w/api.php 

 
({‘action’: ’opensearch’, ‘search’: ’json’}) 

 
{ 
  'Content-Type': 'application/json', 
  'Connection': 'keep-alive', 
  'Accept-Encoding': 'gzip, deflate', 
  'Accept': '*/*', 
  'User-Agent': 'python-requests/2.11.1' 
} 

Response 

Status Code Body Headers 
 
200 (OK) 

 
{ ..., 
  ["In computing, JSON [...] is an open-standard format that uses human-readable text 
  to transmit data objects consisting of attribute-value pairs.","","JsonML, the JSON Markup 
  Language is a lightweight markup language used to map between XML (Extensible Markup Language) 
  and JSON (JavaScript Object Notation).","JSON Web Token (JWT) is a JSON-based open standard 
  (RFC 7519) for creating access tokens that assert some number of claims.","JSON-RPC is a remote 
  procedure call protocol encoded in JSON. It is a very simple protocol, ..."], 
  ... 
} 
 

 
{ 
  'Content-Type': 
'application/json;charset=utf-8', 
  'Content-Length': '1023', 
  'Date': 'Mon, 06 Feb 2017 23:14:42 GMT', 
  'Age': '6029', 
  'Server': 'mw1189.eqiad.wmnet', 
  'Connection': 'keep-alive', 
   ... 
} 
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Table 2.2. Definitions and characteristics of HTTP/1.1 request methods 

HTTP 
Method 

Description 
Request 
has body 

Response 
has body 

Safe Idempotent Cacheable 

GET 
Requests the representation of a resource. 
The primary information retrieval mechanism. 

no yes yes yes yes 

HEAD 
Retrieves only metadata without the actual content associated with the resource. 
Can be used for testing for accessibility or recent modifications. 

no no yes yes yes 

POST 
Requests server processing of an attached payload according to its own semantics. 
Can be used to submit a form, post a message, or add items to a database… 

yes yes no no yes 

PUT 
Replaces (or creates) the representation of a resource. 
Mostly used to update data or change the status/value of a resource. 

yes yes no yes no 

DELETE 
Requests server removal of a specified resource. 
It is up to the server to archive or actually delete information. 

no yes no yes no 

OPTIONS 
Learn server capabilities and allowed methods and options for a given resource. 
Can be used to test and discover what the server allows. 

yes/no yes yes yes no 

CONNECT 
Requests that the recipient (proxy) initiates a tunnel to the destination server. 
Used to establish virtual connections and secure/encrypt communications. 

yes yes no no no 

TRACE 
Remote loop-back echo of the request received by the server. 
Used for testing/diagnostic/debug purposes. 

no yes yes yes no 
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Status codes are included in the response to an HTTP request, to indicate whether the request has 

been successfully completed or what kind of exception occurred. The first digit specifies the class of 

the response: 1xx is informational, 2xx is success, 3xx is redirection, 4xx is client error, and 5xx is 

server error. Among the most common response codes, “200 OK” indicates that the request was 

successful; “400 Bad Request” occurs when the server cannot process the request because of, for 

example, a syntax error; “401 Unauthorized” is the response when the required authentication is 

missing or has failed; and “404 Not Found” indicates that the server was unable to find the requested 

resource. A detailed list of standard and common HTTP status codes is available elsewhere.28 

Headers are used to communicate metadata and operating parameters. In a request, “Content-Type” 

specifies – as already noted in the Table 2.1 example – the response data format, “Accept-Encoding” 

enumerates the acceptable character encoding schemes, “Accept” defines the acceptable Content-

Types for the response, and “Authorization” is used to transmit authentication credentials or API 

tokens. In a response, “Content-Type” specifies the format of the response body, “Age” denotes how 

long (in seconds) the object has been in cache, and “Server” spells out the actual server name. Some 

headers are automatically added by, for example, the web browser or an associated HTTP library. A 

detailed list of common request and response headers is available elsewhere.29 

The Wikipedia web service API can be defined as “open,” because it is free to use (i.e., it is not 

subject to restrictive terms of service and licensing agreements, without copyright or patent 

constraints) and is based on open standards and specifications, such as JSON. Open APIs allow, if 

not encourage, more developers to explore ideas for combining different web services and creating 

new applications, potentially leading to more innovation and increasing the value of the web service. 

However, the physical devices and systems accessed by APIs in the IoT ecosystem are often, if not 

typically, more exposed to the world than, for example, the servers that power the web, and thus are 

more susceptible to real-world cybersecurity risks. Opening backend resources to the public can 

increase these cybersecurity risks. Further, devices on low-bandwidth networks might be 

overwhelmed with network traffic if API requests are not secure and well-managed. Fortunately, 

closing programming interfaces is not the only tool that developers have for protecting data and 

resources. A variety of authentication and authorization schemes have been developed to manage 

cybersecurity risks, including the following: 

                                                   
28

 Internet Engineering Task Force: Hypertext Transfer Protocol (HTTP) Status Code Registry,  

ietf.org/assignments/http-status-codes/http-status-codes.xml.  
29

 Wikipedia: List of HTTP header fields, wikipedia.org/wiki/List_of_HTTP_header_fields.  

http://www.ietf.org/assignments/http-status-codes/http-status-codes.xml
http://www.wikipedia.org/wiki/List_of_HTTP_header_fields
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HTTP basic authentication30 uses the “Authorization” field within the header of each request to 

transmit cleartext Base64-encoded username and password credentials to confirm the identity of 

the user and enforce access control and permission rules. Transmitted credentials can easily be 

decoded, which is why basic authentication has to be secured using HTTPS encryption. As an 

alternative to sending cleartext credentials, some implementations use API tokens31 that are 

generated and revoked server-side in order to identify users. Typically, these tokens are also just a 

cleartext string, and thus do not offer additional security unless a unique, difficult-to-discern 

protocol (such as timestamp concatenation or encryption hash calculation) is implemented. 

HTTP digest authentication32 uses Message Digest 5 (MD5), a 128-bit cryptographic function, to 

transmit a hash of username and password credentials, as well as additional mechanisms to avoid 

collision and replay attacks. Although this scheme is not considered secure, it does allow the 

server to confirm the user identity without having a cleartext password being transmitted or stored 

server-side. 

Form or session authentications require the client to send its credentials in the payload of a POST 

request - as is sent when filling out an online form- in exchange for a session ID that can then be 

stored in a cookie client-side and attached to every subsequent request. However, this scheme 

somewhat violates the REST principle of statelessness, as it requires the server to store and 

manage session information. 

OAuth, an IETF-developed scheme for authorization and API access delegation,33 specifies a 

method for issuing tokens that can be used by third-party applications to access protected 

resources, with the approval of the resource owner. Two very different and incompatible versions 

coexist - OAuth1.0a and OAuth2.0. Where OAuth1.0a specifies a full protocol that relies on 

Secure Hash Algorithm (SHA1), a cryptographic signature that can be safely used over unsecured 

HTTP, OAuth2.0 provides a framework that offers different scenarios and relies exclusively on 

HTTPS for encryption.  

Whether hosted locally or in the cloud, APIs are run on servers that must be configured and 

administered. Server administrators must carefully balance access with security. Server 

administration involves the establishment of policies that, ideally, facilitate efficient access to server 

resources to support legitimate uses while protecting the confidentiality and integrity of server data. 

The development of applications that access data from multiple servers through APIs, as might be 

done when integrating multiple CLS with a control interface or data dashboard, are often challenged 

by needs or desires to support various user interfaces, network architectures, and software platforms. 

Restrictive server policies can limit application compatibility to specific integration approaches. 

However, as recommended by the Mozilla Developer Network,34 “data requested from a remote 

website should be treated as untrusted. Executing JavaScript code retrieved from a third-party site 

without first determining its validity is not recommended. Server administrators should be careful 

                                                   
30

 Internet Engineering Task Force: The 'Basic' HTTP Authentication Scheme, tools.ietf.org/html/rfc7617.  
31

 World Wide Web Consortium: Token Based Authentication -- Implementation Demonstration, 

w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication.  
32

 Internet Engineering Task Force: An Extension to HTTP: Digest Access Authentication, 

tools.ietf.org/html/rfc2069 , tools.ietf.org/html/rfc2617.  
33

 Internet Engineering Task Force: The OAuth 1.0 Protocol, tools.ietf.org/html/rfc5849 , tools.ietf.org/html/rfc6749. 
34

 Ranganathan A. 2009. “Cross-site xmlhttprequest with CORS.” Mozilla Hacks, July 6, 2009. 

hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/.  

http://www.tools.ietf.org/html/rfc7617
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication
http://www.tools.ietf.org/html/rfc2069%20,%20tools.ietf.org/html/rfc2617
http://www.tools.ietf.org/html/rfc5849%20,%20tools.ietf.org/html/rfc6749
https://hacks.mozilla.org/2009/07/cross-site-xmlhttprequest-with-cors/
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about leaking private data and should judiciously determine that resources can be called in a cross-

site manner.” 

One of the simplest and most common policies that might be implemented is known as a same-origin 

policy, under which a web browser permits scripts contained in a first web page to access data in a 

second web page, but only if both web pages have the same origin. Same-origin policies, which are 

generally enforced by web browsers on the client side rather than on the server that hosts the data, 

help prevent malicious code on one website from accessing restricted content on another website. 

This behavior, often referred to as cross-site scripting (XSS), is arguably the most common 

cybersecurity attack vector. However, rich web experiences commonly require and rely on 

simultaneous access to data from multiple origins, making the same-origin policy sometimes too 

restrictive. An alternative to the same-origin policy recommended by the W3C is known as Cross-

Origin Resource Sharing (CORS), which defines a method by which clients and servers can interact 

to determine whether or not a web page in a given domain is allowed to request data from another 

domain. It extends the HTTP specifications with an “Origin” request header and a set of “Access-

Control-Allow” response headers, with which servers can whitelist origins, methods, and headers that 

are permitted to access data. CORS is not considered secure, however. Although it is honored by 

common web browsers, it can be bypassed by attackers who instead use specialty tools.  

In summary, RESTful APIs provide a flexible means for connected lighting and IoT system 

developers to facilitate varying levels of interoperability with other systems. This flexibility is 

primarily responsible for both its current adoption and its limitations. System developers are free to 

expose whatever system data or control points they wish, while leaving others inaccessible, and the 

REST approach leverages simple HTTP methods that are well known and used by software 

developers. Performance and cybersecurity, however, are primarily a function of the underlying 

HTTP implementation, which is subject to many choices. Despite the use of common methods, each 

API is generally unique, and there is no requirement for them to be self-explanatory or user-friendly, 

nor is there a well-adopted framework for facilitating that. Successful and efficient use of a given 

API is often subject to a learning curve, especially in the absence of accurate and up-to-date 

documentation or vendor or community-based technical support.  

2.3  DOE Connected Lighting Test Bed 

Central to DOE’s connected lighting systems efforts is a testing facility, referred to henceforth as the 

Connected Lighting Test Bed (CLTB), that was designed and is operated by the Pacific Northwest 

National Laboratory (PNNL) to characterize the capabilities of CLS and conduct technology research 

and evaluations. These activities aim to increase the visibility and transparency of newly developed 

technologies and to create feedback loops to inform technology developers and standards bodies of 

needed improvements related not only to interoperability, but also to energy reporting, configuration 

complexity, and other new features. More details about the CLTB (Figure 2.2) are available on the 

DOE Solid-State Lighting program website.35 

 

 

                                                   
35

 DOE Office of Energy Efficiency and Renewable Energy: Connected Lighting Test Bed, 

energy.gov/eere/ssl/connected-lighting-test-bed. 

https://www.energy.gov/eere/ssl/connected-lighting-test-bed
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Figure 2.2. Infrastructure for characterizing CLS in the DOE Connected Lighting Test Bed 

2.4  Web-Based Interoperability Platform 

To enable the testing of multiple devices and systems in the CLTB, a software interoperability 

platform was developed to allow installed lighting devices and systems that were not natively 

capable of exchanging data with one another to communicate through a defined middleware 

interface. The vision for this first version (v1) CLTB interoperability platform was something akin to 

If-This-Then-That (IFTTT),36 a popular web-based tool that is simple enough for anyone to use and 

was developed primarily to support the integration of residential devices to support simple use-cases. 

An attempt was made to develop a similarly easy-to-use tool, with a bit more flexibility, that would 

enable interoperability demonstrations and use-case explorations. The basic building blocks include 

connected lighting systems’ APIs as well as other web services and online data sources (e.g., real-

time weather or traffic data) that might be combined and used within algorithms and chains of 

conditional statements to demonstrate and explore new use-cases.  

The developed web application is hosted remotely in the Microsoft Azure cloud, which requires 

locally hosted CLS API server requests and responses to be forwarded through the firewall, 

representing the first of many tradeoffs inherent in this approach to realizing interoperability. Such 

forwarding of server communication exposes the servers to the entire web, thereby increasing their 

cybersecurity risks and magnifying any vulnerabilities associated with, for example, their chosen 

authentication scheme. A user who desires to implement a given use-case is invited, through the 

graphical user interface (GUI), to connect to and authenticate available CLS APIs and third-party 

web services (Figure 2.3). APIs that facilitate resource discovery automatically populate the 

appropriate field after successful authentication. The user then selects from available inputs (e.g., 

CLS sensors, online data sources) and outputs (e.g., CLS light-source output level) that are essential 

to the implementation of the targeted use-case.  

 

                                                   
36

 IFTTT, https://ifttt.com/. 

https://ifttt.com/
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Figure 2.3. Web-based interoperability platform user interface 

The user can then directly enter JavaScript code into a GUI “Algorithms” window that defines how 

selected outputs should respond to changes in one or more selected inputs, thereby enabling the 

intended use-case. Algorithms can be executed either individually or simultaneously. In the example 

illustrated by Figure 2.4, a CLS light source is instructed to blink when the temperature sensor from 

another CLS fixture exceeds a specified threshold. 

 

Figure 2.4. Web-based interoperability platform use-case example 

Multiple commercially available indoor and outdoor CLS were installed in the CLTB and integrated 

via their APIs into this web-based interoperability platform. Integrating multiple APIs into a single 

user interface while maintaining the intended functionality of the web-based platform proved to be an 

increasingly difficult proposition, as incompatibilities among, for example, different API data models 

limited the level of integration that could be achieved. Keeping this platform and its connected CLS 

secure and the user experience simple and straightforward were equally challenging. The 

development and use of this platform towards abstracting the differences and complexities of the 

underlying systems brought valuable insight into what level of interoperability can be enabled by 

APIs, and how much effort is required to exchange information between different devices and 

systems via APIs. This integration effort exposed how differences in API architectures, data models, 

features, and capabilities limited the interoperability between heterogeneous and asynchronous 

systems. 
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3  Connected Lighting System API Comparison 

At present, very few commercially available CLS are fully and natively interoperable. Rather, 

interoperability is facilitated by using APIs, which, rather than defining a common method for 

interacting with a device or system, define how to interact with a given device or system. Although 

APIs can facilitate the exchange of information between different systems, they do not deliver native 

interoperability. They do, however, enable system integrators to write software that enables systems 

to exchange data with one another through some form of software interoperability platform, which 

effectively implements a level of interoperability that is a function of the platform architecture and 

characteristics. 

3.1  CLS APIs 

This study focused on the exploration of six CLS, three developed primarily for indoor applications 

(Enlighted, Digital Lumens, Xicato) and three developed for outdoor use (Current, powered by GE; 

Silver Spring Networks; Telematics Wireless). All CLS were procured or donated prior to June of 

2016, and all exploration and characterization was completed prior to June of 2017. These CLS 

communicated using a variety of radio (i.e., physical and transport layer) protocols, including 

Bluetooth Low Energy, IEEE 802.15.4, ZigBee, and 6LoWPAN, and exhibited significant 

differences in system architecture. Some were cloud-centric, while others used a more distributed 

intelligence architecture, processing some data at the device level or in gateways at network edges, 

an approach sometimes referred to as “fog computing.”37 Data collection and data analytics solutions 

were also diverse, as user and application interface servers were remote in some cases and ran on an 

onsite device in others. However, the common denominator and basis for this study was that they all 

served an HTTP RESTful API to facilitate interoperability.  

3.2  CLS API Authentication Schemes 

Three of the six API servers were installed and managed on site in the CLTB, and not necessarily 

designed to be brought outside of the local area network (LAN). Each of these systems used a 

different authentication scheme: 

 One implemented HTTP basic authentication over unencrypted HTTP with a simple cleartext 

32-character API key token.  

 One implemented HTTP basic authentication over encrypted HTTP Secure (HTTPS) with a 

proprietary security measure on top, using a SHA1 cryptographic hash of the user ID, API 

token, and millisecond Unix timestamp (to avoid replay attacks) as an authentication key. 

 One CLS did not offer a commercial gateway server over the period of this study. To 

facilitate inclusion in this study, an ad-hoc gateway was built for the sole purpose of serving 

a RESTful API that did not require authentication 

The three remaining API servers were remote and managed by the vendor. All implemented a 

form/session authentication scheme, one over unsecured HTTP and the other two over HTTPS. 

                                                   
37

 Wikipedia: Fog Computing, wikipedia.org/wiki/Fog_computing.  

http://www.wikipedia.org/wiki/Fog_computing
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3.3  CLS API Origin Policies 

The CLTB web-based interoperability platform was used to explore whether CORS could be enabled 

for each of the six CLS. The platform was installed on both a cloud server to enable testing with 

onsite API servers, and an onsite server to enable testing with offsite API servers. Only one of the six 

API servers was natively capable of supporting CORS, and responded with a descriptive “Access-

Control-Allow” header when presented with a properly configured “Origin header.” An example API 

response from this CLS is shown in Table 3.1. The API server for a second CLS was able to be 

modified by the manufacturer to support CORS following a request. Attempts to enable CORS with 

the other four systems over the course of this study were unsuccessful. 

3.4  CLS API Resource Organization 

Although the REST architecture specifies that URLs should uniquely identify system resources, it 

does not require or even suggest any particular way to name resources or organize them. One 

approach might arguably be no better than another if organization and naming were just used by 

devices and systems behind the scenes, as is the case when they are natively interoperable. However, 

achieving interoperability with APIs requires integration, involving software written by humans, for 

whom readability and logic matter. Resource trees are often used to graphically depict how resources 

are named and organized. Although some of the APIs that were explored here have a logically 

consistent resource tree structure, others were clearly developed incrementally over multiple version 

releases, as more features were added over time. Figure 3.1 through Figure 3.3 show examples of 

partial API resource trees that were encountered in this study, illustrating significant variation in 

structure, nomenclature, and complexity. 
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Table 3.1. Example of a Connected Lighting System API response allowing Cross-Origin Resource Sharing 

Request 

Method Base URL Headers 
 
GET 

 
/ems/api/org/sensor/v3/details/3 
 

 
{ 
  'Hostname': [...], 
  'ApiKey': [...], 
  'Authorization': [...], 
  'ts': '1493240606352', 
  'Accept': 'Application/JSON', 
  'Content-Type': 'Application/JSON' 
} 
 

Response 

Status Code Body Headers 
 
200 (OK) 

 
{ 
  'name': 'Sensor37a117', 
  'id': '3', 
  'power': '0.59', 
  'lightLevel': '0', 
  'temperature': '62.52' 
} 

 
{ 
  'Date': 'Wed, 26 Apr 2017 21:02:43 GMT', 
  'Server': 'Apache-Coyote/1.1', 
  'Connection': 'Keep-Alive',, 
  'Set-Cookie': [...], 
  'Content-Length': '96', 
  'Access-Control-Allow-Origin': '*', 
  'Access-Control-Allow-Methods': 'POST, GET, OPTIONS, DELETE, PUT', 
  'Access-Control-Allow-Headers': 'Hostname, ApiKey, Authorization, ts, Accept, Content-Type', 
  'Access-Control-Max-Age': '1000', 
  'Content-Type': 'application/json' 
} 



19 

 

Figure 3.1. Connected lighting system API resource tree, example 1 

 

Figure 3.2. Connected lighting system API resource tree, example 2 

 

http:// <hostname> /<api_path> 

/report 

/lights 

/zones 

/rooms 

/profiles 

/status 

/<profile_id> 

/active_profiles /<serial_id> 

https:// <hostname> /<api_path> 

/auth 

/devices /<device_id> 

/groups 

/resources 

/relations 

/metrology 

/control 

/groups /<group_id> 

/devices /<device_id> 

/control 
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Figure 3.3. Connected lighting system API resource tree, example 3 

http:// {hostname} /{api_path} 

/facility /v2 /[...] /<floor_id> /<from_date> /<to_date> 

/floor 

/list 

/<floor_id> 

/area 

/v1 

/energy /<area_id> 

/occ /<area_id> 

/out /<area_id> 

/setEmergency /<area_id> 

/v2 /list /<floor_id> 

/sensor 

/v2 /stats /<floor_id> /<from_date> /<to_date> 

/v3 /details /<sensor_id> 

/fixture 

/location /list /floor /<floor_id> /1 

/v1 

/location /list /area /<area_id> 

/op 

/assignProfile /<fixture_id> /<group_id> 

/dim /<mode> /<amout> 

/auto 

/energy 

/<fixture_id> 

/area /<area_id> 
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One example of an attempt to define a common resource structure is shown in Figure 3.4. IoTivity 

uses the /oic namespace prefix to define a mechanism that results in the consistent organization of 

resources in the OCF ecosystem. Among core resources, /oic/res is used for resource discovery, 

/oic/p allows for platform-specific information to be discovered, and /oic/d exposes device 

properties. For device management, /oic/con allows for device-specific information to be configured, 

/oic/mnt can be used for maintenance and diagnostic purposes, and /oic/sec is used for security. 

 

Figure 3.4. The IoTivity resource tree structure developed by the OCF 

3.5  CLS API Data Models 

As noted by the IETF, information models can, and generally should, specify relationships between 

objects; in turn, the contents of an information model should be used to delimit the functionality that 

can be included in a data model. Data models provide a structure for communicating information 

between devices and systems. They include rules that explain how to map managed objects onto 

lower-level protocol constructs. Well-defined and formatted models are essential to interoperability, 

as poor mappings can lead to misinterpretation of information and possibly to duplication (i.e., 

multiple models for essentially the same information). For developers, an ideal data model is human-

readable, consistent, and intuitive. Although there is likely no perfect data model - “All models are 

wrong, but some are useful”38 - and there is no well-honed approach or framework for evaluating the 

viability of a data model, it can be illustrative to examine some use-cases. A system integrator who 

desires to achieve some degree of interoperability between systems with heterogeneous APIs must 

infer an information model that suitably encompasses the myriad data models to be integrated, in 

order to effectively aggregate measurements or broadcast commands. Some of the challenges that 

this effort entails are revealed by examining Table 3.2 and Table 3.3, which show the results of API 

requests to two different outdoor CLS that expose parts of the data models for street lighting 

resources. 

 

 

                                                   
38

 Wikipedia: All models are wrong, wikipedia.org/wiki/All_models_are_wrong.  

http:// {hostname} /{api_path} 

/oic 

/res 

/p 

/d 

/con 

/mnt 

/sec 

/cred 

/[...] 

/<res_uri> 

/<res_uri> 

/<res_uri> 

http://www.wikipedia.org/wiki/All_models_are_wrong
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Table 3.2. Exposed CLS API resources, example 2. Note that in some instances, text that is not essential to the example has been removed 

and replaced with [….] to improve readability. 

Request 

Method Resource URL Parameters 
 
GET 

 
/reports/api/monitoring 
 
/* Returns an array of metering value descriptors for a given device. 
(not a comprehensive list of resources) */ 

 
{ 
  “methodName”: “getDeviceMeteringValueDescriptors”, 
  “controllerStrId”: “<controller_id>”, 
  “idOnController”: “<device_id>”, 
  “ser”: “json”  
} 

Response 

Status 
Code 

Body 

 
200 
(OK) 

 
[ 
  {'name': 'MainVoltage'     , 'label': 'Mains voltage (V)' , 'type': 'float'  , 'unit': 'V'  , 'labelKey': 'db.meaning.mainvoltage.label'     , [...] }, 
  {'name': 'VoltageMax'      , 'label': 'Voltage Max'       , 'type': 'float'  , 'unit': None , 'labelKey': 'db.meaning.voltagemax.label'      , [...] }, 
  {'name': 'VoltageMin'      , 'label': 'Voltage Min'       , 'type': 'float'  , 'unit': None , 'labelKey': 'db.meaning.voltagemin.label'      , [...] }, 
  {'name': 'Current'         , 'label': 'Mains current'     , 'type': 'float'  , 'unit': 'A'  , 'labelKey': 'db.meaning.current.label'         , [...] }, 
  {'name': 'MeteredPower'    , 'label': 'Metered power (W)' , 'type': 'float'  , 'unit': 'W'  , 'labelKey': 'db.meaning.meteredpower.label'    , [...] }, 
  {'name': 'Energy'          , 'label': 'Lamp energy (kWH)' , 'type': 'float'  , 'unit': 'kWh', 'labelKey': 'db.meaning.energy.label'          , [...] }, 
  {'name': 'PowerFactor'     , 'label': 'Power factor'      , 'type': 'float'  , 'unit': ''   , 'labelKey': 'db.meaning.powerfactor.label'     , [...] }, 
  {'name': 'Frequency'       , 'label': 'Frequency (Hz)'    , 'type': 'float'  , 'unit': 'Hz' , 'labelKey': 'db.meaning.frequency.label'       , [...] }, 
  {'name': 'Temperature'     , 'label': 'Temperature'       , 'type': 'float'  , 'unit': ''   , 'labelKey': 'db.meaning.temperature.label’     , [...] }, 
  {'name': 'LuxLevel'        , 'label': 'Lux level (Lux)'   , 'type': 'float'  , 'unit': ''   , 'labelKey': 'db.meaning.luxlevel.label'        , [...] }, 
  {'name': 'RunningHoursLamp', 'label': 'Lamp burning hours', 'type': 'float'  , 'unit': 'h'  , 'labelKey': 'db.meaning.runninghourslamp.label', [...] }, 
  {'name': 'UpTimeInSeconds' , 'label': 'Up time (sec)'     , 'type': 'integer', 'unit': None , 'labelKey': 'db.meaning.uptimeinseconds.label' , [...] }, 
  {'name': 'supplyLossCount' , 'label': 'Supply losses'     , 'type': 'int'    , 'unit': None , 'labelKey': 'db.meaning.supplylosscount.label' , [...] }, 
  {'name': 'PhotocellMode'   , 'label': 'Photocell mode'    , 'type': 'boolean', 'unit': None , 'labelKey': 'db.meaning.photocellmode.label'   , [...] } 
] 
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Table 3.3. Exposed connected lighting system API resources, example 1. Note that in some instances, text that is not essential to the 

example has been removed and replaced with [….] to improve readability. 

Request 

Method Resource URL Parameters 
 
GET 

 
/papi/v1.1/devices/<device_id>/resources 
 
/* Lists the latest resources of a given light fixture, mostly  undocumented. 
   Some values are ASCII strings and some base64 encoded. */ 
 

 
{ 
  ‘Accept’: ‘*/*’, 
  ‘Cookie: ‘JSESSIONID=[...]’ 
} 

Response 

Status Code Body 
 
200 (OK) 

 
[ 
  {'timeMeasured': '2016-11-30 09:19:36.971', 'name': '/bin/address'                        , 'value': '[...]'          }, 
  {'timeMeasured': '2016-11-30 09:16:06.0'  , 'name': '/bin/fw_info'                        , 'value': '[...]'          }, 
  {'timeMeasured': '2016-10-13 18:27:19.0'  , 'name': '/bin/fw_ota_progress'                , 'value': '[...]'          }, 
  {'timeMeasured': '2016-11-30 13:51:14.0'  , 'name': '/bin/gps'                            , 'value': '[...]'          }, 
  {'timeMeasured': '2016-11-30 13:51:14.0'  , 'name': '/bin/metrology'                      , 'value': '[...]'          }, 
  {'timeMeasured': '2016-11-30 08:48:44.0'  , 'name': '/bin/net_stats'                      , 'value': '[...]'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/I'                              , 'value': '0.5887'         }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/I/inst'                         , 'value': '0.5901'         }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/I/max'                          , 'value': '0.6138'         }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/I/min'                          , 'value': '0.034'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/P'                              , 'value': '72.87'          },  
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/P/inst'                         , 'value': '72.81'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/P/max'                          , 'value': '75.88'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/P/min'                          , 'value': '1.6'            }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/V'                              , 'value': '124.51'         }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/V/inst'                         , 'value': '124.29'         }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/V/max'                          , 'value': '125.5'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/V/min'                          , 'value': '122.91'         },  
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/ontime'                         , 'value': '3060.46'        }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/pfact'                          , 'value': '0.994'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/pfact/inst'                     , 'value': '0.994'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/pfact/max'                      , 'value': '0.995'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/pfact/min'                      , 'value': '0.375'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/dev/totKwh'                         , 'value': '235.942'        }, 
  {'timeMeasured': '2017-03-08 18:54:22.0'  , 'name': '/fw/curr/NanoLightingApplication/ver', 'value': '06.05.08.00043' }, 
  {'timeMeasured': '2017-03-08 18:54:22.0'  , 'name': '/fw/curr/pwloss'                     , 'value': '[...]'          }, 
  {'timeMeasured': '2017-03-08 18:54:22.0'  , 'name': '/fw/new/NanoLightingApplication/ver' , 'value': '06.05.08.00043' }, 
  {'timeMeasured': '2017-02-08 20:37:37.924', 'name': '/fw_ota_progress/download_status'    , 'value': '0'              }, 
  {'timeMeasured': '2017-02-08 20:37:37.924', 'name': '/fw_ota_progress/image_crc'          , 'value': '0'              }, 
  {'timeMeasured': '2017-02-08 20:37:37.924', 'name': '/fw_ota_progress/ota_progress'       , 'value': '0'              }, 
  {'timeMeasured': '2017-02-08 20:37:37.924', 'name': '/fw_ota_progress/ota_status'         , 'value': '0'              }, 
  {'timeMeasured': '2017-02-08 20:37:37.924', 'name': '/fw_ota_progress/upload_status'      , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/gps/fix'                            , 'value': '1'              }, 
  {'timeMeasured': '2016-10-13 17:29:22.0'  , 'name': '/gps/lat'                            , 'value': '[...]'          }, 
  {'timeMeasured': '2016-10-13 17:29:22.0'  , 'name': '/gps/lng'                            , 'value': '[...]'          }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/lt/0/ctr'                           , 'value': '1'              }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/lt/0/dim'                           , 'value': '100'            }, 
  {'timeMeasured': '2017-03-08 19:49:24.0'  , 'name': '/lt/ontime'                          , 'value': '2323.44'        }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/frag_rx_errors'           , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/frag_tx_errors'           , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/ip_routed_up'             , 'value': '9142'           }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/ip_rx_bytes'              , 'value': '14513'          }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/ip_rx_count'              , 'value': '177'            }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/ip_rx_drop'               , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/ip_tx_bytes'              , 'value': '28173'          }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/ip_tx_count'              , 'value': '256'            }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_rx_bytes'             , 'value': '32042'          }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_rx_count'             , 'value': '410'            }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_rx_drop'              , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_security_drop'        , 'value': '0'              }, 
  {'timeMeasured': '2016-11-30 08:48:44.0'  , 'name': '/net_stats/mac_tx_buf_overflow'      , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_tx_buf_overflow'      , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_tx_bytes'             , 'value': '57985'          }, 
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  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_tx_cca_cnt'           , 'value': '562'            }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_tx_count'             , 'value': '613'            }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_tx_failed'            , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_tx_failed_cca'        , 'value': '3'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/mac_tx_retry'             , 'value': '60'             }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/prssi'                    , 'value': '-69'            }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/rpl_no_route'             , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/rpl_route_ld'             , 'value': '0'              }, 
  {'timeMeasured': '2017-03-08 14:48:58.0'  , 'name': '/net_stats/rpl_route_rcbc'           , 'value': '0'              }, 
  {'timeMeasured': '2017-03-07 22:49:40.0'  , 'name': '/nw/eripaddr'                        , 'value': '[...]'          }, 
  {'timeMeasured': '2017-03-07 22:49:40.0'  , 'name': '/nw/ipaddr'                          , 'value': '[...]'          }, 
  {'timeMeasured': '2017-03-07 22:49:40.0'  , 'name': '/nw/macaddr'                         , 'value': '[...]'          }, 
  {'timeMeasured': '2017-03-07 22:49:40.0'  , 'name': '/nw/pipaddr'                         , 'value': '[...]'          }, 
  {'timeMeasured': '2017-03-07 22:49:40.0'  , 'name': '/nw/sipaddr'                         , 'value': '[...]'          } 
] 
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The highlighted rows in Table 3.2 and Table 3.3 show the data model for the light-output setting of a 

lighting device. Note that in the first example, although the parameter label “LuxLevel” suggests that 

light output is specified in lux, and the data type specifies a floating-point representation for the light-

output setting, no parameter unit is actually shown. In the second example, no data type 

representation or unit is revealed. Further, the default parameter value of “100” leaves open the 

possibility that the data representation is absolute (e.g., in lux or foot-candles) or relative (e.g., 

percent of maximum). The parameter label “dim” suggests the latter.  

Although API calls only expose a fragment of the underlying data models, these examples reveal 

perhaps the most significant IoT challenge: the coexistence of multiple, often incompatible, data 

models. Custom data models are not always thoughtfully designed from a user perspective, or self-

consistent, or even well documented. Consequently, it is often incumbent on the system integrator to 

figure out what a resource represents, and what its data model defines (e.g., measurement units, data 

type). Although inconsistencies might be resolved by algorithms that, for example, convert lux to 

foot-candles or translate from a relative representation of light output to an absolute representation, 

these converters and translators must be checked and possibly modified each time an API is updated, 

and the approach for implementing and managing them must be capable of scaling as necessary if/as 

the size of an integrated CLS grows and/or more CLS are integrated.  

As noted in the previous discussion of resource tree organization, some industry consortia are 

developing and publishing open-source approaches to and resources for interoperability challenges. 

Table 3.4 and Table 3.5 show examples of data models published by two such consortia. The OCF 

manages an open-source library of data models that are made available via a web-based tool it refers 

to as oneIoTa.39 Developers are encouraged to use existing, and share newly created, data models for 

IoT devices and device resources. The tool allows for complex devices and systems to be defined as 

collections of simpler devices and resources. 

Table 3.4 shows a few of the lighting-related contributions that had been made at the time of this 

publication. Notably, they include lighting-device resources but not any specific lighting devices 

(e.g., street lighting device, office lighting device). 

FIWARE also manages a library of data models that are open-sourced40 under a Creative Commons 

license and made available via a web interface. FIWARE is open to library contributions that meet its 

guidelines.41 Table 3.5 shows portions (not including optional fields) of the data models for all four 

available (street) lighting resources.42  

 

                                                   
39

 oneIoTa, oneiota.org.  
40

 GitHub: Fiware/dataModels, github.com/Fiware/dataModels.  
41

 FIWARE Datamodels: Data Models Guidelines, fiware-datamodels.readthedocs.io/en/latest/guidelines/.  
42

 FIWARE Datamodels: Street Lighting Data Models, fiware-datamodels.readthedocs.io/en/latest/ 

StreetLighting/doc/introduction.  

http://www.oneiota.org/
http://www.github.com/Fiware/dataModels
http://fiware-datamodels.readthedocs.io/en/latest/guidelines/
http://fiware-datamodels.readthedocs.io/en/latest/StreetLighting/doc/introduction/
http://fiware-datamodels.readthedocs.io/en/latest/StreetLighting/doc/introduction/
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Table 3.4. oneIoTa data model definitions for light resources, as available in June 2017 

oic.r.light.brightness 
 
{ 
  "id": "http://openinterconnect.org/iotdatamodels/schemas/oic.r.light.brightness.json#", 
  "$schema": "http://json-schema.org/draft-04/schema#", 
  "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights reserved.", 
  "title": "Brightness", 
  "definitions": { 
    "oic.r.light.brightness": { 
      "type": "object", 
      "properties": { 
        "brightness": { 
          "type": "integer", 
          "description": "Quantized representation in the range 0-100 of the current sensed or set value for Brightness", 
          "minimum": 0, 
          "maximum": 100 
        } 
      } 
    } 
  }, 
  "type": "object", 
  "allOf": [ 
    {"$ref": "oic.core.json#/definitions/oic.core"}, 
    {"$ref": "oic.baseResource.json#/definitions/oic.r.baseresource"}, 
    {"$ref": "#/definitions/oic.r.light.brightness"} 
  ], 
  "required": [ "brightness" ] 
} 
 
oic.r.light.dimming 
 
{ 
  "id": "http://openinterconnect.org/iotdatamodels/schemas/oic.r.light.dimming.json#", 
  "$schema": "http://json-schema.org/draft-04/schema#", 
  "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights reserved.", 
  "title": "Dimming", 
  "definitions": { 
    "oic.r.light.dimming": { 
      "type": "object", 
      "properties": { 
        "dimmingSetting":  { 
          "type": "integer", 
          "description": "Current dimming value" 
        } 
      } 
    } 
  }, 
  "type": "object", 
  "allOf": [ 
    {"$ref": "oic.core.json#/definitions/oic.core"}, 
    {"$ref": "oic.baseResource.json#/definitions/oic.r.baseresource"}, 
    {"$ref": "#/definitions/oic.r.light.dimming"} 
  ], 
  "required": ["dimmingSetting"] 
} 
 
oic.r.light.rampTime 
 
{ 
  "id": "http://openinterconnect.org/iotdatamodels/schemas/oic.r.light.rampTime.json#", 
  "$schema": "http://json-schema.org/draft-04/schema#", 
  "description" : "Copyright (c) 2016 Open Connectivity Foundation, Inc. All rights reserved.", 
  "title": "Ramp Time", 
  "definitions": { 
    "oic.r.light.ramptime": { 
      "type": "object", 
      "properties": { 
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        "rampTime": { 
          "type": "integer", 
          "description": "Actual speed of changing between 2 dimming values" 
        } 
      } 
    } 
  }, 
  "type": "object", 
  "allOf": [ 
    {"$ref": "oic.core.json#/definitions/oic.core"}, 
    {"$ref": "oic.baseResource.json#/definitions/oic.r.baseresource"}, 
    {"$ref": "#/definitions/oic.r.light.ramptime"} 
  ], 
  "required": ["rampTime"] 
} 
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Table 3.5. FIWARE data model definitions for street lighting resources 

StreetlightModel 
 
{ 
  "id": "streetlightmodel:TubularNumana:ASR42CG:HPS:100",          // Entity's unique identifier 
  "type": "StreetlightModel",                                      // Must be equal to StreetlightModel 
  "name": "Tubular Numana 6M - ASR42CG - Son-T 100",               // Name of the streetlight model 
  "columnModelName": "01 TUBULAR P/T 6M NUMANA",                   // Name of the column's model 
  "columnColor": "green",                                          // Column's painting color (according to the W3C std color keywords) 
  "lanternModelName": "ASR42CG",                                   // Name of the lantern's model 
  "lanternManufacturerName": "Indal WRTL",                         // Name of the lantern's manufacturer 
  "lampModelName": "SON-T",                                        // Name of the lamp's model 
  "lampBrandName": "Philips",                                      // Name of the lamp's brand 
  "lampTechnology": "HPS",                                         // Technology used by the lamp (allowed values: [LED,LPS,HPS]) 
  "powerConsumption": 100,                                         // Nominal power consumption by the lamp (W) 
  "colorTemperature": 3000,                                        // Correlated color temperature of the lamp (K) 
  "colorRenderingIndex": 25,                                       // Color rendering index of the lamp 
  "luminousFlux": 2300,                                            // Maximum light output which can be provided by the lamp 
  "category": ["postTop"]                                          // Type of asset (allowed values: 
[postTop,bollard,lamppost,lightTower,flashingBeacon,sideEntry,...]) 
} 
 
Streetlight 
 
{ 
  "id": "streetlight:guadalajara:4567",                            // Entity's unique identifier 
  "type": "Streetlight",                                           // Must be equal to Streetlight 
  "location": {                                                    // Streetlight location represented using the GeoJSON43 point format 
    "type": "Point", 
    "coordinates": [  -3.164485591715449, 40.62785133667262 ] 
  }, 
  "areaServed": "Roundabouts city entrance",                       // High level area to which this streetlight belongs to 
  "status": "ok",                                                  // Overall status of this streetlight (allowed values: 
[ok,defectiveLamp,columnIssue,brokenLatern]) 
  "refStreetlightGroup": "streetlightgroup:G345",                  // Reference to a StreetlightGroup entity, if belongs to any 
  "refStreetlightModel": "streetlightmodel:STEEL_Tubular_10m",     // Reference to a StreetlightModel entity 
  "circuit": "C-456-A467",                                         // Identifier of the circuit to which this streetlight connects and gets power from 
  "lanternHeight": 10,                                             // Lantern's height (m) 
  "locationCategory" : "centralIsland",                            // Allowed values: [facade,sidewalk,pedestrianPath, road,playground,park,garden,bridge,...] 
  "powerState": "off",                                             // Streetlight's power state (allowed values: [on,off,low,bootingUp]) 
  "controllingMethod": "individual",                               // Method used to control this streetlight (allowed values: [group,individual]) 
  "dateLastLampChange": "2016-07-08T08:02:21.753Z"                 // Timestamp of the last change of lamp made (datetime type) 
} 
 

StreetlightGroup 
 
{ 
  "id": "streetlightgroup:mycity:A12",                             // Entity's unique identifier 
  "type": "StreetlightGroup",                                      // Must be equal to StreetlightGroup 
  "location": {                                                    // Locations of the streetlights in the group, represented using the GeoJSON multigeometry 
format 
    "type": "MultiLineString", 
    "coordinates": [ 
      [ [100.0, 0.0], [101.0, 1.0] ], 
      [ [102.0, 2.0], [103.0, 3.0] ] 
    ] 
  }, 
  "powerStatus": "on",                                             // StreetlightGroup power state (allowed values: [on,off,low,bootingUp]) 
  "areaServed": "Calle Comercial Centro",                          // High level area to which this streetlight group belongs to 
  "circuitId": "C-456-A467",                                       // Identifier of the circuit to which these streetlights connect and get power from 
  "dateLastSwitchingOn":  "2016-07-07T19:59:06.618Z",              // Timestamp of the last switching on 
  "dateLastSwitchingOff": "2016-07-07T07:59:06.618Z",              // Timestamp of the last switching off 
  "refStreetlightCabinetController": "cabinetcontroller:CC45A34",  // Reference to StreetlightCabinetController(s) entity(ies) 
  "switchingOnHours": [                                            // Switching on hours, structure used to set special schedules for certain dates 

                                                   
43

 Internet Engineering Task Force: The GeoJSON Format draft-ietf-geojson-03, tools.ietf.org/html/draft-ietf-geojson-03.  

http://www.tools.ietf.org/html/draft-ietf-geojson-03
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    { 
      "from" :  "--11-30", 
      "to" :    "--01-07", 
      "hours" : "Mo,Su 16:00-02:00", 
      "description": "Christmas" 
    } 
  ] 
} 
 

StreetlightControlCabinet 
 
{ 
  "id": "streetlightcontrolcabinet:A45HGJK",                       // Entity's unique identifier 
  "type": "StreetlightControlCabinet",                             // Must be equal to StreetlightControlCabinet 
  "location": {                                                    // Control cabinet location represented using the GeoJSON point format 
    "type": "Point", 
    "coordinates": [  -3.164485591715449, 40.62785133667262 ] 
  }, 
  "cupboardMadeOf": "plastic",                                     // Material the cabinet's cupboard is made of (allowed values: [plastic,metal,concrete,other]) 
  "brandName": "Siemens",                                          // Name of the cabinet's brand 
  "modelName": "Simatic S7 1200",                                  // Name of the cabinet's model 
  "refStreetlightGroup": ["streetlightgroup:BG678",                // Reference to StreetlightGroup entities controlled 
                          "streetlightgroup:789"  ], 
  "compliantWith": ["IP54"],                                       // List of standards to which the cabinet controlle is compliant with 
  "dateLastProgramming": "2016-07-08",                             // Date at which there was a programming operation over the cabinet 
  "maximumPowerAvailable": 10,                                     // The maximum power available for the circuits controlled by this cabinet (kW) 
  "energyConsumed": 162456,                                        // Energy consumed by the circuits controlled since metering started (kWh) 
  "dateMeteringStarted": "2013-07-07",                             // Timestamp of the starting date for metering energy consumed 
  "lastMeterReading": 161237,                                      // Value of the last reading obtained from the energy metering system (kWh) 
  "meterReadingPeriod": 60,                                        // The periodicity of the energy meter reporting (days) 
  "intensity": {                                                   // Electric intensity per alterning current phase (Europe: R,S,T) (A) 
     "R": 20.1, 
     "S": 14.4, 
     "T": 22 
  }, 
  "reactivePower": {                                               // Reactive power per alternating current phases (kVArh) 
    "R": 45, 
    "S": 43.5, 
    "T": 42 
  } 
} 
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The highlighted rows in Table 3.4 and Table 3.5 show, once again, the data model for either (1) a 

lighting resource that allows the light output to be set, or (2) the light-output setting of a lighting 

device. Note that in the first example, both “brightness” and “dimming” appear to specify parameters 

with an integer data representation and a 0-to-100 relative scale. The “brightness” parameter 

specifies a 0-to-100 scale, and although no scale is specified for “dimming,” the parameter name 

itself typically refers to a relative data representation. This presumption, further substantiated by the 

lack of a specified unit, seemingly leaves no means for differentiating between the two parameters. In 

the second example, the “luminous flux” parameter does not specify a scale, unit, or data 

representation. The parameter is described as representing “maximum light output,” perhaps in units 

of lumens, which suggests that it defines the maximum rated light output, rather than the current or 

targeted light output state. The “powerState” parameter specifies four allowed states: on, off, low, 

and booting up. Together, these parameters suggest that the FIWARE data models can only be used 

to represent and control bi-level streetlights, and not fully dimmable streetlights, which are now 

common with LED technology. 

Although an API provides a defined mechanism for integrating a given system with other systems, it 

doesn’t solve all issues associated with the heterogeneity of devices, resources, and services. As 

highlighted in the above examples, APIs can and do use arbitrary data models. In lieu of a common 

programming abstraction layer, the work of reconciling how multiple systems represent data via their 

APIs is the responsibility of the system integrator, who may then need to juggle varying formats, 

structures, syntaxes, and semantics in an attempt to pursue integration use-cases and other needs. 

4  Interoperability Use-Cases 

This study initially intended to compare CLS APIs based on the lessons learned from integrating 

multiple CLS into the CLTB web-based interoperability platform, and then use the platform as a 

means for characterizing the CLS APIs through the implementation of one or more use-cases. As the 

study became further defined and various options for use-cases were identified, it was decided that 

the v1 interoperability platform was not suitable for exploring the intended use-cases fairly and 

efficiently. Modifications that might improve its feasibility for interoperability testing were 

identified, including a complete update of the backend architecture and the addition of a structured 

database based on a common information model to facilitate low-level manipulation of the data and 

improve the experience for both the system integrator and the user. A project was initiated to develop 

a v2 interoperability platform that implemented these modifications. However, in the interests of not 

delaying further investigation into CLS APIs and the publication of this study, a strategy to develop 

Python integration code to implement illustrative use-cases was identified and pursued. Two 

use-cases were explored, as described below. 

4.1  Use-Case 1: Energy Data Reporting 

The first use-case consisted of polling and aggregating energy data from all six CLS in real time, 

something a user could be interested in doing for data logging, analysis, and visualization purposes as 

well as subsequent human review and consideration. This example showcases two hurdles directly 

associated with limited interoperability. First, even in the case of seemingly simple attributes such as 

energy consumption, data models can be different. Energy data can be and, in practice, are delivered 

in many different ways (e.g., measurement unit, accumulation period) and with different accuracy 

and resolution - which are often unspecified or undocumented. Second, because not all systems 

provide access through the API to historical data, this use-case requires the system integrator to 
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query the system in real time and log energy data, which requires some dedicated computing and 

storage resources. 

Table 4.1 and Table 4.2 show examples of API requests for historical and most recent energy data, 

respectively. In the first example, a full day of data is returned, upon request, in watt-hours - 

aggregated across the whole facility and presented in timestamped intervals. The second example 

shows the response of the most recent accumulation of kilowatt-hours consumed by a single lighting 

device from day one up to the associated timestamp. 

Overcoming these barriers requires an adaptation to the architecture of each API. In the absence of 

publish/subscribe solutions or historical data access, propagating updates to the user requires actively 

pulling data at some frequency that may or may not be aligned with the data rate of the system - 

which is, once again, often unspecified or undocumented. Once all data are pulled and aggregated, 

using them requires some data mapping; in the absence of a common data model, system integrators 

need to define their own internal data model or otherwise normalize the data in a way that allows 

them to integrate data from the multiple sources and present aggregated information. For this use-

case, it makes sense to normalize to watt-hours consumed per 15-minute intervals, to minimize the 

amount of data manipulation while keeping a maximum time resolution. Figure 4.1 shows the data 

aggregated from each individual CLS over a period of 200 hours. Each API request was scheduled 

using simple crontab44 jobs.  

                                                   
44

 Wikipedia: Cron, wikipedia.org/wiki/Cron.  

http://www.wikipedia.org/wiki/Cron
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Table 4.1. Connected lighting system API request for historical energy data 

Request 

Method Resource URL Headers Payload 
 
GET 

 
/api/v1/report.json 
 
/* The report command allows third-party systems to 
easily query for aggregated data at any level, and for 
a specified range of dates. All usage data is 
presented in  15m intervals, energy in Wh. */ 
 

 
{ 
  ‘Authorization’: ‘<api_token>’ 
} 
 

 
{ 
  ‘start’: ‘2017-04-07’, 
  ‘end’: ‘2017-04-08’ 
} 
 

Response 

Status Code Body 
 
200 (OK) 

 
{ 
  'header': {'timestamp': '2017-04-07T15:24:49-07:00', 'end': '2017-04-08', 'start': '2017-04-07'}, 
  'usage_facts': [ 
    {'sensor1_sec': 0, 'wh_merged': 1.0     , 'remote_sec': 0, 'interval_start': 1491550200, 'total_sec': 1800, 'active_sec':   0, 'sensor0_sec':   0}, 
    {'sensor1_sec': 0, 'wh_merged': 5.0     , 'remote_sec': 0, 'interval_start': 1491554700, 'total_sec': 1800, 'active_sec': 378, 'sensor0_sec': 183}, 
    {'sensor1_sec': 0, 'wh_merged': 0.0     , 'remote_sec': 0, 'interval_start': 1491555600, 'total_sec': 1800, 'active_sec':   0, 'sensor0_sec':   0}, 
    {'sensor1_sec': 0, 'wh_merged': 2.0     , 'remote_sec': 0, 'interval_start': 1491556500, 'total_sec': 1800, 'active_sec':   0, 'sensor0_sec':   0}, 
    {'sensor1_sec': 0, 'wh_merged': 4.0     , 'remote_sec': 0, 'interval_start': 1491558300, 'total_sec': 1800, 'active_sec': 314, 'sensor0_sec': 139}, 
    {'sensor1_sec': 0, 'wh_merged': 0.0     , 'remote_sec': 0, 'interval_start': 1491560100, 'total_sec': 1800, 'active_sec':   0, 'sensor0_sec':   0}, 
    {'sensor1_sec': 0, 'wh_merged': 3.0     , 'remote_sec': 0, 'interval_start': 1491561000, 'total_sec': 1800, 'active_sec': 228, 'sensor0_sec':  60}, 
    {'sensor1_sec': 0, 'wh_merged': 2.0     , 'remote_sec': 0, 'interval_start': 1491561900, 'total_sec': 1800, 'active_sec':   0, 'sensor0_sec':   0}, 
    {'sensor1_sec': 0, 'wh_merged': 1.166667, 'remote_sec': 0, 'interval_start': 1491566400, 'total_sec': 1800, 'active_sec': 112, 'sensor0_sec':  89}, 
    {'sensor1_sec': 0, 'wh_merged': 3.833333, 'remote_sec': 0, 'interval_start': 1491567300, 'total_sec': 1800, 'active_sec': 216, 'sensor0_sec':  66}, 
    {'sensor1_sec': 0, 'wh_merged': 4.0     , 'remote_sec': 0, 'interval_start': 1491571800, 'total_sec': 1800, 'active_sec': 186, 'sensor0_sec': 113}, 
    [...] 
    {'sensor1_sec': 0, 'wh_merged': 1.0     , 'remote_sec': 0, 'interval_start': 1491603300, 'total_sec': 1800, 'active_sec':   0, 'sensor0_sec':   0} 
  ] 
} 
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Table 4.2. Connected lighting system API request for most recent energy data 

Request 

Method Resource URL Headers Payload 
 
GET 

 
/papi/v1.1/devices/<device_id>/metrology 
 
/* Returns device latest metrology values. All 
values are base64 encoded. Energy is reported as 
total cumulative energy consummed by the device in 
kWh. */ 
 

 
{ 
  ‘Content-Type’: ‘application/json’ 
} 
 

 
 
 

Response 

Status Code Body 
 
200 (OK) 

 
{ 
  'status': 'SUCCESS', 
  'transactionId': '1018102', 
  'deviceId': '<device_id>' 
  'attributes': [ 
    {'timeMeasured': '1491605872820', 'name': 'averageVoltage'          , 'value': 'MTI0LjY1'    }, 
    {'timeMeasured': '1491605872820', 'name': 'minVoltage'              , 'value': 'MTIwLjQ2'    }, 
    {'timeMeasured': '1491605872820', 'name': 'minPowerFactor'          , 'value': 'MC4w'        }, 
    {'timeMeasured': '1491605872820', 'name': 'instantaneousCurrent'    , 'value': 'MC4wMzUz'    }, 
    {'timeMeasured': '1491605872820', 'name': 'maxVoltage'              , 'value': 'MTI3LjM3'    }, 
    {'timeMeasured': '1491605872820', 'name': 'maxPower'                , 'value': 'NzYuMDQ='    }, 
    {'timeMeasured': '1491605872820', 'name': 'lightOnTime'             , 'value': 'Mjc3MS42OQ=='}, 
    {'timeMeasured': '1491605872820', 'name': 'minPower'                , 'value': 'MS41OQ=='    }, 
    {'timeMeasured': '1491605872820', 'name': 'lampDimLevel'            , 'value': 'MTAw'        }, 
    {'timeMeasured': '1491605872820', 'name': 'averagePower'            , 'value': 'MS42NA=='    }, 
    {'timeMeasured': '1491605872820', 'name': 'averageCurrent'          , 'value': 'MC4wMzQx'    }, 
    {'timeMeasured': '1491605872820', 'name': 'maxPowerFactor'          , 'value': 'MC45OTU='    }, 
    {'timeMeasured': '1491605872820', 'name': 'averagePowerFactor'      , 'value': 'MC4zODQ='    }, 
    {'timeMeasured': '1491605872820', 'name': 'lampOnOffStatus'         , 'value': 'MA=='        }, 
    {'timeMeasured': '1491605872820', 'name': 'instantaneousPower'      , 'value': 'MS42Mg=='    }, 
    {'timeMeasured': '1491605872820', 'name': 'cumulativeEnergyReading' , 'value': 'MjQ4Ljc4MjQ='},  // 'MjQ4Ljc4MjQ’ –-base64decoding-> ‘248.7824’ 
    {'timeMeasured': '1491605872820', 'name': 'instantaneousPowerFactor', 'value': 'MC4zODM='    }, 
    {'timeMeasured': '1491605872820', 'name': 'deviceOnTime'            , 'value': 'Mzc4OC41Ng=='}, 
    {'timeMeasured': '1491605872820', 'name': 'minCurrent'              , 'value': 'MC4wMjg4'    }, 
    {'timeMeasured': '1491605872820', 'name': 'instantaneousVoltage'    , 'value': 'MTI0LjY='    }, 
    {'timeMeasured': '1491605872820', 'name': 'maxCurrent'              , 'value': 'MC42MTM4'    } 
  ], 
} 
 



34 

 

 

  

Figure 4.1. Energy usage per 15-minute interval for each of the six CLS over a period of 200 hours. 

Red vertical lines indicate a 15-minute-interval data point that was not reported due to 

network or other issues. 

As mentioned, a certain amount of data conversion and post-processing, involving conservative 

interpolation and resampling, was done in order to implement the common 15-minute interval watt-

hour energy-usage data model, and to align those intervals with one another. The CLS system whose 

performance is shown in the upper left of Figure 4.1 consisted of two luminaires with an occupancy-

sensing control strategy implemented. The upper-right graph shows the performance of three 

luminaires implementing a combination of schedule-based control, occupancy sensing, and daylight 

compensation. The middle left graph shows the performance of a CLS consisting of three luminaires 

with only manual control and an early development gateway with limited error handling, which 

resulted in random disconnects of the API server (red lines) that required a manual reboot. Further, 
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this CLS only reports its current power status, so to log energy data in 15-minute intervals, a power 

reading was requested for each fixture every 10 seconds, and power was integrated every 15 minutes 

using the composite trapezoidal rule with linear interpolation. The middle right plot shows the energy 

consumption of a single-fixture system under the control of varying schedules across the duration of 

the test. And finally, the bottom two graphs show the energy consumption of two single-fixture 

systems, manually controlled (on and off on the left, and always-on on the right). Their API only 

reports energy usage in cumulated kilowatt-hours since commissioning, and the graphs were obtained 

by subtracting each reading from the previous one, and aligning and summing the results within the 

proper interval period. These two plots do not appear to represent the actual behavior of the two CLS, 

because of limited reporting resolution and a low power draw relative to the 15-minute interval. 

Rather than depicting a constant level of energy consumption that is consistent with being on at a 

steady power level, they show zero consumption until a new minimum resolution increment is 

reached, which then results in a spike. Using additional post-processing, such as a moving average or 

low-pass filter, provides a more realistic representation, shown by the green lines. 

Figure 4.2 shows the aggregation of energy data for all CLS. All resampling and post-processing 

calculations were done conservatively and in a manner that could be fully automated. The total 

energy consumed over the 200-hour period is 36.4 kWh (ca. 182 W average power draw), with a 

peak of 152.4 Wh/15 min (ca. 610 W average power draw) and a low of 19.4 Wh/15 min (ca. 78 W 

average power draw). 

 

Figure 4.2. Energy usage per 15-minute interval for each of the six CLS over a period of 200 hours, 

aggregated and presented in a stacked format to show the cumulative consumption. 

Although energy data aggregation through APIs is clearly possible, merging heterogeneous data with 

different levels of accuracy and resolution – both of which were unspecified in the API 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

0 25 50 75 100 125 150 175 200

en
er

gy
 u

sa
ge

 (
W

h
 in

 1
5m

) 

interval start (h) 



36 

documentation of every CLS in this study – clearly shows the limitations of interoperability as 

facilitated by APIs. First, the diversity of API architectures and energy data models required a 

significant amount of system integration work that required human, computing, and network 

bandwidth resources. Secondly, aggregating reported energy data with different overlapping and 

unsynchronized accumulation periods can mask actual behavior and result in misconceptions, as the 

energy performance of systems with the higher accuracy and resolution is lost in the noise of the 

lower-quality data. 

4.2  Use-Case 2: Broadcasting a Lighting Command 

The second use-case consisted of broadcasting a uniform lighting control command to every 

luminaire in all six CLS, as might be done in emergency and/or manual override scenarios. A variety 

of API features were used to simultaneously turn all luminaires on to their maximum output level in a 

minimum amount of time, including group commands, dynamic discovery, emergency modes, 

manual override, and software tools such as coroutine45 networking libraries that enabled the creation 

of parallel HTTP requests. 

Only one out of the six CLS implemented a dedicated API call for emergency situations that allowed 

setting the relative light output of all luminaires to 100% via a single request. For the others, the best 

action was to define an “emergency” group containing all luminaires. However, not all systems 

implemented the option to group fixtures together, and some had limitations on the creation of those 

groups; in some CLS, luminaires could only be assigned to a single group; in others, groups could 

not partially overlap (i.e., some luminaires that were in one group could also belong to a fully 

overlapped subgroup, but the subgroup could not contain luminaires from outside the main group). 

Hence, the creation of an emergency group can limit the ability to implement other control strategies 

in specific areas during normal operation. Among CLS investigated in this study, three out of six 

enabled the user to define a group that contained all luminaires, as well as smaller subgroups, and 

control both through the API. For the remaining systems, implementing this feature required dynamic 

discovery and broadcast commands or multiple individual commands, thereby requiring several 

HTTP requests to turn all lights on. One of the six CLS did not at the time have any broadcast 

capability, or the ability to group luminaires and change the light output for all luminaires in the 

group; rather, it required one API call per luminaire to change the light output of the entire CLS. 

Table 4.3, Table 4.4, and Table 4.5 show examples of requests and responses for the API methods 

used to implement this use-case. 

 

                                                   
45

 Wikipedia: Coroutine, wikipedia.org/wiki/Coroutine.  

http://www.wikipedia.org/wiki/Coroutine


37 

Table 4.3. Connected lighting system API, emergency mode example 

Request 

Method Resource URL Headers Payload 
 
POST 

 
/ems/api/org/area/v1/setEmergency/<area_id> 
 
/* During an emergency, this command automatically 
sets the lighting level of all fixtures in the area 
to the maximum level of 100%, so the area is 
entirely lit up. The response is success or 
failure. */ 

 
{ 
  'Hostname': '<host_ip>', 
  'ApiKey': <usr>, 
  'Authorization': ‘sha1(<usr><token><ts>)’, 
  'ts': ‘<ts>’, 
  'Accept': 'Application/JSON', 
  'Content-Type': 'Application/JSON' 
} 
 

 
{ 
  ‘time’: ‘<emergency_timeout>’ 
} 
 

Response 

Status Code Body 
 
200 (OK) 

 
{ 
  ‘status’: ‘0’ 
} 
 

Table 4.4. Connected lighting system API, group command (via profile activation) example 

Request 

Method Resource URL Headers Payload 
 
POST 

 
/api/v1/profiles/active_profiles.json 
 
/* Push a specified profile. */ 

 
{ 
  'Authorization’: ‘<api_token>’  
} 
 

 
{ 
  ‘profile: ‘<emergency_profile_id’, 
  ‘expiry’: ‘fixed’ or ‘permanent’, 
  ‘duration’: ‘<minutes>’ (if fixed expiry) 
} 
 

Response 

Status Code Body 
 
200 (OK) 

 
None 
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Table 4.5. Connected lighting system API, dynamic discovery and manual override example 

Request 

Method Resource URL Headers Payload 
 
GET 

 
/reports/api/servlet/SLVAssetAPI 
 
/* 
  Return an array of devices for the given geozone. 
*/ 

  
{ 
  'methodName':'getGeoZoneDevices', 
  'geoZoneId':'<zone_id>', 
  'recurse':'True', 
  'ser':'json' 
} 
 

Response 

Status Code Body 
 
200 (OK) 

 
[ 
  { 
    'categoryStrId': 'controllerdevice', 
    'name': 'PNNL Lab Controller', 
    'geoZoneNamesPath': 'PNNL Lab Portland', 
    'id': [...], 
    'controllerStrId': 'AP_PNNL', 
    'geoZoneId': [...], 
    [...] 
  }, 
  { 
    'categoryStrId': 'streetlight', 
    'name': 'SELC-1D2F06', 
    'geoZoneNamesPath': 'PNNL Lab Portland', 
    'idOnController': 'SELC-1D2F06', 
    'id': [...], 
    'controllerStrId': 'AP_PNNL', 
    'geoZoneId': [...], 
    [...] 
  }, 
  { 
   'categoryStrId': 'streetlight', 
   'name': 'SELC-1D2EFC', 
   'geoZoneNamesPath': 'PNNL Lab Portland', 
   'idOnController': 'SELC-1D2EFC', 
   'id': [...], 
   'controllerStrId': 'AP_PNNL', 
   'geoZoneId': [...], 
   [...] 
  } 
] 
 
 

Request 

Method Resource URL Headers Payload 
 
POST 

 
/reports/api/servlet/SLVDimmingAPI 
 
/*  
Update the dimming levels for the given 
streetlights. 
*/ 

  
{ 
  ‘methodName’:’setDimmingLevels’, 
  ‘controllerStrId": <controller_array>, 
  ‘idOnController": <streetlight_array>, 
  ‘dimmingLevel’: <dimminglevel_array>, 
  ‘ser’: ‘json’ 
} 
 

    
    
    
    
    
    
    
    

Response 
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Status Code Body 
 
200 (OK) 

 
 
{ 
  ‘errorCode’: 0, 
   ‘status’: null, 
   ‘value’: [‘OK’,‘OK’], 
   [...] 
} 
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One challenge a system integrator might encounter when implementing this use-case is the need to 

send multiple HTTP requests to several CLS servers in a minimum amount of time. Although the 

simplest approach is to send them sequentially and wait for each response before moving to the next 

one, doing so might not be compatible with the use-case latency needs. To minimize the time (and 

cost) required to send multiple HTTP requests, one can implement a protocol that allows those 

requests that can execute concurrently to do so. This can be accomplished by using requests that are 

non-blocking and asynchronous (i.e., that return and let work happen in the background before the 

response triggers some future action in the program). The ability to launch new requests while 

waiting for previous requests to respond can result in a significant reduction in overall latency. The 

protocol described and used in this study was developed using Python 2.7 and the grequests46 library; 

other Python options include tornado and asyncio HTTP clients.47 

A sub-100ms latency illuminance meter was designed and built to measure how quickly CLS react to 

commands through their application programing interfaces. The prototype was built using open-

hardware development boards and open-source libraries from Adafruit48,49,50,51 with the Platformio52 

cross-platform build system for embedded development. The illuminance meter and its prototype 

construction are shown in Figure 4.3, along with its key components. A breadboard schematic as well 

as the firmware source code can be found on GitHub.53 

The data-rate limitation for this meter comes from the light-sensor analog-to-digital converter that 

integrates photodiode current; the fastest setting enables a minimum resolution reading for a 13.7ms 

integration time. A small improvement that might be considered for future development would use 

the programmable interrupt instead of continuously polling the sensor data registers. The firmware 

includes manual control of the sensor gain (1x or 16x) and integration time (13.7ms, 101ms, or 

402ms), as well as a deep-sleep mode to minimize battery drain when not in use. The light sensor 

provided three outputs per integration period: a) the raw digitized measurement from a broadband 

(visible + infrared) photodiode, b) the raw digitized measurement from an infrared photodiode, and 

c) an illuminance calculation based on the empirical formula generated from the manufacturer’s 

optical testing with fluorescent and incandescent light sources. A Wi-Fi connection is implemented 

through Dynamic Host Configuration Protocol (DHCP), the Websocket data is served on port 88, and 

a human-readable HTML page is presented on port 80.  

 

                                                   
46

 GitHub: kennethreitz/grequests, github.com/kennethreitz/grequests.  
47

 tornadoweb.org , docs.python.org/3/library/asyncio 
48

 Adafruit: Adafruit Feather HUZZAH with ESP8266 WiFi, adafruit.com/products/2821.  
49

 Adafruit: FeatherWing OLED - 128x32 OLED Add-on For All Feather Boards, adafruit.com/products/2900. 
50

 Adafruit: Adafruit TSL2561 Digital Luminosity/Lux/Light Sensor Breakout, adafruit.com/products/439. 
51

 GitHub: Adafruit Industries, github.com/adafruit. 
52

 PlatformIO, platformio.org.  
53

 GitHub: clem-g/luxinterior, github.com/clem-g/luxinterior.  

http://www.github.com/kennethreitz/grequests
http://www.tornadoweb.org/
https://docs.python.org/3/library/asyncio.html
http://www.adafruit.com/products/2821
http://www.adafruit.com/products/2900
http://www.adafruit.com/products/439
http://www.github.com/adafruit
http://www.platformio.org/
http://www.github.com/clem-g/luxinterior
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Key components: 

ESP826654 Wi-Fi microcontroller from Espressif Systems with full TCP/IP stack  

TSL256155 I2C light sensor from AMS 

Univision UG-2832HSWEG0256 OLED display 

WebSocket57 (a low-overhead protocol for real-time web applications) 

Figure 4.3. Low-latency illuminance meter and prototype construction 

Figure 4.4 shows the results of latency measurement tests performed for each of the six CLS 

explored in this study. Testing consisted of sending a single command to change the power state or 

light output of a luminaire or group of luminaires through the API, and measuring the time between 

this request and the actual change of illuminance below a specific luminaire. An estimated 20ms 

maximum additional latency is introduced by the illuminance sensor measurement. For API servers 

hosted locally, the request was sent from the LAN and under normal network load conditions. One 

hundred latency measurements were collected per CLS in order to characterize the reliability and 

statistical performance of each system and its API. Each blue dot in Figure 4.4 plots represents one 

measure; each red line represents an API request that either did not get through or timed out. The 

statistics below each graph describe the reliability, or percentage of requests that were successfully 

executed (ρ); the response time average (μ); and the response time standard deviation (σ) of the CLS. 
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Figure 4.4. Response time for each of the six CLS, measured and plotted sequentially 100 times for 

statistical analysis 

Notably, there was significant variation among the six CLS in the both the average response time and 

latency behavior. Half of the CLS demonstrated an average latency of less than one second. Among 

these three, however, one (upper left) was both very reliable (=100%) and consistent (=0.09s); one 

(lower left) was very reliable but noticeably less consistent, due to occasionally slower response 

times; while the third (upper right) was significantly less reliable (=80%), but very consistent when 

it did respond (=0.04s). The remaining three CLS were all very reliable, but varied in other ways. 

One (middle left) demonstrated a latency that was more than three times as long as than the fastest 

three (=2.33s), and also suffered from some occasionally long response times. One (middle right) 

was very consistent, but consistently slow (=25.29s). One (lower right) exhibited particularly odd 

behavior, whereby each subsequent test resulted in a longer response time than the one before it. At 
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the time of this publication, the vendor had not yet resolved whatever oddity was causing this clearly 

unintended behavior. Long response times, even if they only occur occasionally, can be explained in 

different ways: Some systems are designed to administer a significant number of nodes and are not 

designed for real-time control; some systems have more complicated network architectures, with 

several middleware layers and software stacks; and some APIs are hosted on a remote server and can 

therefore be susceptible to sporadic routing delays, reordered or repeated packet delays, overloaded 

switches, network timeouts, or connection losses. The reliability issues observed with one CLS 

(upper-right plot) were likely due to the gateway being a pre-commercial prototype, for which 

connection quality of service was simply determined based on the received-signal-strength indicator 

(RSSI) between the gateway and the end nodes, and no handshake had yet been implemented; as a 

result, commands were not always received by the luminaires. 

5  Summary and Recommendations 

The full potential of connected lighting systems will only be realized if they can be easily and 

efficiently interconnected to and exchange data with one another and with other (non-lighting) 

systems. Although APIs provide a means to bridge islands of data and create coherent ecosystems, 

the integration work is not trivial. Beyond the learning curve of each individual interface, API 

integration presents new challenges, including data mapping, translation or normalization, workflow 

orchestration, and development of a single user interface – all in a secure, scalable, and maintainable 

way. Making hardware resources, information, and services accessible in a distributed system is not 

easy. They are hosted on different platforms in different networks, using different communication 

technologies, information representations, and data models, and are managed by different 

administrators. In order to hide the inherent complexity and appear to the users as a single coherent 

system, a significant amount of backend integration work is required. 

APIs enable the implementation of many use-cases. However, use-case performance may be 

hampered by one or more issues. Asynchronicity is a significant hurdle to the creation of an 

interoperability platform via APIs. When a number of processes are running in parallel on different 

machines in several locations, and the network between them is not always perfectly reliable or 

immune to latency issues and bandwidth limitations, synchronization of commands or readings may 

be difficult. Further, partial failures of a subsystem or an interface, as well as performance issues, are 

difficult to control, debug, and handle in a system stitched together using APIs. Implementing 

mechanisms and policies that maximize reliability and quality of service, while still allowing the 

integrated system to scale and remain effective and perform when the number of managed resources 

or the number of users increases, requires advanced developer skills. Finally, providing a user 

experience that reduces the inherent complexity of multiple systems and interfaces requires the 

navigation of data residing in multiple heterogeneous locations, potentially presented in different 

formats and conveying different information, and also requires an ability to mend structural and 

semantic gaps. 

This study is the first of a multipart effort to explore the interoperability of commercially available 

(or in some cases, pre-commercial) CLS. This exploration was aimed at answering the following key 

questions, which might then facilitate the identification of industry needs and the development of 

recommendations for meeting those needs:  
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1 Question 

 How do API implementation and information models currently found in commercially 

available CLS vary? 

Answer 

 Availability: Not all APIs were readily available (e.g., described in an unrestricted webpage 

or downloadable document). Some required contacting the CLS developer, who in some 

instances provided the API readily, and in others required an explanation of why the API 

was being requested and how it would be used. Some required a signed nondisclosure 

agreement in order to obtain API access or documentation. 

 Authentication schemes: APIs used a wide variety of authentication schemes – some over 

unencrypted HTTP, others over secured HTTPS; some with a simple cleartext key, and 

others with a cryptographic hash authentication key. Integration required support of 

multiple schemes, subjecting the integrated environment to different cybersecurity 

vulnerabilities. 

 Resource structure: System resources described in APIs were named and organized in 

myriad – and, in some cases, inconsistent – ways, with significant variation in structure, 

nomenclature, and complexity. Although some APIs had a logically consistent resource-tree 

structure, others were apparently developed incrementally over multiple version releases, as 

more features were added over time; incremental extensions were not always implemented 

consistently or logically. 

 Data models: APIs used a wide variety of data models, each apparently custom-developed. 

Custom data models are not always well designed or documented, or even self-consistent. 

Data might exist in very different locations within API resource trees (e.g., 

/devices/<device_id>/resources, /reports/api/monitoring), and very different naming 

conventions or labels (e.g., /lt/dim, LuxLevel, brightness, dimming), units (e.g., absolute 

lux, relative % illuminance), and data types (e.g., integer, floating point) are used for 

seemingly similar or at least related parameters. In some cases, models from different 

systems may be functionally incompatible. 

 CORS support: Some API developers supported CORS, while others either did not, or did 

not do so readily (i.e., it was difficult to find the vendor staff who could whitelist access 

from specific domains). 

 Historical data access: Some CLS did not provide API access to historical data outside a 

certain time window, or only provided real-time data. In some cases, the real-time update 

rate was unspecified, seemingly inconsistent, or asynchronous, and was dependent on how 

frequently the CLS could be queried through the API. 

Recommendations 

 CLS developers should make their APIs readily available and ensure that documentation is 

synchronized with software updates. Further, they should facilitate easy, efficient bug 

reporting. 

 The lighting industry, and perhaps the IoT industry as well, should consider developing and 

adopting a common approach to authentication, with some minimum level of resistance to 

cybersecurity vulnerabilities. 
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 CLS developers should enable CORS, secured by the use of HTTPS together with 

authentication and authorization schemes. 

 CLS developers should name and organize API resources in readable, logical, and 

consistent ways.  

 CLS developers should fully document API data models, including reporting unit (when 

applicable), data type, resolution, and accuracy.  

 The lighting industry, and perhaps the IoT industry as well, should consider developing and 

adopting a well-thought-out, modern, and evolving common resource organization. 

 The industry should consider developing and adopting well-thought-out, maintained 

common information and/or data models. These models should be created by entities with 

application expertise specific to the information or data model. 

2 Question 

 What type of effort is required to exchange information between – or, more fundamentally, 

to integrate – heterogeneous and asynchronous resources residing in different CLS, via 

their APIs, into a single interoperable platform? 

Answer 

 Software coding: Such integration requires some degree of software coding. Although the 

type and amount of coding required can vary by the approach pursued, integration via APIs 

requires more than configuration and validation. Integration via an existing “platform” 

might require less development time – in particular, if the platform was designed for, or 

has been previously used to implement, intended use-cases. However, the use of such 

“platforms” typically comes with tradeoffs between user-friendliness, functionality, and 

flexibility. Further, they must be maintained to address hardware, firmware, and software 

updates, and ideally support new systems as they enter the market. 

 Harmonization: In lieu of sufficient documentation, system integrators may have to 

ascertain, sometimes through crude trial-and-error experimentation, what an available API 

resource represents and what information and data model it uses. Converters or translators 

may need to be developed to handle inconsistent data models. Further, an information 

model that suitably encompasses the myriad data models to be integrated may need to be 

inferred, in order to effectively aggregate data or broadcast commands, for example.  

 Maintenance: Integrating multiple CLS through APIs does not result in a homogenous 

system; at best, it yields a common user interface and experience. However, effectively 

hiding the underlying complexity can require a significant amount of backend integration 

work. Managing what functionally remains a distributed system at one or more layers can 

be challenging and effortful. Differences between network protocols, device 

representations, and access policies that affect performance must be understood, addressed 

(if possible), and managed – not only initially, but over the course of hardware, firmware, 

and software upgrades. 

Recommendations 

 API developers should explore approaches to reducing system integrator effort – for 

example, by providing support for multiple measurement units and time aggregations for 

reported data, and support for controls schemes beyond switching between or pushing out 
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of new device profiles. 

 API developers should consider the implementation of publish-subscribe models for 

reported data. 

 API developers should consider the implementation of override or prioritization schemes 

that support adaptive control of configurable system devices. 

 DOE intends to continue to identify and explore viable interoperability approaches. System 

integrators, industry consortia, and CLS developers should inform DOE when existing or 

new interoperability approaches reach new levels of functionality, viability, or market 

adoption. 

3 Question 

 How might the implementation of real-life use-cases effectively characterize the level of 

interoperability found in CLS? 

Answer 

 The implementation of real-life use-cases can expose previously unseen or unanticipated 

issues. Often, this occurs when a design constraint, boundary condition, or tradeoff is 

challenged by the functional or performance requirements of the use-case. Implementation 

can also lead to the identification of new or additional API functionality or features that 

might support, or better support, both the use-case under investigation as and other use-

cases. 

 In this study, implementation of an energy data aggregation use-case exposed issues 

beyond the impact of working with different data models. Energy measurement accuracy 

and resolution were generally unspecified in marketing literature and API documentation, 

raising concern as to how to statistically treat data from different sources. Further, the lack 

of API access, in some cases, to historical energy data required the system integrator to 

query the CLS in real time and log energy or power data, thereby requiring dedicated 

storage and computing resources. 

 In this study, the implementation of a broadcast lighting command use-case exposed 

latency differences between systems that might arguably compromise both the 

functionality and performance needs of the use-case.  

Recommendations 

 CLS developers should support user exploration of new and previously unproven use-cases 

and facilitate easy, efficient bug reporting. 

 DOE intends to continue to identify potentially high-value use-cases, and explore how well 

they can be implemented by integrated heterogeneous CLS using available interoperability 

approaches, as well how they might be enabled by interoperability between CLS and other 

systems. Lighting-industry stakeholders should provide DOE with suggestions for use-

cases to explore, and estimates of their relative value.  
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