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Abstract 
Emerging connected lighting systems (CLS) that incorporate distributed intelligence, network interfaces, and 
sensors can become data-collection platforms that enable a wide range of valuable new capabilities as well as 
greater energy savings in buildings and cities. However, CLS technology is currently at an early stage of 
development, and its increased connectivity introduces cybersecurity risks that are new to the lighting industry 
and that must be addressed for successful integration with other systems. 

While a number of existing frameworks, guidelines, and tests for evaluating cybersecurity vulnerability may 
apply to CLS in whole or in part, there is currently no mandatory requirement for cybersecurity testing or 
certification. The lighting industry, including technology developers and specification organizations, is 
currently evaluating the suitability of existing frameworks and guidelines for CLS. To support these efforts, 
Pacific Northwest National Laboratory (PNNL) is conducting a series of studies intended to educate lighting-
industry stakeholders on specific cybersecurity practices and characterize their implementation in 
commercially available CLS with varying system architectures, network-communication technologies, and 
degrees of maturity.  

This first study explores authentication practices and their implementation in multiple CLS. A total of 18 tests 
were developed by Underwriters Laboratories (UL) and implemented in PNNL’s Connected Lighting Test Bed 
(CLTB). The tests explore the implementation of basic authentication best practices as well as known 
technology-specific best practices. As a result, not all tests are applicable to all CLS. 

A total of 40 out of 72 potential tests (four CLS, 18 potential tests each) were applicable for four evaluated 
CLS, and the CLS collectively passed 26 of the 40 tests (65%). While pass/fail ratio is a simple way of 
reporting test results, it is not an actionable metric. Cybersecurity vulnerability testing is a risk-analysis 
practice; the relevance of passing or failing a certain test is best evaluated in concert with an understanding of 
the risk associated with that vulnerability in a specific implementation. Nevertheless, pass/fail ratios give some 
indication of the range of performance found in market-available CLS.  

This study demonstrates that tests for authentication vulnerabilities can be developed with objective pass/fall 
criteria, therby facilitating comparisons between CLS. Based on the limited results of this study, it appears that 
the CLS that are being brought to market have varying levels of authentication vulnerability. It is hoped that 
these evaluations will support and perhaps accelerate industry discussions on the risks of specific security 
vulnerabilities, what vulnerabilities should be addressed by in-development of future lighting-specific best 
practices, and whether any such practices should be included in voluntary lighting standards. 

Introduction 
Connected lighting systems (CLS) comprise an emerging class of lighting infrastructure that does more than 
just light spaces. Through the incorporation of distributed intelligence, network interfaces, and sensors, CLS 
become data-collection platforms that enable a wide range of valuable new capabilities as well as greater 
energy savings in buildings and cities. CLS may contain sensors intended to aid in the optimization of lighting 
service, as well as other sensors that might be used to optimize the performance of other connected building 
systems [Pandharipande 2018]. However, CLS technology is currently at an early stage of development, and 
many questions remain about how well it will work, whether it will actually save energy, how much 
measurable value is provided by new capabilities, and whether it will offer enough benefits and value-added 
features to justify the investment. Further, increased connectivity introduces cybersecurity risks that are new to 
the lighting industry and that must be addressed in order for successful integration with other systems. 

The network integration of multiple systems, manufactured by different vendors, that manipulate aspects of, or 
otherwise interact with, the physical world typically results in a complex cyber-physical system (CPS). The 

https://www.energy.gov/eere/ssl/connected-lighting-test-bed
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integration of CLS with other building-operation technology systems (e.g., HVAC) and/or building-
information technology systems is one example of such a CPS. Complex CPS offer many demonstrated and 
perceived benefits; however, they also present greats risk to privacy and security protections [Yang 2017]. 
While many industries understand the value created by system integration, there is a recognition across 
industries that a common approach is needed to jointly address security, efficiency, privacy, and scalability 
[Siegel 2018]. In heterogeneous CPS environments such as might exist in buildings, perhaps the most 
important aspect of securing the integration of CLS and other building systems is implementing and 
maintaining a consistent security architecture, where secure components utilize secure communication 
protocols and secure access-control mechanisms. The heterogeneity of CPS components has been found to 
contribute significantly to many documented attacks [Humayed 2017]. 

While a number of different secure architectures that might be useful for such systems have begun to emerge, 
perhaps the biggest impediment to the widespread integration of such systems is the lack of one or more 
suitable, well-accepted system-development frameworks. In order for CLS that are integrated with other 
systems to achieve wide industry adoption and deliver upon their energy-savings potential, it is crucial to be 
able to identify common and likely systemwide attack vectors, protect the information and data flows between 
devices, and prevent system hijacking [Minoli 2017]. While zero-day exploits (e.g., WannaCry) and high-
profile data breaches (e.g., Equifax) tend to garner the most attention by the press and general public, most 
security breaches come from known vulnerabilities that are not patched or secured. Industry experts expect that 
virtually all of the vulnerabilities exploited by the end of 2020 will continue to be ones known by security and 
IT professionals. [Moore 2017]. 

This study is the first in a series intended to educate lighting-industry stakeholders on specific cybersecurity 
practices and characterize the implementation of those practices in commercially available CLS with varying 
system architectures, network communication technologies, and degrees of maturity. This first study explores 
authentication practices and their implementation in multiple CLS. Future studies will address other practices 
and/or the characterization of additional CLS. 

Background 
Cybersecurity is a discipline focused on protecting data, resources, people, and organizations from attacks that 
may result in financial loss, loss of life, or other damage. Cybersecurity core functions involve managing risk – 
defined as “a measure of the extent to which an entity is threatened by a potential circumstance or event” and 
“a function of the adverse impacts that would arise if the circumstance or event occurs and the likelihood of its 
occurrence1” – by identifying potential threats, implementing appropriate security controls, testing security-
control effectiveness, and responding to attacks that circumvent the security controls. As entities continually 
face new and evolving threats, these functions are part of a continuous process, with the goal of eliminating 
risk exposure or reducing it to manageable levels. 

Identification of potential threats requires the implementation of a continuous threat-modeling process that 
attempts to account for any and all threats facing an entity, where a threat is defined as “any circumstance or 
event with the potential to adversely impact operations, assets, individuals, or other organizations, through an 
information system via unauthorized access, destruction, disclosure, modification of information, and/or denial 
of service1”. An entity may be a hardware component, a software component, an application, a system, an 
environment, or an organization. The threat-modeling process generally results in a traceability matrix that 
maps identified threats to potential security controls and is often used as an input to the risk-management 
process. 

 

1 https://standardscatalog.ul.com/standards/en/standard_2900-1_1 

https://standardscatalog.ul.com/standards/en/standard_2900-1_1
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Security controls are implemented to effectively address the identified threats based on the entity’s goals and 
risk tolerance. Security controls are often categorized as management, operational, and technical, with 
examples including firewalls, cryptographic mechanisms, and access controls involving authentication and 
authorization mechanisms. Determining the effectiveness of implemented security controls is accomplished by 
testing, which often takes the form of vulnerability assessments, penetration testing, and/or red team 
operations. Testing attempts to determine whether security controls sufficiently address identified threats and 
risks in a methodical, repeatable manner. 

Authentication 
Authentication involves a class or family of security controls that constitute one or more processes to verify the 
identity claim. Defining the authentication process and needed mechanisms typically begins with the 
development of an appropriate threat model that defines trust boundaries and who or what may traverse them 
in order to interact with an entity of value (e.g., a system, network, or specific data). Once the identity of an 
entity is verified (or authenticated), the subsequent actions it may perform are determined by authorization. 
Authorization is the process of verifying that a requested action is permitted, and it is accomplished by 
assessing the privileges associated with the requesting entity. Changes to both authentication mechanisms and 
authorization privileges are typically audited by some defined means. 

An identity is a unique representation of someone or something, such as an equipment user or a specific 
computer connected to a network. Verification of an identity is typically performed by submission of one or 
more secrets, which are compared with stored representations or copies of those secrets. Successful 
authentication provides reasonable assurance that the identity claim is legitimate and that the entity is thus 
entitled to perform actions permitted only to authenticated entities. The most common authentication 
mechanism is the traditional combination of a username and a secret password, which together are also 
referred to as a “credential set.” Humans and machines are both capable of using credential sets as well as 
other authentication mechanisms, such as cryptographic keys and tokens. 

An identity associated with an entity is typically established or enrolled at the time of manufacture in the case 
of hardware, or the time of release in the case of software, or on-demand. Entities typically enroll human and 
machine users in an on-demand manner, as it may be impossible to predetermine which users will need 
identities established beforehand. The enrollment process, which is sometimes referred to as “onboarding” or 
“provisioning,” begins with a supplicant (e.g., a user, service, or system) requesting the establishment of an 
identity with the authenticator, or begins with the authenticator establishing an identity for the supplicant 
without an explicit request. The process then typically includes the authenticator employing some form of 
vetting (also known as “proofing”) of evidence provided by the supplicant to establish trust. The process then 
typically concludes with the provision and storage of a secret (e.g., a password) known only to the supplicant 
and authenticator. Identities may also be established at the time of manufacture or release, with secrets being 
cryptographically stored within a secure hardware element, configuration file, or database. The identity of a 
machine entity is typically provisioned by an authenticator or by another device, such as a smartphone or 
tablet, and is established by sharing one or more cryptographic keys. Various forms of cryptographic keys 
exist, such as public/private key pairs, network keys, and application keys. An entity may possess one or more 
keys, with each key serving a different purpose. 

The authentication process begins with a supplicant making an identity claim. An authenticator – typically, an 
entity that the supplicant desires access to – then verifies the identity claim. The supplicant provides a copy or 
representation of a secret (e.g., a password, a hash, a cryptographic key) that uniquely identifies the supplicant 
to the authenticator. The authenticator performs a comparison of the supplicant-provided secret and its copy or 
a representation of the secret and, based on the result of the comparison, confirms or rejects the identity claim. 

Once authenticated, an entity generally seeks access to other local or remote entities (i.e., systems, networks, 
data). This subsequent access, referred to as “authorization,” is controlled by an access-control policy that 
enumerates the permissions or rights associated with each entity and results in an access decision (i.e., allowed 
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or denied) based on a set of rules. Policies may be simple (e.g., a specific entity may access another specific 
entity) or complex (e.g., an entity with specific characteristics and conditions may access another entity with 
specific characteristics and conditions). The access-control model that’s utilized determines the simplicity or 
complexity of authorization, and its implementation (e.g., through configuration) is another area of focus for 
security testing. 

Authentication Vulnerabilities 
Almost all identity-based attacks begin with attempts to gain a foothold in a system by manipulating or 
bypassing authentication mechanisms [Chen 2017]. Attackers looking to exploit authentication vulnerabilities 
target weaknesses in the communication medium used to transport secrets, the secrets-storage mechanism, or 
the authentication mechanism itself. Often system user-interfaces and their associated devices are deployed in 
poorly secured or publicly accessible spaces, which only increase the ability and opportunity for physical 
tampering as well as cloning attacks. In such deployments, traditional password-based authentication schemes 
may not be robust enough, as a skilled attacker with physical access to such systems can employ one or 
multiple techniques to overcome such schemes [Gope 2019]. 

Communication mediums (wired and wireless) may be susceptible to what are known as “sniffing attacks,” in 
which an attacker is able to observe secrets in an intelligible manner, due to a lack of adequate cryptographic 
protections. Inadequacy may take the form of a failure to implement available cryptographic protections, 
insecure (i.e., misconfigured) implementation, or weakness in the cryptographic mechanism itself (e.g., weak 
or broken ciphers). The same cryptographic concepts apply to secrets storage. If secrets are stored without 
cryptographic protection, an attacker can observe intelligible secrets within the storage mechanism. 
Weaknesses within the authentication mechanism often involve the secrets themselves and typically take the 
form of easily guessed secrets, hard-coded secrets, or weak or brute-forcible secrets. 

Easily guessed secrets are often the name of a product, person, company, location, or some combination 
thereof and may involve a single number, simple sequence of numbers (e.g., 1-2-3), or commonly used special 
characters (e.g., an exclamation point). Easily guessed secrets also include secrets that have been publicly 
disclosed as a result of prior breach. Hard-coded secrets are similar to easily guessed secrets but are set during 
the development or manufacturing process, or somewhere in the supply chain, whereas easily guessed secrets 
are often user-configured. Hard-coded secrets generally enable users to perform initial configuration and are 
often published in documentation or on a website, typically without any associated security controls. Published 
hard-coded secrets are easily obtained by attackers, as the information is public knowledge. 

Provided enough time and resources, an attacker could use brute force to obtain any secret. A brute-force 
attack against a secret may involve attempts using all possible combinations that comprise the secret scheme 
(i.e., complexity requirements), or attempts to authenticate with secrets from one or more predefined 
dictionaries, until a successful authentication occurs. A brute-force attack may also involve attempts to reverse 
one or more cryptographic representations of the secret (e.g., cracking a password hash). The success of brute-
force attacks is largely a function of the secret’s strength (i.e., it’s length, character set, and cryptographic 
protections). 

Weaknesses in authentication can be identified and assessed using such methods as static and/or dynamic code 
analysis, software-composition analysis, vulnerability assessments, and penetration testing. Each method has 
its use cases and may be performed during development or post-release by staff or independent third parties. 
Static and/or dynamic code analysis involves evaluating application source code or runtime behavior for errors 
or conditions that may cause anomalous behavior. This is often done using automated tools but may also be 
performed manually using code reviews (e.g., pair programming or the review of pull requests). Static and/or 
dynamic code analysis is often performed by development teams, or by security teams supporting 
development, to catch as many potential vulnerabilities as possible prior to release – such as a debug option 
that was used during development and that, when set, would bypass authentication. 
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Software-composition analysis is a method of attempting to determine the software components used within an 
application and the known vulnerabilities associated with those components. For example, software-
composition analysis may reveal that an application uses a specific software library (i.e., version) that’s 
vulnerable to an authentication bypass as reported in the National Vulnerability Database. Software-
composition analysis is typically an automated process that analyzes available sources and binaries. 

Vulnerability assessments are typically performed using automated tools (scanners) to identify and classify 
vulnerabilities associated with a specific asset or set of assets (e.g., a group of servers). Vulnerability-
assessment tools often rely on publicly disclosed weakness and vulnerability data (e.g., common vulnerabilities 
and exposures, also known as CVEs) to identify specific instances of vulnerabilities associated with an asset. 
Once a vulnerability has been identified, it is classified, either quantitatively (e.g., 9.2 on a scale of 1 to 10) or 
qualitatively (e.g., “critical”), and then prioritized among the other identified vulnerabilities. A report 
prioritizing each identified vulnerability to allow for effective risk management is often the end deliverable of 
a vulnerability assessment. 

Penetration testing attempts to exploit identified vulnerabilities through automated and manual means, to 
demonstrate their risk. This differs considerably from a vulnerability assessment, which does not attempt 
exploitation. Penetration testing leverages expert understanding of the nuances of an asset or set of assets (e.g., 
processes, logic, relationships, dependencies) and, as a result, may generate many false positives (i.e., 
vulnerabilities that could not be exploited without the expert understanding of the asset or set of assets). 
Penetration testing attempts to exploit vulnerabilities discovered by vulnerability assessment (e.g., an 
insecurely configured or outdated component) as well as vulnerabilities that can be exposed by creatively 
combining information that would otherwise remain isolated in a manner that exploits one or more nuances. A 
report that describes exploited vulnerabilities in sufficient detail for each to be reproduced is often the end 
deliverable of a penetration test. Retesting takes place after risk-management actions have been taken (e.g., 
after the vulnerability is remediated or mitigated with a compensating control) to validate their effectiveness. 

CLS Authentication Testing 
CLS may utilize authentication mechanisms for a variety of purposes. Two of the most common purposes are 
to enable human users to access system-configuration or management software, and to enable machines to 
access application programming interfaces (APIs). System-configuration software might be utilized, for 
example, to set lighting levels and schedules, configure sensors, manually control or examine sensor readings 
from specific light sources, or create and review system reports generated by remote monitoring. System-
configuration software might exist on a local computer or computer server or a mobile device, or be accessed 
via a web app that is served up from a local or cloud server. APIs are typically used to exchange data with 
other (lighting or nonlighting) systems to enable, for example, a heating, ventilation, and air conditioning  
system to have access to occupancy data collected by a lighting system. Unsanctioned access to CLS might 
enable an attacker to manually control or reconfigure lighting devices, obtain access to human user or 
historical system performance data, or interrupt or distort lighting or other system functionality that is 
dependent on data exchange between the systems.  

Test Setup, Implementation, and Method 
The test setup used to identify authentication vulnerabilities consisted of a user interface device with multiple 
operating systems, multiple web browsers, a login cracker, a web vulnerability scanner, a packet analyzer, and 
an over-the-air Zigbee packet sniffer (Figure 1). The test setup was implemented in the CLTB, as shown in 
Figure 2. Details about the hardware, software, and firmware comprising the test setup implementation are 
provided in Table 1. A total of 18 tests were developed by UL and implemented by PNNL to characterize the 
authentication vulnerability of CLS. The tests explore the implementation of basic authentication best practices 
(e.g., encrypting user credentials before transmitting them on the network) as well as known technology-
specific best practices (e.g., the use of Zigbee default trust center, or the implementation of JSON Web Token). 
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As a result, not all tests are applicable to all CLS (i.e., not all CLS use Zigbee or JSON technology). Many (but 
not all) of the tests are described in, and derived from, the Open Web Application Security Project™ 
(OWASP) Testing Guide 4.0. Descriptions for each test method are provided in Table 2. 

  

Figure 1. Authentication vulnerability test setup. 

 

Figure 2. Authentication vulnerability test setup 
implementation in the CLTB. 

 

 

Table 1. CLTB Equipment Used to Implement Authentication Tests. 

Type/Description Make Model 

User Interface 
1) Apple 
2) Dell 

1) MacBook Pro (Retina, 15-inch, early 2013), macOS High 
Sierra 10.13.6  
2) Latitude E6540, Windows 7 

Web Browser 
1) Google 
2) Microsoft 

1) Chrome 71.0.3578.98 
2) Internet Explorer 11  

Login Cracker THC Hydra 8.6.1 

Web Vulnerability Scanner PortSwigger Web Security Burp Suite Community 1.7.36 

Packet Analyzer Wireshark Wireshark 2.6.6 

Over-The-Air Zigbee 
Packet Sniffer 

1) Sewio 
2) River Loop Security 

1) Open Sniffer 3.0 (hardware) 
2) KillerBee 2.0 (firmware) 

 

  

https://owasp.org/
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.apple.com/
https://www.apple.com/
https://www.dell.com/en-us
https://www.apple.com/macbook-pro/
https://www.google.com/
https://www.google.com/
https://www.microsoft.com/en-us/
https://www.google.com/chrome/
https://support.microsoft.com/en-us/help/17621
https://www.thc.org/
https://www.thc.org/thc-hydra/
https://portswigger.net/
https://portswigger.net/burp
https://www.wireshark.org/
https://www.wireshark.org/download.html
https://www.sewio.net/
https://www.sewio.net/
https://www.riverloopsecurity.com/
https://www.sewio.net/open-sniffer/
https://github.com/riverloopsec/killerbee
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Table 2. Authentication Test Descriptions 

Test Description 

Test 1: Web Authentication 
Credentials Transported over an 
Unencrypted Channel 

Determine whether authentication credentials (e.g., username, password) are 
protected (e.g., using HTTPS) in transit on the network. Additional detail is 
provided in the OWASP Testing Guide2. 

Test 2: Use of Default Web Credentials 
Determine whether system has default accounts (e.g., admin) that, following 
installation, authenticate with a default account username/password. Additional 
detail is provided in the OWASP Testing Guide3. 

Test 3: Weak Web Lockout Mechanism 
Determine whether a user account is locked after five or more failed 
authentication attempts, and whether the lockout time duration is less than 10 
minutes. Additional detail is provided in the OWASP Testing Guide4. 

Test 4: Authentication Schema Bypass 
Determine whether authentication credentials that are included in the request 
header after a successful login are invalidated after an authorized user logs out. 
Additional detail is provided in the OWASP Testing Guide5. 

Test 5: Insecure Authentication 
Credential Retention 

Determine whether session cookies store authentication data in an insecure 
manner (e.g., clear-text, unencrypted). Additional detail is provided in the OWASP 
Testing Guide6. 

Test 6: Session Timeout 
Determine whether a user is automatically logged out from an active session 
following a period of inactivity of more than 15 minutes. Additional detail is 
provided in the OWASP Testing Guide7. 

Test 7: Session Cookie Destruction  
Determine whether session cookies are properly destroyed upon de-
authentication or session termination due to inactivity. Additional detail is 
provided in the OWASP Testing Guide8 and elsewhere9. 

Test 8: Renewed Authentication for 
Lost or Terminated SSH Sessions over 
a Remote Interface 

Determine whether stored data from the previous SSH session can be used to 
bypass authentication mechanisms during a new session creation. 

Test 9: Web Authentication Username 
Enumeration 

Determine whether authentication error messages disclose authorized 
usernames, thereby facilitating brute-force attacks with known usernames. 
Additional detail is provided in the OWASP Testing Guide10. 

Test 10: Use of Zigbee Default Trust 
Center Link Key 

Determine whether the publicly known Zigbee default trust center link key is 
used. 

Test 11: JSON Web Token (JWT) 
“none” Algorithm Validation 

Determine whether a JSON Web Token (JWT) may be used to bypass validation 
by utilizing “none” for the “alg” field. 

Test 12: Weak JSON Web Token (JWT) 
HMAC SHA256 Secret 

Determine whether the JSON Web Token (JWT) HMAC SHA256 secret can be 
obtained through a brute-force attack. 

 

2 https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over_an_Encrypted_Channel_(OTG-AUTHN-001) 
3 https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-AUTHN-002) 
4 https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(OTG-AUTHN-003)  
5 https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_(OTG-AUTHN-004)  
6 https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_(OTG-AUTHN-005)  
7 https://www.owasp.org/index.php/Test_Session_Timeout_(OTG-SESS-007)  
8 https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)  
9 https://www.vanstechelman.eu/content/cookie-replay-attacks-in-aspnet-when-using-forms-authentication  
10 https://www.owasp.org/index.php/Testing_for_User_Enumeration_and_Guessable_User_Account_(OWASP-AT-002) 

https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over_an_Encrypted_Channel_(OTG-AUTHN-001)
https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-AUTHN-002)
https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(OTG-AUTHN-003)
https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_(OTG-AUTHN-004)
https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_(OTG-AUTHN-005)
https://www.owasp.org/index.php/Test_Session_Timeout_(OTG-SESS-007)
https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
https://www.vanstechelman.eu/content/cookie-replay-attacks-in-aspnet-when-using-forms-authentication
https://www.owasp.org/index.php/Testing_for_User_Enumeration_and_Guessable_User_Account_(OWASP-AT-002)
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Test 13: Missing JSON Web Token 
(JWT) “jti,” ”exp,” and ”iat” Claims 

Determine whether JSON Web Token (JWT) replay protections have been 
implemented. 

Test 14: Insecure Web-Based 
Credential Set Password Change 

Determine whether a current password is required during a password change 
procedure. 

Test 15: Assuming User Identity 
Through SAML Login 

Determines whether an attacker can log in as a different user during SAML 
authentication, using an XML library vulnerability. 

Test 16: MQTT Authentication 
Credentials 

Determine whether the CONNECT packet sent from a MQTT client to a MQTT 
broker discloses authentication credentials. 

Test 17: Bluetooth Replay and On-the-
Fly Data Modification 

Determine whether Bluetooth communications are encrypted and if data signing 
is implemented. 

Test 18: Identifying Bluetooth Class of 
Device/Service 

Determine whether Bluetooth devices broadcast Class of Device or Class of 
Service as part of their discovery beacons. 

 
Test Units 
CLS available on the market utilize a wide variety of system architectures (e.g., star, mesh, hybrid) and 
wireless (e.g., Zigbee, Bluetooth Mesh, Wi-Fi, cellular) or wired (e.g., DALI, Ethernet or Power-over-
Ethernet) network communication technologies. An example of how varying system architectures might be 
integrated into a network is shown in Figure 3, which depicts a conceptual representation of four CLS, 
including a wireless system connected to a private network via a local gateway, a wireless system connected to 
a public network via a shared (e.g., cellular) gateway, a wired system that utilizes Ethernet- or Power over 
Ethernet-based communication and can be configured using a mobile device connected via a Wi-Fi gateway, 
and a wireless system that utilizes Bluetooth Mesh for both communication and configuration via a mobile 
device.  

Five CLS, spanning a range of vintages, system architectures, network implementations, and other 
characteristics, were initially targeted for authentication testing (Table 3). The developed test-method suite was 
not suitable for one of the systems (CLS E) because it did not have an integral authentication mechanism and, 
for cybersecurity, relied on the mechanism implemented for the host computer. The test-method suite was run 
on the remaining four CLS. 
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Table 3. CLS Targeted for Authentication Testing. 

 CLS A CLS B CLS C CLS D CLS E 

Vintage 2015 2015 2019 2019 2018 

System 
Architecture 

Web app accessed 
via on-premise 
server; CLS 
devices connected 
via wireless 
gateway 

Web app accessed 
via on-premise 
server; CLS 
devices connected 
via wireless 
gateway 

Web app accessed 
via cloud server; 
CLS devices 
connected via 
wireless gateway 

1) Web app 
accessed via cloud 
server and  
2) iOS app; CLS 
devices connected 
via direct wireless 

Web app accessed 
via on-premise 
server; CLS 
devices connected 
via wired switch 

Network 
Connectivity 

Wireless, Zigbee 
based Mesh 

Wireless, Zigbee 
based Mesh 

Wireless, 2G 
Cellular 

Wireless, 
Bluetooth Mesh 

Wired, Power over 
Ethernet (PoE) 

Physical Layer 
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Figure 3. Conceptual representation of multiple CLS, showing common system architecture variations and technology 
implementations. 

 
Test Results and Analysis 
While 18 tests were defined, not all tests were applicable for every CLS. For example, while eight of the tests 
were applicable to all four CLS that were evaluated in this investigation, six of the tests were not applicable to 
any of the CLS, due to their non-use of the targeted technology (i.e., JSON Web Token, MQTT, Bluetooth). 
One of the tests could not be applied to one CLS, due to the unavailability of a sudo, or “superuser,” password 
to access Secure Shell (SSH) on the local server. While CLS D was configurable or otherwise accessible via 
both a cloud interface and a mobile device, only the cloud interface was evaluated in this study, as the current 
test setup does not include an over-the-air Bluetooth packet sniffer. A total of 40 out of 72 possible tests (four 

https://en.wikipedia.org/wiki/Secure_Shell
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CLS, 18 tests each) were applicable for the four evaluated CLS, and the CLS collectively passed 26 of the 40 
tests (65%). All four CLS passed two of the tests and failed one test. CLS B, the best statistical performer, 
passed nine out of a total of 11 applicable tests (82%); while CLS A, the worst statistical performer, only 
passed three out of a total of nine applicable tests (33%). The other two CLS passed seven out of a total of 10 
applicable tests (70%). Test results are summarized in Table 4 and depicted graphically in Figures 4 (by CLS) 
and 5 (by authentication test number). While pass/fail ratio is a simple way of reporting test results, it is not 
really a relevant metric. Cybersecurity vulnerability testing is a risk-analysis practice; the relevance of passing 
or failing a specific test is best evaluated in concert with an understanding of the risk associated with that 
vulnerability in a specific implementation. Nevertheless, pass/fail ratios give some indication of the range of 
performance found in market-available CLS. Complete test results for each CLS are provided in Appendix A.  

 

 

Table 4. Test Results Summary. 

 Summary CLS A CLS B CLS C 
CLS D  

(*Cloud interface only) 

Applicable 40 9 11 10 10 

PASS 26 (63%) 3 9 7 7 

FAIL 14 (37%) 6 2 3 3 

 

 

 

 

Figure 4. Authentication vulnerability testing results, by CLS. 
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Figure 5. Authentication vulnerability testing results, by authentication test number. 

 

Summary and Recommendations 
There are numerous existing frameworks and guidelines for evaluating cybersecurity vulnerability, such as the 
National Institute of Standards and Technology (NIST) Cybersecurity Framework, the NIST 800 series 
comprising more than 150 resources, the International Electrotechnical Commission (IEC) 62443 series, 
International Organization for Standardization 27001 and 27002,  Unified Facilities Criteria (UFC) 4-010-06, 
and UL 2900-1. Furthermore, a variety of testing resources are widely available, including the Open Web 
Application Security Project (OWASP) Testing Guide. While these frameworks, guidelines, and tests may 
apply to CLS in whole or in part, there is currently no mandatory requirement for cybersecurity testing or 
certification. The lighting industry, including technology developers and specification organizations, are 
evaluating the suitability of these frameworks and guidelines for CLS. This study demonstrates that tests for 
authentication vulnerabilities can be developed with objective pass/fall criteria, thereby facilitating 
comparisons between CLS. Based on the limited results of the present study, it appears that the CLS that are 
being brought to market have varying levels of authentication vulnerability. 

Next Steps 
PNNL plans to conduct more authentication testing (e.g., enhancing existing authentications tests, 
incorporating new authentication tests, or evaluating additional CLS), and to work with UL and other 
cybersecurity experts to develop tests for, and initiate an exploration into, authorization vulnerabilities. 
Authentication Test 1 will be enhanced to verify that Transport Layer Security is used to encrypt Hypertext 
Transfer Protocol Secure (HTTPS) traffic, as opposed to Secure Sockets Layer security, which has been 
deprecated. 

Furthermore, PNNL will bring these results to the ANSI C137 Lighting Systems ad-hoc working group 
focusing on cybersecurity vulnerability, for consideration in the creation and development of new standards. It 
is hoped that these evaluations will support and perhaps accelerate industry discussions on the risks of specific 

https://www.nist.gov/cyberframework
https://www.nist.gov/itl/nist-special-publication-800-series-general-information
https://csrc.nist.gov/publications/sp800
https://www.isa.org/training-and-certifications/isa-certification/isa99iec-62443/isa99iec-62443-cybersecurity-certificate-programs/
https://www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc/ufc-4-010-06
https://standardscatalog.ul.com/standards/en/standard_2900-1_1
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
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security vulnerabilities, what vulnerabilities should be addressed by in-development of future lighting-specific 
best practices, and whether any such practices should be included in voluntary lighting standards. 

Recommendations 
1. Lighting-industry stakeholders should provide feedback on how future cybersecurity studies could be 

modified or enhanced to provide greater industry value. 

2. Cybersecurity vulnerability experts should provide feedback on the vulnerability tests that were utilized 
in the study, including whether important tests were missing and whether included tests are not 
particularly relevant to CLS. 

3. Cybersecurity vulnerability experts should consider working with PNNL to develop new vulnerability 
tests that might be incorporated into future test suites. 

4. CLS developers should consider supporting the integration of their CLS into the PNNL CLTB, where the 
CLS would be available for use in future cybersecurity vulnerability studies. 
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Appendix A: Authentication Test Results 
 

Summary 
Applicable: 40 
>PASS: 26 FAIL: 14 
Not applicable: 32 

CLS A 
Applicable: 9 
>PASS: 3 FAIL: 6 
Not applicable: 9 

CLS B 
Applicable: 11 
>PASS: 9 FAIL: 2 
Not applicable: 7 

CLS C 
Applicable: 10 
>PASS: 7 FAIL: 3 
Not applicable: 8 

CLS D (*Cloud 
interface only) 
Applicable: 10 
>PASS: 7 FAIL: 3 
Not applicable: 8 

Test 1 
Applicable: 4 
>PASS: 3 FAIL: 1 
Not applicable: 0 

FAIL: HTTPS is not 
used to securely 
transmit credentials 

PASS PASS PASS 

Test 2 
Applicable: 4 
>PASS: 4 FAIL: 0 
Not applicable: 0 

PASS PASS PASS PASS 

Test 3 
Applicable: 4 
>PASS: 1 FAIL: 3 
Not applicable: 0 

FAIL: No account 
lockout after six 
consecutive login 
failures 
 

PASS 

FAIL: No account 
lockout after six 
consecutive login 
failures 

FAIL: No account 
lockout after six 
consecutive login 
failures 

Test 4 
Applicable: 4 
>PASS: 3 FAIL: 1 
Not applicable: 0 

FAIL: Authentication 
token saved in cookie 
following logout 

PASS PASS PASS 

Test 5 
Applicable: 4 
>PASS: 4 FAIL: 0 
Not applicable: 0 

PASS PASS PASS PASS 

Test 6 
Applicable: 4 
>PASS: 0 FAIL: 4 
Not applicable: 0 

FAIL: No auto-logout 
after 15 minutes 

FAIL: No auto-logout 
after 15 minutes 

FAIL: No auto-logout 
after 15 minutes 

FAIL: No auto-logout 
after 15 minutes 

Test 7 
Applicable: 4 
>PASS: 1 FAIL: 3 
Not applicable: 0 

FAIL: Authentication 
token saved in cookie 
following session 
timeout 

PASS 

FAIL: Can re-
authenticate following 
session termination 
using ←→ sequence 

FAIL: Can re-
authenticate following 
session termination 
using ←→ sequence 

Test 8 
Applicable: 2 
>PASS: 0 FAIL: 1 
Not applicable: 3 

Not applicable: Sudo 
password to access 
SSH not available 

FAIL: CLS does not 
request new 
authentication 

Not applicable: CLS 
does not use SSH 
session 

Not applicable: CLS 
does not use SSH 
session 

Test 9 
Applicable: 4 
>PASS: 3 FAIL: 1 
Not applicable: 0 

FAIL: CLS discloses 
validity of username 
when a wrong 
password is entered 

PASS PASS PASS 
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Summary 
Applicable: 40 
>PASS: 26 FAIL: 14 
Not applicable: 32 

CLS A 
Applicable: 9 
>PASS: 3 FAIL: 6 
Not applicable: 9 

CLS B 
Applicable: 11 
>PASS: 9 FAIL: 2 
Not applicable: 7 

CLS C 
Applicable: 10 
>PASS: 7 FAIL: 3 
Not applicable: 8 

CLS D (*Cloud 
interface only) 
Applicable: 10 
>PASS: 7 FAIL: 3 
Not applicable: 8 

Test 10 
Applicable: 2 
>PASS: 2 FAIL: 0 
Not applicable: 2 

PASS PASS 
Not applicable: CLS 
does not use Zigbee 

Not applicable: CLS 
does not use Zigbee 

Test 11 
Applicable: 0 
>PASS: 0 FAIL: 0 
Not applicable: 4 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Test 12 
Applicable: 0 
>PASS: 0 FAIL: 0 
Not applicable: 4 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Test 13 
Applicable: 0 
>PASS: 0 FAIL: 0 
Not applicable: 4 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Not applicable: CLS 
does not use JWT 

Test 14 
Applicable: 3 
>PASS: 3 FAIL: 0 
Not applicable: 1 

Not applicable: No 
password change 
option 

PASS PASS PASS 

Test 15 
Applicable: 2 
>PASS: 2 FAIL: 0 
Not applicable: 2 

Not applicable: CLS 
does not use SAML 

Not applicable: CLS 
does not use SAML 

PASS PASS 

Test 16 
Applicable: 0 
>PASS: 0 FAIL: 0 
Not applicable: 4 

Not applicable: CLS 
does not use MQTT 

Not applicable: CLS 
does not use MQTT 

Not applicable: CLS 
does not use MQTT 

Not applicable: CLS 
does not use MQTT 

Test 17 
Applicable: 0 
>PASS: 0 FAIL:  
Not applicable: 4 

Not applicable: CLS 
does not utilize 
Bluetooth 

Not applicable: CLS 
does not utilize 
Bluetooth 

Not applicable: CLS 
does not utilize 
Bluetooth 

Not applicable: CLS 
does not utilize 
Bluetooth* 

Test 18 
Applicable: 0 
>PASS: 0 FAIL: 0 
Not applicable: 4 

Not applicable: CLS 
does not utilize 
Bluetooth 

Not applicable: CLS 
does not utilize 
Bluetooth 

Not applicable: CLS 
does not utilize 
Bluetooth 

Not applicable: CLS 
does not utilize 
Bluetooth* 
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