
An Authentication Vulnerability
Assessment of Connected Lighting
Systems

March 2020

(This page intentionally left blank)

An Authentication Vulnerability
Assessment of Connected Lighting
Systems

Michael Poplawski1, Adam St. Lawrence2, and Hung Ngo1

Pacific Northwest National Laboratory1, Underwriters Laboratories2

March 2020

Produced for the U.S. Department of Energy, Energy Efficiency and Renewable Energy,
by the Pacific Northwest National Laboratory, Richland, Washington 99352

PNNL-28782

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>

Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/

1

Abstract
Emerging connected lighting systems (CLS) that incorporate distributed intelligence, network interfaces, and
sensors can become data-collection platforms that enable a wide range of valuable new capabilities as well as
greater energy savings in buildings and cities. However, CLS technology is currently at an early stage of
development, and its increased connectivity introduces cybersecurity risks that are new to the lighting industry
and that must be addressed for successful integration with other systems.

While a number of existing frameworks, guidelines, and tests for evaluating cybersecurity vulnerability may
apply to CLS in whole or in part, there is currently no mandatory requirement for cybersecurity testing or
certification. The lighting industry, including technology developers and specification organizations, is
currently evaluating the suitability of existing frameworks and guidelines for CLS. To support these efforts,
Pacific Northwest National Laboratory (PNNL) is conducting a series of studies intended to educate lighting-
industry stakeholders on specific cybersecurity practices and characterize their implementation in
commercially available CLS with varying system architectures, network-communication technologies, and
degrees of maturity.

This first study explores authentication practices and their implementation in multiple CLS. A total of 18 tests
were developed by Underwriters Laboratories (UL) and implemented in PNNL’s Connected Lighting Test Bed
(CLTB). The tests explore the implementation of basic authentication best practices as well as known
technology-specific best practices. As a result, not all tests are applicable to all CLS.

A total of 40 out of 72 potential tests (four CLS, 18 potential tests each) were applicable for four evaluated
CLS, and the CLS collectively passed 26 of the 40 tests (65%). While pass/fail ratio is a simple way of
reporting test results, it is not an actionable metric. Cybersecurity vulnerability testing is a risk-analysis
practice; the relevance of passing or failing a certain test is best evaluated in concert with an understanding of
the risk associated with that vulnerability in a specific implementation. Nevertheless, pass/fail ratios give some
indication of the range of performance found in market-available CLS.

This study demonstrates that tests for authentication vulnerabilities can be developed with objective pass/fall
criteria, therby facilitating comparisons between CLS. Based on the limited results of this study, it appears that
the CLS that are being brought to market have varying levels of authentication vulnerability. It is hoped that
these evaluations will support and perhaps accelerate industry discussions on the risks of specific security
vulnerabilities, what vulnerabilities should be addressed by in-development of future lighting-specific best
practices, and whether any such practices should be included in voluntary lighting standards.

Introduction
Connected lighting systems (CLS) comprise an emerging class of lighting infrastructure that does more than
just light spaces. Through the incorporation of distributed intelligence, network interfaces, and sensors, CLS
become data-collection platforms that enable a wide range of valuable new capabilities as well as greater
energy savings in buildings and cities. CLS may contain sensors intended to aid in the optimization of lighting
service, as well as other sensors that might be used to optimize the performance of other connected building
systems [Pandharipande 2018]. However, CLS technology is currently at an early stage of development, and
many questions remain about how well it will work, whether it will actually save energy, how much
measurable value is provided by new capabilities, and whether it will offer enough benefits and value-added
features to justify the investment. Further, increased connectivity introduces cybersecurity risks that are new to
the lighting industry and that must be addressed in order for successful integration with other systems.

The network integration of multiple systems, manufactured by different vendors, that manipulate aspects of, or
otherwise interact with, the physical world typically results in a complex cyber-physical system (CPS). The

https://www.energy.gov/eere/ssl/connected-lighting-test-bed

2

integration of CLS with other building-operation technology systems (e.g., HVAC) and/or building-
information technology systems is one example of such a CPS. Complex CPS offer many demonstrated and
perceived benefits; however, they also present greats risk to privacy and security protections [Yang 2017].
While many industries understand the value created by system integration, there is a recognition across
industries that a common approach is needed to jointly address security, efficiency, privacy, and scalability
[Siegel 2018]. In heterogeneous CPS environments such as might exist in buildings, perhaps the most
important aspect of securing the integration of CLS and other building systems is implementing and
maintaining a consistent security architecture, where secure components utilize secure communication
protocols and secure access-control mechanisms. The heterogeneity of CPS components has been found to
contribute significantly to many documented attacks [Humayed 2017].

While a number of different secure architectures that might be useful for such systems have begun to emerge,
perhaps the biggest impediment to the widespread integration of such systems is the lack of one or more
suitable, well-accepted system-development frameworks. In order for CLS that are integrated with other
systems to achieve wide industry adoption and deliver upon their energy-savings potential, it is crucial to be
able to identify common and likely systemwide attack vectors, protect the information and data flows between
devices, and prevent system hijacking [Minoli 2017]. While zero-day exploits (e.g., WannaCry) and high-
profile data breaches (e.g., Equifax) tend to garner the most attention by the press and general public, most
security breaches come from known vulnerabilities that are not patched or secured. Industry experts expect that
virtually all of the vulnerabilities exploited by the end of 2020 will continue to be ones known by security and
IT professionals. [Moore 2017].

This study is the first in a series intended to educate lighting-industry stakeholders on specific cybersecurity
practices and characterize the implementation of those practices in commercially available CLS with varying
system architectures, network communication technologies, and degrees of maturity. This first study explores
authentication practices and their implementation in multiple CLS. Future studies will address other practices
and/or the characterization of additional CLS.

Background
Cybersecurity is a discipline focused on protecting data, resources, people, and organizations from attacks that
may result in financial loss, loss of life, or other damage. Cybersecurity core functions involve managing risk –
defined as “a measure of the extent to which an entity is threatened by a potential circumstance or event” and
“a function of the adverse impacts that would arise if the circumstance or event occurs and the likelihood of its
occurrence1” – by identifying potential threats, implementing appropriate security controls, testing security-
control effectiveness, and responding to attacks that circumvent the security controls. As entities continually
face new and evolving threats, these functions are part of a continuous process, with the goal of eliminating
risk exposure or reducing it to manageable levels.

Identification of potential threats requires the implementation of a continuous threat-modeling process that
attempts to account for any and all threats facing an entity, where a threat is defined as “any circumstance or
event with the potential to adversely impact operations, assets, individuals, or other organizations, through an
information system via unauthorized access, destruction, disclosure, modification of information, and/or denial
of service1”. An entity may be a hardware component, a software component, an application, a system, an
environment, or an organization. The threat-modeling process generally results in a traceability matrix that
maps identified threats to potential security controls and is often used as an input to the risk-management
process.

1 https://standardscatalog.ul.com/standards/en/standard_2900-1_1

https://standardscatalog.ul.com/standards/en/standard_2900-1_1

3

Security controls are implemented to effectively address the identified threats based on the entity’s goals and
risk tolerance. Security controls are often categorized as management, operational, and technical, with
examples including firewalls, cryptographic mechanisms, and access controls involving authentication and
authorization mechanisms. Determining the effectiveness of implemented security controls is accomplished by
testing, which often takes the form of vulnerability assessments, penetration testing, and/or red team
operations. Testing attempts to determine whether security controls sufficiently address identified threats and
risks in a methodical, repeatable manner.

Authentication
Authentication involves a class or family of security controls that constitute one or more processes to verify the
identity claim. Defining the authentication process and needed mechanisms typically begins with the
development of an appropriate threat model that defines trust boundaries and who or what may traverse them
in order to interact with an entity of value (e.g., a system, network, or specific data). Once the identity of an
entity is verified (or authenticated), the subsequent actions it may perform are determined by authorization.
Authorization is the process of verifying that a requested action is permitted, and it is accomplished by
assessing the privileges associated with the requesting entity. Changes to both authentication mechanisms and
authorization privileges are typically audited by some defined means.

An identity is a unique representation of someone or something, such as an equipment user or a specific
computer connected to a network. Verification of an identity is typically performed by submission of one or
more secrets, which are compared with stored representations or copies of those secrets. Successful
authentication provides reasonable assurance that the identity claim is legitimate and that the entity is thus
entitled to perform actions permitted only to authenticated entities. The most common authentication
mechanism is the traditional combination of a username and a secret password, which together are also
referred to as a “credential set.” Humans and machines are both capable of using credential sets as well as
other authentication mechanisms, such as cryptographic keys and tokens.

An identity associated with an entity is typically established or enrolled at the time of manufacture in the case
of hardware, or the time of release in the case of software, or on-demand. Entities typically enroll human and
machine users in an on-demand manner, as it may be impossible to predetermine which users will need
identities established beforehand. The enrollment process, which is sometimes referred to as “onboarding” or
“provisioning,” begins with a supplicant (e.g., a user, service, or system) requesting the establishment of an
identity with the authenticator, or begins with the authenticator establishing an identity for the supplicant
without an explicit request. The process then typically includes the authenticator employing some form of
vetting (also known as “proofing”) of evidence provided by the supplicant to establish trust. The process then
typically concludes with the provision and storage of a secret (e.g., a password) known only to the supplicant
and authenticator. Identities may also be established at the time of manufacture or release, with secrets being
cryptographically stored within a secure hardware element, configuration file, or database. The identity of a
machine entity is typically provisioned by an authenticator or by another device, such as a smartphone or
tablet, and is established by sharing one or more cryptographic keys. Various forms of cryptographic keys
exist, such as public/private key pairs, network keys, and application keys. An entity may possess one or more
keys, with each key serving a different purpose.

The authentication process begins with a supplicant making an identity claim. An authenticator – typically, an
entity that the supplicant desires access to – then verifies the identity claim. The supplicant provides a copy or
representation of a secret (e.g., a password, a hash, a cryptographic key) that uniquely identifies the supplicant
to the authenticator. The authenticator performs a comparison of the supplicant-provided secret and its copy or
a representation of the secret and, based on the result of the comparison, confirms or rejects the identity claim.

Once authenticated, an entity generally seeks access to other local or remote entities (i.e., systems, networks,
data). This subsequent access, referred to as “authorization,” is controlled by an access-control policy that
enumerates the permissions or rights associated with each entity and results in an access decision (i.e., allowed

4

or denied) based on a set of rules. Policies may be simple (e.g., a specific entity may access another specific
entity) or complex (e.g., an entity with specific characteristics and conditions may access another entity with
specific characteristics and conditions). The access-control model that’s utilized determines the simplicity or
complexity of authorization, and its implementation (e.g., through configuration) is another area of focus for
security testing.

Authentication Vulnerabilities
Almost all identity-based attacks begin with attempts to gain a foothold in a system by manipulating or
bypassing authentication mechanisms [Chen 2017]. Attackers looking to exploit authentication vulnerabilities
target weaknesses in the communication medium used to transport secrets, the secrets-storage mechanism, or
the authentication mechanism itself. Often system user-interfaces and their associated devices are deployed in
poorly secured or publicly accessible spaces, which only increase the ability and opportunity for physical
tampering as well as cloning attacks. In such deployments, traditional password-based authentication schemes
may not be robust enough, as a skilled attacker with physical access to such systems can employ one or
multiple techniques to overcome such schemes [Gope 2019].

Communication mediums (wired and wireless) may be susceptible to what are known as “sniffing attacks,” in
which an attacker is able to observe secrets in an intelligible manner, due to a lack of adequate cryptographic
protections. Inadequacy may take the form of a failure to implement available cryptographic protections,
insecure (i.e., misconfigured) implementation, or weakness in the cryptographic mechanism itself (e.g., weak
or broken ciphers). The same cryptographic concepts apply to secrets storage. If secrets are stored without
cryptographic protection, an attacker can observe intelligible secrets within the storage mechanism.
Weaknesses within the authentication mechanism often involve the secrets themselves and typically take the
form of easily guessed secrets, hard-coded secrets, or weak or brute-forcible secrets.

Easily guessed secrets are often the name of a product, person, company, location, or some combination
thereof and may involve a single number, simple sequence of numbers (e.g., 1-2-3), or commonly used special
characters (e.g., an exclamation point). Easily guessed secrets also include secrets that have been publicly
disclosed as a result of prior breach. Hard-coded secrets are similar to easily guessed secrets but are set during
the development or manufacturing process, or somewhere in the supply chain, whereas easily guessed secrets
are often user-configured. Hard-coded secrets generally enable users to perform initial configuration and are
often published in documentation or on a website, typically without any associated security controls. Published
hard-coded secrets are easily obtained by attackers, as the information is public knowledge.

Provided enough time and resources, an attacker could use brute force to obtain any secret. A brute-force
attack against a secret may involve attempts using all possible combinations that comprise the secret scheme
(i.e., complexity requirements), or attempts to authenticate with secrets from one or more predefined
dictionaries, until a successful authentication occurs. A brute-force attack may also involve attempts to reverse
one or more cryptographic representations of the secret (e.g., cracking a password hash). The success of brute-
force attacks is largely a function of the secret’s strength (i.e., it’s length, character set, and cryptographic
protections).

Weaknesses in authentication can be identified and assessed using such methods as static and/or dynamic code
analysis, software-composition analysis, vulnerability assessments, and penetration testing. Each method has
its use cases and may be performed during development or post-release by staff or independent third parties.
Static and/or dynamic code analysis involves evaluating application source code or runtime behavior for errors
or conditions that may cause anomalous behavior. This is often done using automated tools but may also be
performed manually using code reviews (e.g., pair programming or the review of pull requests). Static and/or
dynamic code analysis is often performed by development teams, or by security teams supporting
development, to catch as many potential vulnerabilities as possible prior to release – such as a debug option
that was used during development and that, when set, would bypass authentication.

5

Software-composition analysis is a method of attempting to determine the software components used within an
application and the known vulnerabilities associated with those components. For example, software-
composition analysis may reveal that an application uses a specific software library (i.e., version) that’s
vulnerable to an authentication bypass as reported in the National Vulnerability Database. Software-
composition analysis is typically an automated process that analyzes available sources and binaries.

Vulnerability assessments are typically performed using automated tools (scanners) to identify and classify
vulnerabilities associated with a specific asset or set of assets (e.g., a group of servers). Vulnerability-
assessment tools often rely on publicly disclosed weakness and vulnerability data (e.g., common vulnerabilities
and exposures, also known as CVEs) to identify specific instances of vulnerabilities associated with an asset.
Once a vulnerability has been identified, it is classified, either quantitatively (e.g., 9.2 on a scale of 1 to 10) or
qualitatively (e.g., “critical”), and then prioritized among the other identified vulnerabilities. A report
prioritizing each identified vulnerability to allow for effective risk management is often the end deliverable of
a vulnerability assessment.

Penetration testing attempts to exploit identified vulnerabilities through automated and manual means, to
demonstrate their risk. This differs considerably from a vulnerability assessment, which does not attempt
exploitation. Penetration testing leverages expert understanding of the nuances of an asset or set of assets (e.g.,
processes, logic, relationships, dependencies) and, as a result, may generate many false positives (i.e.,
vulnerabilities that could not be exploited without the expert understanding of the asset or set of assets).
Penetration testing attempts to exploit vulnerabilities discovered by vulnerability assessment (e.g., an
insecurely configured or outdated component) as well as vulnerabilities that can be exposed by creatively
combining information that would otherwise remain isolated in a manner that exploits one or more nuances. A
report that describes exploited vulnerabilities in sufficient detail for each to be reproduced is often the end
deliverable of a penetration test. Retesting takes place after risk-management actions have been taken (e.g.,
after the vulnerability is remediated or mitigated with a compensating control) to validate their effectiveness.

CLS Authentication Testing
CLS may utilize authentication mechanisms for a variety of purposes. Two of the most common purposes are
to enable human users to access system-configuration or management software, and to enable machines to
access application programming interfaces (APIs). System-configuration software might be utilized, for
example, to set lighting levels and schedules, configure sensors, manually control or examine sensor readings
from specific light sources, or create and review system reports generated by remote monitoring. System-
configuration software might exist on a local computer or computer server or a mobile device, or be accessed
via a web app that is served up from a local or cloud server. APIs are typically used to exchange data with
other (lighting or nonlighting) systems to enable, for example, a heating, ventilation, and air conditioning
system to have access to occupancy data collected by a lighting system. Unsanctioned access to CLS might
enable an attacker to manually control or reconfigure lighting devices, obtain access to human user or
historical system performance data, or interrupt or distort lighting or other system functionality that is
dependent on data exchange between the systems.

Test Setup, Implementation, and Method
The test setup used to identify authentication vulnerabilities consisted of a user interface device with multiple
operating systems, multiple web browsers, a login cracker, a web vulnerability scanner, a packet analyzer, and
an over-the-air Zigbee packet sniffer (Figure 1). The test setup was implemented in the CLTB, as shown in
Figure 2. Details about the hardware, software, and firmware comprising the test setup implementation are
provided in Table 1. A total of 18 tests were developed by UL and implemented by PNNL to characterize the
authentication vulnerability of CLS. The tests explore the implementation of basic authentication best practices
(e.g., encrypting user credentials before transmitting them on the network) as well as known technology-
specific best practices (e.g., the use of Zigbee default trust center, or the implementation of JSON Web Token).

6

As a result, not all tests are applicable to all CLS (i.e., not all CLS use Zigbee or JSON technology). Many (but
not all) of the tests are described in, and derived from, the Open Web Application Security Project™
(OWASP) Testing Guide 4.0. Descriptions for each test method are provided in Table 2.

Figure 1. Authentication vulnerability test setup.

Figure 2. Authentication vulnerability test setup
implementation in the CLTB.

Table 1. CLTB Equipment Used to Implement Authentication Tests.

Type/Description Make Model

User Interface
1) Apple
2) Dell

1) MacBook Pro (Retina, 15-inch, early 2013), macOS High
Sierra 10.13.6
2) Latitude E6540, Windows 7

Web Browser
1) Google
2) Microsoft

1) Chrome 71.0.3578.98
2) Internet Explorer 11

Login Cracker THC Hydra 8.6.1

Web Vulnerability Scanner PortSwigger Web Security Burp Suite Community 1.7.36

Packet Analyzer Wireshark Wireshark 2.6.6

Over-The-Air Zigbee
Packet Sniffer

1) Sewio
2) River Loop Security

1) Open Sniffer 3.0 (hardware)
2) KillerBee 2.0 (firmware)

https://owasp.org/
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.apple.com/
https://www.apple.com/
https://www.dell.com/en-us
https://www.apple.com/macbook-pro/
https://www.google.com/
https://www.google.com/
https://www.microsoft.com/en-us/
https://www.google.com/chrome/
https://support.microsoft.com/en-us/help/17621
https://www.thc.org/
https://www.thc.org/thc-hydra/
https://portswigger.net/
https://portswigger.net/burp
https://www.wireshark.org/
https://www.wireshark.org/download.html
https://www.sewio.net/
https://www.sewio.net/
https://www.riverloopsecurity.com/
https://www.sewio.net/open-sniffer/
https://github.com/riverloopsec/killerbee

7

Table 2. Authentication Test Descriptions

Test Description

Test 1: Web Authentication
Credentials Transported over an
Unencrypted Channel

Determine whether authentication credentials (e.g., username, password) are
protected (e.g., using HTTPS) in transit on the network. Additional detail is
provided in the OWASP Testing Guide2.

Test 2: Use of Default Web Credentials
Determine whether system has default accounts (e.g., admin) that, following
installation, authenticate with a default account username/password. Additional
detail is provided in the OWASP Testing Guide3.

Test 3: Weak Web Lockout Mechanism
Determine whether a user account is locked after five or more failed
authentication attempts, and whether the lockout time duration is less than 10
minutes. Additional detail is provided in the OWASP Testing Guide4.

Test 4: Authentication Schema Bypass
Determine whether authentication credentials that are included in the request
header after a successful login are invalidated after an authorized user logs out.
Additional detail is provided in the OWASP Testing Guide5.

Test 5: Insecure Authentication
Credential Retention

Determine whether session cookies store authentication data in an insecure
manner (e.g., clear-text, unencrypted). Additional detail is provided in the OWASP
Testing Guide6.

Test 6: Session Timeout
Determine whether a user is automatically logged out from an active session
following a period of inactivity of more than 15 minutes. Additional detail is
provided in the OWASP Testing Guide7.

Test 7: Session Cookie Destruction
Determine whether session cookies are properly destroyed upon de-
authentication or session termination due to inactivity. Additional detail is
provided in the OWASP Testing Guide8 and elsewhere9.

Test 8: Renewed Authentication for
Lost or Terminated SSH Sessions over
a Remote Interface

Determine whether stored data from the previous SSH session can be used to
bypass authentication mechanisms during a new session creation.

Test 9: Web Authentication Username
Enumeration

Determine whether authentication error messages disclose authorized
usernames, thereby facilitating brute-force attacks with known usernames.
Additional detail is provided in the OWASP Testing Guide10.

Test 10: Use of Zigbee Default Trust
Center Link Key

Determine whether the publicly known Zigbee default trust center link key is
used.

Test 11: JSON Web Token (JWT)
“none” Algorithm Validation

Determine whether a JSON Web Token (JWT) may be used to bypass validation
by utilizing “none” for the “alg” field.

Test 12: Weak JSON Web Token (JWT)
HMAC SHA256 Secret

Determine whether the JSON Web Token (JWT) HMAC SHA256 secret can be
obtained through a brute-force attack.

2 https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over_an_Encrypted_Channel_(OTG-AUTHN-001)
3 https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-AUTHN-002)
4 https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(OTG-AUTHN-003)
5 https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_(OTG-AUTHN-004)
6 https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_(OTG-AUTHN-005)
7 https://www.owasp.org/index.php/Test_Session_Timeout_(OTG-SESS-007)
8 https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
9 https://www.vanstechelman.eu/content/cookie-replay-attacks-in-aspnet-when-using-forms-authentication
10 https://www.owasp.org/index.php/Testing_for_User_Enumeration_and_Guessable_User_Account_(OWASP-AT-002)

https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over_an_Encrypted_Channel_(OTG-AUTHN-001)
https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-AUTHN-002)
https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(OTG-AUTHN-003)
https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_(OTG-AUTHN-004)
https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_(OTG-AUTHN-005)
https://www.owasp.org/index.php/Test_Session_Timeout_(OTG-SESS-007)
https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
https://www.vanstechelman.eu/content/cookie-replay-attacks-in-aspnet-when-using-forms-authentication
https://www.owasp.org/index.php/Testing_for_User_Enumeration_and_Guessable_User_Account_(OWASP-AT-002)

8

Test 13: Missing JSON Web Token
(JWT) “jti,” ”exp,” and ”iat” Claims

Determine whether JSON Web Token (JWT) replay protections have been
implemented.

Test 14: Insecure Web-Based
Credential Set Password Change

Determine whether a current password is required during a password change
procedure.

Test 15: Assuming User Identity
Through SAML Login

Determines whether an attacker can log in as a different user during SAML
authentication, using an XML library vulnerability.

Test 16: MQTT Authentication
Credentials

Determine whether the CONNECT packet sent from a MQTT client to a MQTT
broker discloses authentication credentials.

Test 17: Bluetooth Replay and On-the-
Fly Data Modification

Determine whether Bluetooth communications are encrypted and if data signing
is implemented.

Test 18: Identifying Bluetooth Class of
Device/Service

Determine whether Bluetooth devices broadcast Class of Device or Class of
Service as part of their discovery beacons.

Test Units
CLS available on the market utilize a wide variety of system architectures (e.g., star, mesh, hybrid) and
wireless (e.g., Zigbee, Bluetooth Mesh, Wi-Fi, cellular) or wired (e.g., DALI, Ethernet or Power-over-
Ethernet) network communication technologies. An example of how varying system architectures might be
integrated into a network is shown in Figure 3, which depicts a conceptual representation of four CLS,
including a wireless system connected to a private network via a local gateway, a wireless system connected to
a public network via a shared (e.g., cellular) gateway, a wired system that utilizes Ethernet- or Power over
Ethernet-based communication and can be configured using a mobile device connected via a Wi-Fi gateway,
and a wireless system that utilizes Bluetooth Mesh for both communication and configuration via a mobile
device.

Five CLS, spanning a range of vintages, system architectures, network implementations, and other
characteristics, were initially targeted for authentication testing (Table 3). The developed test-method suite was
not suitable for one of the systems (CLS E) because it did not have an integral authentication mechanism and,
for cybersecurity, relied on the mechanism implemented for the host computer. The test-method suite was run
on the remaining four CLS.

9

Table 3. CLS Targeted for Authentication Testing.

 CLS A CLS B CLS C CLS D CLS E

Vintage 2015 2015 2019 2019 2018

System
Architecture

Web app accessed
via on-premise
server; CLS
devices connected
via wireless
gateway

Web app accessed
via on-premise
server; CLS
devices connected
via wireless
gateway

Web app accessed
via cloud server;
CLS devices
connected via
wireless gateway

1) Web app
accessed via cloud
server and
2) iOS app; CLS
devices connected
via direct wireless

Web app accessed
via on-premise
server; CLS
devices connected
via wired switch

Network
Connectivity

Wireless, Zigbee
based Mesh

Wireless, Zigbee
based Mesh

Wireless, 2G
Cellular

Wireless,
Bluetooth Mesh

Wired, Power over
Ethernet (PoE)

Physical Layer
Technology

IEEE 802.15.4 IEEE 802.15.4 GPRS
Bluetooth Low
Energy

IEEE 802.3

Figure 3. Conceptual representation of multiple CLS, showing common system architecture variations and technology
implementations.

Test Results and Analysis
While 18 tests were defined, not all tests were applicable for every CLS. For example, while eight of the tests
were applicable to all four CLS that were evaluated in this investigation, six of the tests were not applicable to
any of the CLS, due to their non-use of the targeted technology (i.e., JSON Web Token, MQTT, Bluetooth).
One of the tests could not be applied to one CLS, due to the unavailability of a sudo, or “superuser,” password
to access Secure Shell (SSH) on the local server. While CLS D was configurable or otherwise accessible via
both a cloud interface and a mobile device, only the cloud interface was evaluated in this study, as the current
test setup does not include an over-the-air Bluetooth packet sniffer. A total of 40 out of 72 possible tests (four

https://en.wikipedia.org/wiki/Secure_Shell

10

CLS, 18 tests each) were applicable for the four evaluated CLS, and the CLS collectively passed 26 of the 40
tests (65%). All four CLS passed two of the tests and failed one test. CLS B, the best statistical performer,
passed nine out of a total of 11 applicable tests (82%); while CLS A, the worst statistical performer, only
passed three out of a total of nine applicable tests (33%). The other two CLS passed seven out of a total of 10
applicable tests (70%). Test results are summarized in Table 4 and depicted graphically in Figures 4 (by CLS)
and 5 (by authentication test number). While pass/fail ratio is a simple way of reporting test results, it is not
really a relevant metric. Cybersecurity vulnerability testing is a risk-analysis practice; the relevance of passing
or failing a specific test is best evaluated in concert with an understanding of the risk associated with that
vulnerability in a specific implementation. Nevertheless, pass/fail ratios give some indication of the range of
performance found in market-available CLS. Complete test results for each CLS are provided in Appendix A.

Table 4. Test Results Summary.

 Summary CLS A CLS B CLS C
CLS D

(*Cloud interface only)

Applicable 40 9 11 10 10

PASS 26 (63%) 3 9 7 7

FAIL 14 (37%) 6 2 3 3

Figure 4. Authentication vulnerability testing results, by CLS.

11

Figure 5. Authentication vulnerability testing results, by authentication test number.

Summary and Recommendations
There are numerous existing frameworks and guidelines for evaluating cybersecurity vulnerability, such as the
National Institute of Standards and Technology (NIST) Cybersecurity Framework, the NIST 800 series
comprising more than 150 resources, the International Electrotechnical Commission (IEC) 62443 series,
International Organization for Standardization 27001 and 27002, Unified Facilities Criteria (UFC) 4-010-06,
and UL 2900-1. Furthermore, a variety of testing resources are widely available, including the Open Web
Application Security Project (OWASP) Testing Guide. While these frameworks, guidelines, and tests may
apply to CLS in whole or in part, there is currently no mandatory requirement for cybersecurity testing or
certification. The lighting industry, including technology developers and specification organizations, are
evaluating the suitability of these frameworks and guidelines for CLS. This study demonstrates that tests for
authentication vulnerabilities can be developed with objective pass/fall criteria, thereby facilitating
comparisons between CLS. Based on the limited results of the present study, it appears that the CLS that are
being brought to market have varying levels of authentication vulnerability.

Next Steps
PNNL plans to conduct more authentication testing (e.g., enhancing existing authentications tests,
incorporating new authentication tests, or evaluating additional CLS), and to work with UL and other
cybersecurity experts to develop tests for, and initiate an exploration into, authorization vulnerabilities.
Authentication Test 1 will be enhanced to verify that Transport Layer Security is used to encrypt Hypertext
Transfer Protocol Secure (HTTPS) traffic, as opposed to Secure Sockets Layer security, which has been
deprecated.

Furthermore, PNNL will bring these results to the ANSI C137 Lighting Systems ad-hoc working group
focusing on cybersecurity vulnerability, for consideration in the creation and development of new standards. It
is hoped that these evaluations will support and perhaps accelerate industry discussions on the risks of specific

https://www.nist.gov/cyberframework
https://www.nist.gov/itl/nist-special-publication-800-series-general-information
https://csrc.nist.gov/publications/sp800
https://www.isa.org/training-and-certifications/isa-certification/isa99iec-62443/isa99iec-62443-cybersecurity-certificate-programs/
https://www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc/ufc-4-010-06
https://standardscatalog.ul.com/standards/en/standard_2900-1_1
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents

12

security vulnerabilities, what vulnerabilities should be addressed by in-development of future lighting-specific
best practices, and whether any such practices should be included in voluntary lighting standards.

Recommendations
1. Lighting-industry stakeholders should provide feedback on how future cybersecurity studies could be

modified or enhanced to provide greater industry value.

2. Cybersecurity vulnerability experts should provide feedback on the vulnerability tests that were utilized
in the study, including whether important tests were missing and whether included tests are not
particularly relevant to CLS.

3. Cybersecurity vulnerability experts should consider working with PNNL to develop new vulnerability
tests that might be incorporated into future test suites.

4. CLS developers should consider supporting the integration of their CLS into the PNNL CLTB, where the
CLS would be available for use in future cybersecurity vulnerability studies.

13

Appendix A: Authentication Test Results

Summary
Applicable: 40
>PASS: 26 FAIL: 14
Not applicable: 32

CLS A
Applicable: 9
>PASS: 3 FAIL: 6
Not applicable: 9

CLS B
Applicable: 11
>PASS: 9 FAIL: 2
Not applicable: 7

CLS C
Applicable: 10
>PASS: 7 FAIL: 3
Not applicable: 8

CLS D (*Cloud
interface only)
Applicable: 10
>PASS: 7 FAIL: 3
Not applicable: 8

Test 1
Applicable: 4
>PASS: 3 FAIL: 1
Not applicable: 0

FAIL: HTTPS is not
used to securely
transmit credentials

PASS PASS PASS

Test 2
Applicable: 4
>PASS: 4 FAIL: 0
Not applicable: 0

PASS PASS PASS PASS

Test 3
Applicable: 4
>PASS: 1 FAIL: 3
Not applicable: 0

FAIL: No account
lockout after six
consecutive login
failures

PASS

FAIL: No account
lockout after six
consecutive login
failures

FAIL: No account
lockout after six
consecutive login
failures

Test 4
Applicable: 4
>PASS: 3 FAIL: 1
Not applicable: 0

FAIL: Authentication
token saved in cookie
following logout

PASS PASS PASS

Test 5
Applicable: 4
>PASS: 4 FAIL: 0
Not applicable: 0

PASS PASS PASS PASS

Test 6
Applicable: 4
>PASS: 0 FAIL: 4
Not applicable: 0

FAIL: No auto-logout
after 15 minutes

FAIL: No auto-logout
after 15 minutes

FAIL: No auto-logout
after 15 minutes

FAIL: No auto-logout
after 15 minutes

Test 7
Applicable: 4
>PASS: 1 FAIL: 3
Not applicable: 0

FAIL: Authentication
token saved in cookie
following session
timeout

PASS

FAIL: Can re-
authenticate following
session termination
using ←→ sequence

FAIL: Can re-
authenticate following
session termination
using ←→ sequence

Test 8
Applicable: 2
>PASS: 0 FAIL: 1
Not applicable: 3

Not applicable: Sudo
password to access
SSH not available

FAIL: CLS does not
request new
authentication

Not applicable: CLS
does not use SSH
session

Not applicable: CLS
does not use SSH
session

Test 9
Applicable: 4
>PASS: 3 FAIL: 1
Not applicable: 0

FAIL: CLS discloses
validity of username
when a wrong
password is entered

PASS PASS PASS

14

Summary
Applicable: 40
>PASS: 26 FAIL: 14
Not applicable: 32

CLS A
Applicable: 9
>PASS: 3 FAIL: 6
Not applicable: 9

CLS B
Applicable: 11
>PASS: 9 FAIL: 2
Not applicable: 7

CLS C
Applicable: 10
>PASS: 7 FAIL: 3
Not applicable: 8

CLS D (*Cloud
interface only)
Applicable: 10
>PASS: 7 FAIL: 3
Not applicable: 8

Test 10
Applicable: 2
>PASS: 2 FAIL: 0
Not applicable: 2

PASS PASS
Not applicable: CLS
does not use Zigbee

Not applicable: CLS
does not use Zigbee

Test 11
Applicable: 0
>PASS: 0 FAIL: 0
Not applicable: 4

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Test 12
Applicable: 0
>PASS: 0 FAIL: 0
Not applicable: 4

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Test 13
Applicable: 0
>PASS: 0 FAIL: 0
Not applicable: 4

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Not applicable: CLS
does not use JWT

Test 14
Applicable: 3
>PASS: 3 FAIL: 0
Not applicable: 1

Not applicable: No
password change
option

PASS PASS PASS

Test 15
Applicable: 2
>PASS: 2 FAIL: 0
Not applicable: 2

Not applicable: CLS
does not use SAML

Not applicable: CLS
does not use SAML

PASS PASS

Test 16
Applicable: 0
>PASS: 0 FAIL: 0
Not applicable: 4

Not applicable: CLS
does not use MQTT

Not applicable: CLS
does not use MQTT

Not applicable: CLS
does not use MQTT

Not applicable: CLS
does not use MQTT

Test 17
Applicable: 0
>PASS: 0 FAIL:
Not applicable: 4

Not applicable: CLS
does not utilize
Bluetooth

Not applicable: CLS
does not utilize
Bluetooth

Not applicable: CLS
does not utilize
Bluetooth

Not applicable: CLS
does not utilize
Bluetooth*

Test 18
Applicable: 0
>PASS: 0 FAIL: 0
Not applicable: 4

Not applicable: CLS
does not utilize
Bluetooth

Not applicable: CLS
does not utilize
Bluetooth

Not applicable: CLS
does not utilize
Bluetooth

Not applicable: CLS
does not utilize
Bluetooth*

15

References
[Gope 2019] P. Gope and B. Sikdar, "Lightweight and Privacy-Preserving Two-Factor Authentication Scheme
for IoT Devices," IEEE Internet of Things Journal, vol. 6, no. 1, pp. 580-589, 2019.

[Pandharipande 2018] A. Pandharipande, M. Zhao, E. Frimout and P. Thijssen, "IoT lighting: Towards a
connected building eco-system," 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), 2018.

[Siegel 2018] J. E. Siegel, S. Kumar and S. E. Sarma, "The Future Internet of Things: Secure, Efficient, and
Model-Based," IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2386-2398, 2018.

[Chen 2017] D. Chen, N. Zhang, Z. Qin, X. Mao, Z. Qin, X. Shen and X.-y. Li, "S2M: A Lightweight Acoustic
Fingerprints-Based Wireless Device Authentication Protocol," IEEE Internet of Things Journal , vol. 4, no. 1,
pp. 88-100, 2017.

[Humayed 2017] A. Humayed, J. Lin, F. Li and B. Luo, "Cyber-Physical Systems Security—A Survey," IEEE
Internet of Things Journal, vol. 4, no. 6, pp. 1802-1831, 2017.

[Minoli 2017] D. Minoli, K. Sohraby and B. Occhiogrosso, "IoT Considerations, Requirements, and
Architectures for Smart Buildings—Energy Optimization and Next-Generation Building Management
Systems," IEEE Internet of Things Journal, vol. 4, no. 1, pp. 269-283, 2017.

[Moore 2017] Moore, Susan. “Focus on the Biggest Security Threats, Not the Most Publicized.” Smarter With
Gartner, November 2, 2017. https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-
threats-not-the-most-publicized/.

[Yang 2017] Y. Yang, L. Wu, G. Yin, L. Li and H. Zhao, "A Survey on Security and Privacy Issues in
Internet-of-Things," IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250-1258, 2017.

https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized/
https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized/

16

(This page intentionally left blank)

For more information, visit:
energy.gov/eere/ssl

PNNL-28782 ▪ March 2020

https://www.energy.gov/eere/ssl/solid-state-lighting

	Abstract
	Introduction
	Background
	Authentication
	Authentication Vulnerabilities

	CLS Authentication Testing
	Test Setup, Implementation, and Method
	Test Units
	Test Results and Analysis

	Summary and Recommendations
	Next Steps
	Recommendations

	Appendix A: Authentication Test Results
	References

