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Executive Summary 

Four major research objectives were completed over the course of this study. Three of 
the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting 
models. The fourth objective was to improve the California Independent System 
Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. 

The three, new, state-of-the-art solar irradiance forecasting models included: the 
infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model 
and variants; and the Optimized Deep Machine Learning (ODML)-training model. The 
first two forecasting models targeted known weaknesses in current operational solar 
forecasts. They were benchmarked against existing operational numerical weather 
prediction (NWP) forecasts, visible satellite CMV forecasts, and measured PV plant 
power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all 
improved the forecast to a significant degree. Improvements varied depending on time 
of day, cloudiness index, and geographic location.    

The fourth objective was to demonstrate that the California ISO’s load forecasts could 
be improved by integrating BTM PV forecasts. This objective represented the project’s 
most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ 
individual rooftop PV forecasts were delivered into the California ISO’s real-time 
automated load forecasting (ALFS) environment. They were then evaluated side-by-
side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-
ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to 
actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the 
largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-
ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, 
especially during the morning time periods when traditional load forecasts often 
experience their largest uncertainties.  

This work culminated in a GO decision being made by the California ISO to include 
zonal BTM forecasts into its operational load forecasting system. The California ISO’s 
Manager of Short Term Forecasting, Jim Blatchford, summarized the research 
performed in this project with the following quote: 

“The behind-the-meter (BTM) California ISO region forecasting research performed by 
Clean Power Research and sponsored by the Department of Energy’s SUNRISE 
program was an opportunity to verify value and demonstrate improved load forecast 
capability. In 2016, the California ISO will be incorporating the BTM forecast into the 
Hour Ahead and Day Ahead load models to look for improvements in the overall load 
forecast accuracy as BTM PV capacity continues to grow.” 
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Background and Introduction  

The penetration of customer-sited PV systems continues to grow as a result of reduced 
costs to the consumer, innovative business models such as third-party ownership and 
state-mandated renewable portfolio standards. This expansion of installed PV systems 
is increasing the amount of on-site energy generation leading to a change in the shape 
of the load profile during critical parts of the day. The California Independent System 
Operator (ISO) created the ‘Duck Chart’ to illustrate how the daily grid profile will 
change due to increasing penetrations of behind-the-meter (BTM) PV generation. 
Figure 1 illustrates these anticipated changes in California ISO load profiles. The 
increased penetration of PV impacts the capacity generation considerations for a utility. 
In addition, it does this inconsistently across hours of the day or day of the year. This is 
because PV generation is variable by nature across multiple time domains: the 
production of a fleet of PV systems may not produce the same amount of energy today 
as it did yesterday.  

California ISO and utilities will need to balance the swings in “net load” caused by the 
variability in solar generation by scheduling reserve resources with increasingly steep 
ramp rates and increasing associated costs. The net load profile presents an additional 
ramp-down in the morning and a bigger, steeper ramp-up before peak load in the 
evening. The magnitude of these additional ramps will only increase as additional BTM 
PV systems are installed. The absolute accuracy of current load prediction methods will 
continue to decrease as overall PV capacity grows within a balancing area. This will 
have a direct impact on the California ISO’s ability to manage and purchase reserve 
capacity. 

 

Figure 1: An example of predicted California ISO load profile changes (a.k.a. the Duck 
Curve) as higher penetrations of renewable energy (primarily solar) are installed on the 
grid. A typical profile of BTM PV production is shown in yellow (dashed). 

Forecasting production of PV systems, however, is not completely uncertain and can be 
predicted along the known daylight hours. Fundamentally, PV production forecasts are 
heavily reliant on the ability to predict cloud cover. Accurate prediction requires a good 
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understanding of spatial cloud correlation and movement and generation, which must 
be factored into operational PV production forecasts. 

The Need for Site-Specific BTM Forecasting 

No commercially-available product exists that explicitly forecasts distributed BTM PV 
energy production as an offset to balancing area load scheduling. The need for this 
capability is driven by the increasing number of PV systems coming online coupled with 
the lack of generation correlation between adjacent distributed PV sites. Utilities and 
ISOs have limited budgets and personnel resources available to address this growing 
problem. Thus a scalable, cost-effective method for operational improvements is 
required.  

One existing solution is to use persistence methods of load prediction that heavily 
weight recent day usage. This solution, however, can cause difficulties when a cloudy 
day precedes a sunny day throughout most of the utility coverage area or vice-versa. A 
persistence-based approach will over-predict the customer load on the first day and 
over compensate and under-predict the customer load on the following day.  

Another existing solution (Tuohy et al.) is to assume a total BTM PV capacity over a 
large geographic area and to forecast production as a “single” PV system. Figure 2 
presents the current California distributed PV generation capacity. It shows that there is 
a wide variety of system sizes and disbursed locations. In addition, there are a variety of 
system orientations. It is challenging to aggregate such a diverse set of systems. This 
method also over simplifies the challenges in cloud patterns centered on their low 
spatial correlation during variable irradiance (e.g., partly cloudy) conditions. 

Both solutions will lead to unsustainable forecasted load errors and higher PV 
integration costs as PV capacity increases.  
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Figure 2: Distribution and capacity of BTM PV systems throughout California. 

This project successfully integrated state-of-the-art forecasting methods into the largest 
U.S. solar market (currently nearly 40% of the nationwide solar generation occurs in 
California) to yield robust and accurate forecast products for an important stakeholder, 
the California ISO. The California ISO is charged with maintaining the reliability and 
accessibility of operation for the region's electricity grids. Its balancing area covers 
zones serviced by three of the largest US investor-owned utilities (PG&E, SCE and 
SDG&E), all of which are experiencing rapidly increasing numbers of BTM PV systems. 

The solution is provided through a software service that predicts BTM PV generation 
using a combination of satellite and numerical weather prediction (NWP)-based 
irradiance forecasting methods and widely accepted PV system energy simulation 
algorithms. This solution is embodied in the software product SolarAnywhere® 
FleetView®.  

FleetView enables the generation of a seven-day forecast for every unique PV system 
and the aggregation of forecasted generation, by utility or ISO-relevant grouping. 
FleetView provides a significantly more precise approach to estimating the offset to 
utility load due to BTM PV generation when compared with existing methods. 

Building on Prior Knowledge 

This project’s success is due to the existing work performed between Clean Power 
Research (CPR) and the California ISO. Previous work focused on developing the 
algorithms and framework needed to facilitate BTM forecasts. A primary task of this 
project was to integrate these BTM PV forecasts, for all PV systems within the state of 
California, into the California ISO Short Term Forecasting Group’s Automatic Load 
Forecasting System (ALFS). A task which ties directly to the overall goal of improving 
both the hour-ahead and day-ahead California ISO load forecasts. Additionally, metered 

https://www.eia.gov/todayinenergy/detail.cfm?id=23972
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utility owned PV system data was used to evaluate existing forecast accuracy and 
enable the application of further forecast improvements developed by University of 
California, San Diego (UCSD). The successful integration of an operational BTM PV 
generation forecast into load planning and operational tools for the California ISO has 
established an approach that other areas of the country could follow.  

The results presented in this report are focused on the summary of overall project tasks 
listed in Table 1.  

Table 1: Table of overall project tasks, milestones and deliverables. 

Task 
1 

Integrate FleetView Forecasts into the California ISO Generation and Load 
Scheduling and Real-Time Operations   

Budget Period 1 

Subtask (BP1)   

1.1 
Understand how the California ISO uses load forecasts in their balancing 
operations   

1.2 Design features in FleetView to meet the use of California ISO   

1.3 Build in the desired feature set to FleetView   

Deliverable (BP1)   

1.1 Specification document of data format for importing fleet forecasting into 
California ISO ALFS 

Achieved 

1.2 Specification document of communication protocol for importing fleet forecasting 
into California ISO ALFS 

Achieved 

1.3 Summary document that presents results from completion of Task 1 and focuses 
on repeatable methods for integrating FleetView forecasting software with any 
utility load forecasting tool 

Achieved 

Milestone (BP1)   

1.1 CPR will deliver FleetView forecasts into the California ISO ALFS in time for the 
information to be operationally relevant, based on the feedback from the 
California ISO in Deliverables 1.1 – 1.3 

Achieved 

      

Task 
2 

Improve Forecast by Integrating High Resolution (4-km grid, 15-minute 
output out to 24 hours in forecast horizon) Numerical Weather Prediction 
(NWP) Model and Optimized Deep Machine Learning (ODML) method 
forecasts into FleetView 

  

Budget Period 1 

Subtask (BP1)   

2.1 Generate a specification outlining important parameters in generating and 
integrating advanced solar forecasting methods, Weather Research and 
Forecasting (WRF-SolarCA) 

  

2.2 UCSD will generate WRF-SolarCA model forecasts for specific regions and time 
domains 

  

2.3 CPR will generate new infrared satellite image forecasts for specific regions and 
time domains 
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2.4 Generate a specification outlining data transfer requirements to properly operate 
the ODML method from Prof. Carlos Coimbra 

  

Deliverable (BP1)   

2.1 Specification document defining the optimal configuration for UCSD WRF-
SolarCA model forecast improvements 

Achieved 

2.2 Specification document defining the information flow connecting all unique 
forecasts with the ODML methods developed by Prof. Carlos Coimbra 

Achieved 

Milestone (BP1)   

2.1 UCSD will produce and deliver to CPR forecast outputs based on the WRF-
SolarCA model as defined by the document in Deliverable 2.1 

Achieved 

2.2 UCSD will produce and deliver to CPR forecast output based on the ODML 
methods as defined by the document from Deliverable 2.2 

Achieved 

Budget Period 2 

Subtask (BP2)   

2.5a 
Produce an optimal ODML-based forecast at 52 California ISO metered PV 
locations   

2.5b 
Re-configure the WRF-SolarCA model using BP1 results to generate model 
output in a California climate region    

2.6 CPR will integrate forecast improvements into FleetView   

Milestone (BP2)   

2.4 
Go/No Go decision by the California ISO whether to integrate FleetView 
forecasts into their operational ALFS. 

Achieved 

2.5 FleetView forecasts will be optimized for computational performance to deliver 
information to the California ISO ALFS at an average time of 20-minutes +/- 7-
minute standard deviation 

Achieved 

      

Task 
3 Validate FleetView Forecast Accuracy against Metered California ISO Data   

Budget Period 1 

Subtask    

3.1 Acquire metered PV system data for the utility scale plants from the California 
ISO 

  

3.2 Quantify the accuracy and subsequent value of the FleetView forecasts   

3.3 Quantify the accuracy and subsequent value of advanced forecasting techniques   

Deliverable   

3.1 Summary document that presents the results of comparing the accuracy of 
FleetView plant specific forecasts with the California ISO ground data for the 52 
metered PV systems 

Achieved 

3.2 An accuracy summary document highlighting the relative improvements of 
FleetView forecasts and highlighting particular areas of improvement, including 
geographic region, climate conditions and relative PV penetration level 

Achieved 

3.3 California ISO ground data delivered to CPR for 52 total metered PV systems 
over the period of 2014 for four-second interval measurements 

Achieved 

Milestone   
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3.1 California ISO ground data delivered to CPR for 52 total metered PV systems 
over the period of 2013 for four-second interval measurements 

Achieved 

3.2 CPR will produce early morning forecasts using satellite infrared channel images 
by developing research methods 

Achieved 

Budget Period 2 

Subtask    

3.2 Quantify the accuracy and subsequent value of the FleetView forecasts while 
providing the California ISO feedback on forecast accuracy   

3.3 Quantify the accuracy and subsequent value of advanced forecasting techniques 
to drive decisions on whether to add the forecasting technique to the existing 
FleetView forecast service and provide a basis for the California ISO to 
understand where the FleetView forecasts are most effective, either in a 
locational, seasonal or diurnal framework   

Milestone   

3.3 Summary document that presents the results of comparing the accuracy of 
existing FleetView plant specific forecasts and newly added forecast 
improvements with the California ISO ground data for the 52 metered PV 
systems, as noted in Milestone 3.3 

Achieved 

      

Task 
4 

Quantify Impact of FleetView Forecast on Improved California ISO Load 
Forecasting   

Budget Period 1 

Subtask   

4.1 Acquire metered forecast and actual load data for the desired geographic zones 
from the California ISO 

  

4.2 Quantify the accuracy and subsequent value of the FleetView forecasts   

4.3 Quantify the accuracy and subsequent value of advanced forecasting techniques   

Deliverable    

4.1 Summary document that presents the results of comparing the accuracy of 
existing California ISO ALFS load forecasts to actual system load with and 
without incorporating FleetView behind-the-meter forecasts 

Delayed 
to BP2 

4.2 Summary roll out presentation of all Budget Period 1 deliverables to select 
stakeholders and the Department of Energy Achieved 

Milestone   

4.1 California ISO forecast and actual load data delivered to CPR for five defined 
geographic zones over the time period 2013 at 4-second intervals 

Delayed 
to BP2 

Budget Period 2 

Subtask   

4.2 Quantify the accuracy and subsequent value of the FleetView forecasts   

Milestone   

4.2 Summary document that presents the results of comparing the accuracy of 
existing California ISO ALFS load forecasts to actual system load with FleetView 
behind-the-meter forecasts Achieved 
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4.3 CPR will submit abstract and apply to present at one or more technical 
conferences, where results from the project will be presented to the research 
community Achieved 

      

Task 
5 Provide DOE and Public Accessible Data Created from this Project   

Budget Period 1 

Deliverable    

5.1 All data generated as part of the scope of this project in Budget Period 1 in easily 
viewed and downloadable format no later than 30 days after the conclusion of 
Budget Period 1 Achieved 

Budget Period 2 

Milestone    

5.2 All data that was generated as part of the scope of this project in Budget Period 2 
in easily viewed and downloadable format no later than 30 days after the 
conclusion of Budget Period 2 Achieved 

      

Task 
6 Dissemination, Replication and Impact of EERE funding   

Budget Period 2 

  Lessons learned from data sharing and the simulations of high-renewable 
penetration scenarios will be shared with the broader power system operators’ 
stakeholder group by coordinating with DOE’s other parallel activities as 
appropriate   

      

BP1  Go/No Go Decision    

  
At the end of Budget Period 1, a Go/No Go Decision will be made based on 
successful completion of 85% of BP1 subtasks and deliverables Achieved 

Project Results and Discussion  

Integration of FleetView Forecasts into the California ISO Real-Time Operations 
(Task 1 Highlights) 

Under this project, FleetView BTM forecasts were extended, operated, and 
demonstrated for a period of two years. FleetView has been reliably providing ten 
separate fleet forecasts to the California ISO for Day Ahead Market and Real-Time Pre-
Dispatch needs. This operating experience has enabled CPR to work through technical 
challenges and demonstrate a working BTM forecasting system. 

Zonal FleetView BTM forecasts are now fully integrated into the California ISO 
operational environment. Integration includes both forecast delivery (via secure FTP as 
pre-arranged with the operator) as well as dynamic feedback (also over FTP). This 
system meets all security requirements and has proven to be highly robust and reliable. 
This effort was undertaken to meet subtasks 1.1-1.3. 
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Satellite-based Forecast Improvements (Task 2 Highlights) 

Satellite CMV Forecast Model  

CPR’s satellite-to-irradiance model forms the crux of satellite cloud motion vector (CMV) 
forecasts. The CMV forecast model has been updated to utilize Geostationary 
Operational Environmental Satellite (GOES) infrared (IR) channels. This update enables 
the CMV forecast model to detect pre-sunrise clouds and subsequent cloud motion. The 
IR CMV model produces forecasts from pre-sunrise onward. This capability was not 
present in the visible satellite channel-only CMV model. 

 

 

 

 

 

 

 

Short-term irradiance forecasts are produced using consecutive GOES 1-km visible and 
4-km IR satellite images to infer cloud motion as illustrated in Figure 3. CMVs are 
determined by minimizing the error of the difference between consecutive satellite 
image-derived clearness index maps. Clearness index maps for subsequent hours, up 
to 5 hours ahead, are derived from the localized motion of individual pixels. A pixel-
specific clearness index is advected in the direction of the CMV determined for the 
considered location. The considered location is also assigned the clearness index value 
of the pixel upstream from the target location.  

A steady state cloud supposition is made during the satellite-based forecast period 
during which no cloud growth or decay occurs. Future images are subsequently 
smoothed following the approach described by Hammer et al. (2001). The final 
translation from clearness index to irradiance is then performed via the Perez et al. 
(2002) method. The overall GOES satellite-based forecast process is diagramed in 
Figure 4. 

Figure 3: Example CMV technique derived from 
two consecutive visible satellite images (from 
Lorenz et al., 2004). Infrared-based CMV 
forecasts are derived in a similar fashion from 
consecutive IR satellite images. 

Figure 4: SolarAnywhere satellite-based power 
forecasting process flowchart. 
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IR CMV model forecast results are generally less accurate than concurrent visible CMV 
forecast model results due to the lower resolution of the IR channel source data and to 
challenges inherent to IR channel cloud detection.  

NDFD model forecasts 

SolarAnywhere short-to-medium term solar irradiance forecasts are derived from the 
National Digital Forecasting Database (NDFD) gridded cloud forecasts following a 
methodology similar to short-term satellite-based forecasts. The NDFD cloud amount 
products are the result of a multiphase forecasting process. The process involves: (1) 
prediction of global forecasts using NWP; (2) modification of the global forecasts by 
regional meteorological offices using tools that include mesoscale models and human 
input; and (3) reassembling of the regional offices’ products into a national grid. The 
cloud-amount-to-irradiance procedure is adjusted empirically to better match the 
ensemble of observations at regionally appropriate ground locations, particularly to 
account for a tendency towards cloud amount under prediction as NWP forecast time 
horizons increase. Further details about the NDFD model can be found at the flowing 
URL: http://www.nws.noaa.gov/ndfd/.  Pre-dawn solar forecasts in SolarAnywhere 
currently rely on NDFD model due to the lack of visible GOES satellite imagery.  

Translation to PV Power  

FleetView explicitly models the translation of irradiance to PV power. This is one key 
differentiator of FleetView versus other approaches. Site-specific irradiance (GHI and 
DNI), temperature and wind speed data along with PV site details (module type, inverter 
type, row spacing, tilt angle, DC/AC size, etc.) are incorporated together and fed into a 
PV performance model as illustrated in Figure 5. FleetView was designed specifically 

for solar energy and thus has been developed with this more accurate approach. This is 
opposed to other irradiance-to-power scaling or correlation techniques (e.g., model 
output statistics (MOS) or measure-correlate-predict) ported over to the solar industry 
from wind forecasting techniques. Accurate PV system configuration specifications can 

Figure 5: PV simulation architecture within FleetView. 
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impact overall system power forecast accuracy as much as the underlying irradiance 
data. The translation to power is the last step of the overall solar energy forecasting 
process. 

Forecast Evaluation Methodology and Metrics 

All forecasts evaluated for this project are validated against corresponding hourly quality 

controlled irradiance and PV plant production data. Error metrics reported include Mean 

Bias Error (MBE), Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE) 

normalized by capacity, and Root Mean Square Error (RMSE). Each of these 4 error 

metrics are defined below:  
 

𝑀𝐵𝐸 =  
∑ (𝐹𝑖 − 𝑂𝑖)𝑛

𝑖=1

𝑛
 

 

𝑀𝐴𝐸 =  
∑ (|𝐹𝑖 − 𝑂𝑖|)𝑛

𝑖=1

𝑛
  

 

𝑀𝐴𝑃𝐸 =
𝑀𝐴𝐸

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝐹𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
  

 

where Fi is forecasted, Oi is observed. Nighttime values have been excluded from 

reported error metrics. 

Solar PV Plant Data and Cleaning 

Production PV data were accessed for 52 metered PV plants located throughout the 
California ISO balancing zone for the time period spanning May 2014 through May 
2015. Hour averages of one-minute resolution PI data were cleaned and stored for 
future use. Metered PV sites with significant suspicious data were removed from 
consideration. Additionally, co-located PV sites were removed from consideration due to 
the duplicate nature of the resulting forecast metrics. Twenty of the initial 52 sites were 
removed due to the aforementioned cleaning factors.   

The locations of the remaining 32 PV plants are presented in Figure 6. They can be 
grouped into climate-specific regions in California. PV sites evaluated include 2 sites in 
Bay Area (BA), 14 sites in Los Angeles (LA), 5 sites in Desert (D) and 11 sites in San 
Joaquin Valley (SJV). These regions represent the coastal, inland valley and desert 
climate regions of California, that compose solar energy forecast regions relevant to the 
California ISO. 
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Figure 6: Map of 32 Utility-scale PV solar plant locations evaluated in this report. PV solar 
sites are grouped into 4 solar energy forecast regions used to aggregate individual PV 
plant forecast results. These regions include the Bay Area (BA), San Joaquin Valley (SJV), 
Desert (D) and Los Angeles (LA). 
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IR CMV Model Forecast Results 

Figure 7 presents IR and visible CMV forecasts for a PV site located in the Desert 
region. The figure shows that IR CMV forecasts provide operational coverage well 
before the availability of visible CMV forecasts (9 AM LST in this example). The 
underlying NDFD forecast predicted clear skies during the morning while the pre-dawn 
IR CMV forecasts accurately predicted suppressed PV power production due to cloud 
cover.  

Figure 7: (IR CMV, visible CMV, and NDFD PV energy forecasts on February 19th, 2015 for 
a Desert region location. Ground observations of PV power are shown for validation 
purposes. 

Individual PV site power forecasts consisting of IR CMV and NDFD model forecasts are 
analyzed at all four California regions over a thirteen-month period spanning May, 2014 
through May, 2015.  

Figure 8 presents the annual averaged errors resulting from time-specific forecasts for a 
SJV region PV site. The figure suggests that forecast accuracy is improved under 
cloudy sky conditions with either the pre-dawn IR CMV forecasts or the post-dawn 
visible CMV forecasts when compared to the NDFD forecasts. Clear sky forecast errors 
are very similar in nature and shape at all SJV locations. 

Figure 9 suggests that seasonal impacts on forecast accuracy are stronger during the 
winter months. This is likely due to increased cloud cover from Pacific frontal weather 
systems and the morning occurrence of Tule Valley fog. 
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Figure 8: Annual SJV PV site forecasting error statistics (MAPE) shown for cloudy (dashed 
lines) and clear (solid lines) observed sky conditions. Error metrics are reported by 
forecast horizon (1-5 hours) for forecasts initialized at 4 AM through 12 PM (top left to 
lower right). 

  

 

Regional Aggregate PV Site Forecast Results 

Table 2 reports aggregate pre-dawn power forecast error statistics for the four regions. 
Inspection of the forecast results shows improvement in IR CMV forecasts at PV sites 
located at both inland California regions (D and SJV) under all sky conditions, but not at 
PV sites located in the two coastal regions (BA and LA). This is likely due to IR CMV 

       
          

     
          

        
          

    J  q                   
         

No visible CMV 
Forecasts Available 

Figure 9: Seasonal forecasting error statistics (MAPE) for the single SJV PV 
site. Hourly forecasts illustrated in Figure 7 are averaged per hour and 
aggregated monthly to emphasize seasonal forecast error patterns under 
all sky conditions. 

    J  q           
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model limitations when low level marine stratus clouds are present and will be 
elaborated on further in the next section.  

Table 2: Error metrics for IR CMV and NDFD forecasts spanning 13 months (5/2014 – 5/2015). 
Aggregate regional PV power forecasts generated at 5 and 6 AM LST spanning the 1-4 hour ahead 
forecast horizon are included in the error analysis. 

 

IR CMV Forecasting Challenges 

Cloud cover detection is a challenging task if only IR satellite data is available. The 
evaluated IR CMV forecast model relies on thresholding cloud top and ground 
temperatures to identify cloud cover. Lower altitude, warm clouds (i.e., marine layer 
stratus clouds) are the most challenging to detect due to the low temperature contrast 
between cloud top and ground.  

The current IR CMV model challenge is illustrated in Figure 10. It suggests that the 
primary reason why IR CMV forecasts struggle at both BA and LA sites is due to 
warmer, marine layer clouds which frequently occur in these regions. Additional IR 
satellite cloud thresholding techniques are being evaluated that will help with the 
detection and subsequent CMV forecast of marine layer stratus clouds.  

Forecasts 

Bay Area (BA) Los Angeles (LA) 

All 
Clear 

Sky Cloudy All 
Clear 

Sky Cloudy 

MBPE 
(%) 

IR 4.80 -1.88 9.19 5.74 -0.38 10.97 

NDFD 0.73 -3.31 3.70 1.79 -1.71 5.06 

MAE 
(%) 

IR 7.91 3.72 9.92 8.29 3.99 11.61 

NDFD 6.40 5.26 7.38 7.78 5.50 10.12 

RMSE 
(%) 

IR 10.76 5.13 12.53 11.35 5.11 14.45 

NDFD 9.02 7.78 9.79 10.69 8.20 12.43 

Forecasts 

Desert (D) San Joaquin Valley (SJV) 

All 
Clear 

Sky Cloudy All 
Clear 

Sky Cloudy 

MBPE 
(%) 

IR 1.73 -0.45 6.02 1.19 -2.63 7.58 

NDFD 2.39 0.29 5.70 2.18 -1.07 7.57 

MAE 
(%) 

IR 5.12 3.63 7.88 6.95 4.78 9.10 

NDFD 5.43 3.96 8.62 6.82 4.41 10.31 

RMSE 
(%) 

IR 7.09 4.70 10.11 9.05 6.22 11.27 

NDFD 7.50 5.53 10.33 9.50 6.25 12.79 
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Figure 10: Example GOES visible (left) and infrared (IR) (right) satellite images from 
10/7/2014 at 06:45 LST. The IR channel enhanced temperature (oC) scale is shown on the 
bottom of the IR image. Lower, warmer marine layer clouds are clearly observed in the 
visible GOES imagery but are hard to distinguish in the IR GOES imagery. Higher, colder 
clouds are better discernable in IR satellite images due to the thermal contrast present 
between the colder cloud tops and the warmer land surface. 

Aside from the above challenges, day-to-day PV site availability and irradiance-to-power 
translation with reliable site specifications are also problematic. Decreased power 
production not related to changes in weather (e.g., inverter outages, PV module soiling, 
etc.) is not accounted in CMV and NWP forecasts, yet forecast validation is performed 
against real-life production data that tends to have varying availability. In addition, 
accurate PV site specifications (module type, inverter type, array configuration, etc.) are 
often challenging to obtain directly and have to be estimated at many PV power sites. 
These limitations make accurate irradiance-to-power translation difficult and often result 
in reducing the skills of CMV and NWP irradiance forecasts. 

UCSD WRF and ODML Model Forecasting Results (Task 2 Highlights) 

WRF and ODML forecasts and the associated effect on PV power production are 
evaluated at eight various sized PV plants located in four climate-specific locations in 
California as shown in Figure 11. Locations evaluated include the BA, LA, inland (D) 
and San Joaquin Valley (SJV). These eight PV plant locations represent the coastal, 
inland valley and desert climate regions of California, which compose forecast regions 
pertinent to the California ISO and are listed Table 3. 
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Table 3: Summary of PV plant locations and size. 

 

 

 

 

 

 

 

 

 

 

Initial WRF-SolarCA Forecast Results 

UCSD ran WRF-SolarCA forecasts initialized once a day (at 4:00 PM LST). Resulting 
forecasts were generated at 4 km horizontal spatial and 15-minute time resolution 
spanning out to a 54-hour time horizon. WRF model spatial coverage included all 
regions of interest to the California ISO. Error metrics performed on WRF-SolarCA and 
corresponding NDFD GHI forecasts at 8 various coastal and inland California PV sites 
determined that the WRF-SolarCA forecasts at all locations exhibited high error due to 
the under-prediction of clouds.  

There are several reasons contributing to the initial poor WRF-SolarCA forecasting 
results. The most crucial one is a high clear sky bias present in the WRF-SolarCA 
forecasts, which results in high MBE and MAE metrics across all sites during all forecast 
horizon hours. This clear sky bias was determined to be due to the lack of realistic 
modeled atmospheric aerosols within the WRF model framework. Additionally, 
Mathiesen and Kleissl (2011) demonstrated that NWP models frequently under-predict 
cloud cover, resulting in further bias towards predicting clear skies. 

DA WRF-SolarCA cloud forecasts lose all near-term forecast benefits gained from the 
cloud assimilation methods employed by UCSD are largely driven by the external grid 
NAM model forecasts which are notoriously poor at marine layer cloud forecasting 

PV site Climate Region PV plant Size 

BA-1 Bay Area Small 

LA-1 Los Angeles Small 

SJV-1 San Joaquin Valley Small 

SJV-2 San Joaquin Valley Large 

D-1 Desert Large 

D-2 Desert Small 

D-3 Desert Small 

D-4 Desert Large 

Figure 11: PV solar plant forecasting 
locations (8) and climate zones (4) evaluated 
in this section. 
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(Mathiesen and Kleissl, 2011). As a result of the forecast generation timeline, WRF-
SolarCA forecasts exhibited an artificially high bias at the two coastal sites (BA and LA) 
during the DA morning hours. The WRF-SolarCA DA forecasts were determined to be 
less accurate than NDFD forecasts.  

After helpful discussions with UCSD it was determined that these results were 
undesirable and that it would be worthwhile to refocus WRF-SolarCA forecasts onto a 
more appropriate forecasting effort. The results of the updated WRF-SolarCA 
forecasting efforts are presented below. 

Updated WRF-SolarCA Forecast Results 

WRF-SolarCA Model Overview and Setup 

It was determined that WRF-SolarCA forecasting efforts should be focused on an 
applicable forecast need for this effort. The most promising effort was to improve upon 
marine stratus cloud forecasts in the coastal regions of California.  

To facilitate this effort, two nested model domains cover the region of interest, at 8.1 km 
and 2.7 km resolutions for the outer and inner domains, respectively. Their locations 
and sizes are shown in Figure 12. Vertically, the domain spans 75 vertical levels, with 
50 levels below 3 km to help resolve boundary layer cloud formation. 

Two sets of initialization data were used in this modeling effort. The first set is initialized 
at 06 UTC, from the 00Z-initialized North American Mesoscale (NAM) forecasts (i.e., the 
6th hour forecast of the 00 UTC-initialized NAM), and is denoted by 06-00N. The second 
set is initialized at 12 UTC, from the 12 UTC-initialized NAM forecasts (i.e., the 0th hour 
forecast of the 12 UTC-initialized NAM), and is denoted by 12-12N. 06 and 12 UTC 
correspond to 11 PM and 5 AM LST, respectively, in California. In both sets, the parent 
simulation is driven by NAM forecast output on the 218 AWIPS CONUS grid at 12-km 
resolution. 
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Figure 12: WRF-SolarCA domain configuration. Domain 1 is at 8.1 km resolution, while 
domain 2 is at 2.7 km resolution. Location of targeted LA Basin photovoltaic site (LA-1) is 
indicated by the red X. 

Physics Parameterizations 

A summary of physics parameterizations is given in Table 4. WRF version 3.6 was run 
during these simulations. 

Table 4: Summary of WRF parameterization schemes 

Parameterization type WRF setting (Outer/inner 
domain) 

Scheme name 

Planetary boundary layer 5/5 MYNN2 

Surface layer 5/5 MYNN 

Land surface 2/2 Noah LSM 

Radiation (LW & SW) 5/5 for both, at 5 min time step New Goddard* 

Microphysics 10/10 Morrison 2-mom 

Cumulus 14/0, at 1 min time step New SAS 

*The New Goddard radiation scheme includes the Rayleigh scattering correction by Zhong and Kleissl (2015) 
that eliminates bias in Global Horizontal Irradiance. 

Preprocessing Schemes Evaluated 

CLDDA (CLouD Data Assimilation) 

The Cloud Data Assimilation (CLDDA) package (Mathiesen, Collier, & Kleissl, 2013) is a 
preprocessing suite which alters the relative humidity fields in WRF in accordance to 
cloud positions as determined by satellite imagery. 

In brief, the latitude and longitude positions of low clouds are determined from the 
GOES sounder cloud product maintained by CIMSS at the University of Wisconsin-
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Madison. In cloudy columns, cloud tops are defined at the inversion base height or, in 
the absence of an inversion, at the intersection of the vertical temperature profile and 
satellite cloud-top temperature. Cloud base height is determined from an empirically-
derived function relating cloud base height to cloud top height. Lastly, relative humidity 
is adjusted to 110% within the cloud deck and all previous liquid water is zeroed. In 
order to avoid excessive latent heating from the subsequent condensation, 
microphysics heating is turned off for 1 hour following application of CLDDA. 
Additionally, relative humidity is adjusted to a maximum of 75% in clear columns as 
determined by GOES imagery. 

WEMPP (Well-Mixed PreProcessor) 

Because liquid water content is not directly transferred from NAM to WRF, a “spin-up” 
period of approximately 6 hours is required for the microphysics scheme to regenerate a 
liquid cloud field from zero. In an effort to reduce this spin-up period, the Well-mixed 
Preprocessor (WEMPP) was developed in order to provide a better initial guess of cloud 
liquid water at initialization. The method is as follows: 

1. In columns containing a temperature inversion under 3 km, the highest grid point 
under the inversion base height at relative humidity (RH) ≥ 95% is defined as 
cloud top. 

2. Assuming a single cloud layer, mass-weighted averages of RH are computed 
downwards in layers of increasing depth until the layer average RH < 95%. The 
bottom-most point is defined as cloud base. 

3. The water vapor mixing ratio qv is set to the saturation water vapor mixing ratio 
qsat at cloud base. Applying the well-mixed layer assumption, qsat at cloud base 

is equivalent to the total water mixing ratio qt (the sum of water vapor and liquid 
water mixing ratios qv + ql) within the boundary layer. 

4. Within the cloud layer, qv is set to qsat, and the difference between qsat and qv is 
partitioned into ql. 

WEMPP and CLDDA are further combined into an ensemble known as Well-Mixed 
PreProcessor Data Assimilation (WEMPPDA). Further details on the WRF-WEMPPDA 
ensemble are described in Table 5. 

IBH (Inversion Base Height) 

A negative bias in WRF-simulated inversion base height (IBH) was determined from 
comparisons with observational data. Since marine stratus cloud layers are capped by a 
temperature inversion, low IBH can not only lead to decreased cloud thickness, but also 
restrict inland advancement of cloud cover in regions where land elevation exceeds the 
IBH. 

Therefore, a preprocessing method was developed to raise all present non-surface 
temperature inversions under 3 km by a fixed height. After increasing the IBH, the 

mass-weighted average qt is computed from the old planetary boundary layer (PBL) 
and applied to both the old and supplemental PBL. Following, qv and ql are partitioned 
as described in WEMPP methodology. The temperature within the former PBL remains 
unchanged, and the supplemental PBL temperature profile is set according to the dry or 
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saturated adiabatic lapse rate, for clear and cloudy conditions, respectively. 
Temperature and moisture within the inversion layer is simply shifted vertically in order 
to maintain inversion depth, strength, and gradients. An example of original and 
adjusted vertical profiles is shown in Figure 13. 

 

  

Figure 13: The original [adjusted] inversion layer is demarcated by dashed magenta 
[yellow] lines. Left: Computed total water mixing ratio (dashed green), and original 
[adjusted] water vapor mixing ratio in blue [dashed black]. Right: Temperature profiles in 
original PBL (red) and adjusted PBL (dashed green). 

WRF-SolarCA Model Ensembles 

A summary of WRF-SolarCA model forecast ensembles evaluated in this report is given 
in Table 5. 

Table 5 - Summary of WRF-SolarCA ensembles 

Name WRF-WEMPPDA WRF-IBH 

Initialization 12-12N 06-00N 

Preprocessing WEMPP + CLDDA at initialization* IBH adjustment at initialization** 

Forecast horizon 42 hours 48 hours 

Processing time (estimate 
based on 60 processors) 

3.5 hours 4 hours 

* This ensemble is the combination of two preprocessing schemes. In run 1, only WEMPP will be applied. In 
run 2, CLDDA will be applied at initialization. After one-time step, both simulations will be stopped. In each 
grid column, the moisture profile of the run with the greatest liquid water path will be set in run 2, and the 
simulation will resume. 
** Adjustment will be equal to the average inversion bias at Miramar (KNKX) determined in June 2013 (300 m). 



DE-EE0006329  
Integration of Behind-the-Meter PV Fleet Forecasts 

Clean Power Research 

 

Page 24 of 49 

 

WRF-SolarCA Model Post-Processing 

A simple MOS correction was applied based on clear sky index (model GHI normalized 
by clear sky GHI) and solar zenith angle. A rolling 30-day window is used to fit the MOS 
function to reduce clear sky WRF-SolarCA forecast bias errors. 

WRF-SolarCA Model GHI Forecast Results 

WRF-SolarCA GHI forecast error metrics are shown in figures 14-16 below at the LA PV 

site. Results are shown from June 23-26, 28-30; July 1-2; August 6-12; and September 

4-5, 20-21 from 2014 which all represented days dominated by marine stratus cloud 

conditions. WRF-SolarCA ensembles included in the analysis are WRF-WEMPPDA and 

WRF-IBH. Irradiance forecast validation was performed against SolarAnywhere GHI 

data at 30-min 0.02° resolution and 24-hour persistence. 

Figure 14: WRF-CA LA Basin site GHI error statistics. 

Figure 15: Zoomed spatial MBE kt error maps. Left: WRF-WEMPPDA. Right: WRF-IBH. Daily 
averages from 7:00 AM to 6:30 PM local time, averaged over all days. The Los Angeles 
region PV site location is denoted by the black X. *Note: Aug. 11 is excluded from these 
plots due to a post-processing error. 
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Figure 16: Zoomed spatial MAE kt error maps. Left: WRF-WEMPPDA. Right: WRF-IBH. 
Daily averages from 7:00 AM to 6:30 PM local time, averaged over all days. The Los 
Angeles region PV site location is denoted by the black X. *Note: Aug. 11 is excluded from 
these plots due to a post-processing error. 

In conclusion, of the two ensembles evaluated in this update, WRF-IBH is the best 
performer, showing low bias error, even when compared against persistence forecast.  
WRF-IBH outperforms persistence forecast in every metric except MBEkt. WRF-
WEMPPDA exhibits a strong positive bias, suggesting failure to predict adequate cloud 
cover in the region. 

WRF-SolarCA Model PV Energy Forecast Results 

As part of Task 3 efforts WRF-SolarCA model irradiance forecasts were translated to 

PV power via the process described earlier in this report and compared to real-world 

observations of PV energy at the LA region PV site (LA-1) located on the west side of 

the LA Basin. A map of the LA region PV plant location is shown in Figure 17.  
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Figure 17: LA-1 PV plant location (denoted by the blue dot). A zoomed in view of the PV 
plant location is shown in the lower right inset. Map images courtesy of Bing Maps.  

WRF-SolarCA PV power forecast error metrics are shown in Table 6 below at the LA-1 
PV site. Results are shown from June 23-26, 28-30; July 1-2; August 6-12; and 
September 4-5, 20-21. WRF-SolarCA ensembles included in analysis are WRF-IBH and 
WRF-WEMPPDA. Validation was performed against hourly-averaged PV power plant 
data from the LA-1 PV site.  

Table 6: Hourly PV error metrics at the LA-1 site. For MAE and RMSE, models with lowest error in 
each respective hour are shaded green, while models with highest error are shaded red. 

LA-1 PV Site Forecast Metric (MAE) 

Forecast Valid 
Time (LST) 

WRF-IBH 
WRF-

WEMPPDA 
IR CMV NDFD 

6 0.71% 0.95% 0.94% 1.07% 

7 2.69% 3.62% 9.34% 4.40% 

8 5.19% 10.55% 20.58% 5.74% 

9 9.77% 14.59% 23.50% 17.68% 

10 12.76% 15.34% 17.54% 18.57% 

11 12.13% 13.07% 12.11% 11.49% 

12 7.89% 9.62% 9.00% 7.72% 

13 5.39% 5.91% 6.35% 5.54% 

14 6.54% 6.74% 6.06% 6.22% 

15 5.30% 5.38% 5.67% 5.57% 

16 4.13% 4.13% 4.69% 4.56% 
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LA-1 PV Site Forecast Metric (RMSE) 

Forecast Valid 
Time (LST) 

WRF-IBH 
WRF-

WEMPPDA 
IR CMV NDFD 

6 0.91% 1.18% 1.06% 1.25% 

7 3.76% 4.98% 10.00% 5.27% 

8 6.39% 12.10% 22.42% 7.61% 

9 11.08% 17.36% 28.54% 22.62% 

10 15.73% 21.46% 24.79% 25.88% 

11 17.84% 21.21% 21.55% 21.58% 

12 13.58% 17.44% 16.49% 15.97% 

13 8.36% 8.69% 9.25% 8.78% 

14 7.76% 7.96% 7.30% 7.88% 

15 6.15% 6.24% 6.38% 6.51% 

16 4.42% 4.48% 5.24% 5.00% 

 

Once again, WRF-IBH is the best performer, showing consistently low bias error, 
particularly during morning hours. IR satellite-based CMV forecasts show high error 
during morning hours due to their challenges detecting marine stratus clouds, though 
modest improvement occurs in the afternoon. WRF-WEMPPDA and NDFD present 
mixed results, also showing high MBE in the morning. In conclusion, WRF-IBH is the 
most accurate of the 4 models at forecasting PV power generation at the LA Basin PV 
site during the 20-day marine layer cloud-focused intensive observation period. 

ODML Model Overview and Background 

Professor Carlos Coimbra’s Lab at UCSD developed an Optimized Deep Machine 
Learning (ODML) forecast model that ingests CPR’s PV irradiance and energy 
forecasts. The goal of this model is to reduce the ensembled forecast error to its 
irreducible level. This task is motivated by the fact CPR’s PV forecasts are based on a 
combination of satellite-based and NWP irradiance forecast data as well as predicted 
weather, which are both known to contain data-to-irradiance limitations that can impact 
forecast accuracy. 

The ODML model employs hierarchical, multi-layer learning features that are based on 
ensemble learning representations. These forecast engines combine the adaptive 
nature of hybrid Genetic Algorithm (GA) and Artificial Neural Networks (ANN) with 
dynamic input selection, and fractional pre-processing in a multi-layered algorithm that 
allows for several hierarchical representations in neural memory. The available data 
stream inputs are optimized using an advanced, predictive preprocessing methodology. 
These techniques are based on Professor Coimbra’s Evolutionary Non-Integer Order 
(ENIO) pre-processing that determines relevancy and optimizes input selection to the 
forecasting engine. ANN topology is continuously and dynamically optimized using GAs 
that scan the solution space and “evolve” the ANN structure. This avoids time-
consuming trial-and-error approaches that have limited chance to result in optimal ANN 
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topology. The ODML techniques are able to learn the errors resulting from inaccuracy 
specifications and adjust the forecasts accordingly. Figure 18 describes the workflow for 
the ODML model. 

 

 

Figure 18 The Hybrid Evolutionary Non-Integer Order algorithm used to control the 
selection of Artificial Neural Networks in our Forecasting Methodology. 

Genetic algorithms are biological metaphors that combine an artificial survival of the 
fittest with genetic operators abstracted from nature. In this optimization technique, the 
evolution starts with a population of individuals, each of which carrying a genotypic and 
a phenotypic content. The genotype encodes the primitive parameters that determine 
an individual layout in the population. In the adopted strategy the genotype consists in 
the binary weights (masks) that control the inclusion/exclusion of inputs from the ANN, 
and other parameters that control the preprocessing of input variables such as the order 
of the fractional order derivative, the window size for moving average preprocessing, 
etc.  Additional parameters that control the ANN architecture, transfer functions, etc. can 
also be added to the individual genome. The GA optimizes these parameters by 
evolving an initial random population such that the RMSE between the historical data 
and forecasting data is minimized. 

One of the key components in the ODML models is the use of non-integer derivatives 
(fixed or variable) to preprocess input data when needed. The fractional derivatives, 
which are based on an integro-differential operator, generalize the meaning of ordinary 
constant order derivatives. In the case of solar irradiation, the short- and long-term 
memory effects on ground irradiance caused by periodic cloud cover (and PV power 
plant output) can be more accurately captured by non-Markovian processes. By using 
fractional derivatives these memory effects are coded as simple non-integer orders as 
inputs for the preprocessing stages, which in turn optimize the processing of inputs for 
minimum translation errors. 
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The performance of the ODML forecast is assessed using universally accepted error 
metrics such as the MAE, RMSE and the forecast skill relative to a reference model, in 
this case the original CPR FleetView irradiance and PV energy forecasts.  

ODML Model Forecast Results 

Individual ODML Forecast Results 

For each of the 8 locations shown in Figure 11 UCSD created four ODML re-forecast 
models. Each model uses different input data: 

 Model 1: GHI and DNI forecasts 

 Model 2: PO (PV Power) forecast 

 Model 3: PO and GHI 

 Model 4: PO, GHI and DNI forecasts 

Given that the original PV Power (PO) forecasts are based on three different data 
sources: IR and visible CMV and NDFD forecasts, the four ODML models were trained 
separately for each forecast data source.  

The original datasets that contain PO, GHI and DNI data from 2014-05-14 to 2015-05-
30 were divided into two disjointed sets: the training set and the validation set. The 
training set was used to determine the several free parameters in the ODML models 
while the validation set was used to assess the performance of the new forecast in 
terms of the MBE, MAE and RMSE error metrics. The improvement of the ODML 
models relative to the original forecasts was computed as: 

𝑆𝑖 =  (1 −
           

         
) × 100% 

Figure 19 and Figure 20 illustrate the results obtained by the ODML models for two of 
the SJV PV sites and two of the Desert PV sites, characterizing a large PV array and a 
small PV array for each respective region. The top rows in the figures compare the four 
models against the original forecast. The results show that often Model 1 performs 
worse (negative values of forecast improvement) than the original model even though it 
is trained against measured PO data. In general, Model 4 outperforms all other models 
(Models 2 to 4), which is expected since it uses all the relevant data available. 
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SJV-1 PV Site 

Site 

SJV-2 PV Site 

Figure 19 Forecast performance for two SJV PV sites. (Top) Comparison of the forecast 
performance between the original PO forecast and the four ODML models. Negative values 
indicate that the respective re-forecast model performs worse than the original. (Bottom) Scatter 
plots that compare the original forecast and Model 4 (the re-forecast model as indicated by the top 
figures) against the measured values.   
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Figure 20 Forecast performance for two Desert region PV sites. (Top) Comparison of the forecast 
performance between the original PO forecast and the four ODML models. Negative values 
indicate that the respective re-forecast model performs worse than the original. (Bottom) Scatter 
plots that compare the original forecast and Model 4 (the re-forecast model as indicated by the top 
figures) against the measured values.   

  

D-1 PV Site 

Site 

D-2 PV Site 

Site 
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Finally, Table 7 reports error metrics for the validation set for the original PO forecast, 
the best ODML model (Model 4) and the worst ODML model (Model 1) for the 8 
locations.  

Table 7: Error metrics for individual forecast trained ODML models. Site prefixes denote location, 
as described in Table 3. Increased forecast error results are highlighted in orange. 

 

 

For the individual ODML forecasts, Model 4 (with GHI, DNI, and PO inputs) allowed for 
the greatest overall improvement. This is not surprising, as ODML output generally 
improves in accuracy with the addition of relevant inputs. NDFD forecasts had the most 
significant and consistent improvement when run through ODML, with IR and visible 
CMV forecasts varying from mild to significant improvement (Model 4) to an outright 
decrease in accuracy in some cases (Model 1). Coastal PV sites (BA-1 and LA-1) 
showed the greatest improvement in individual trials likely due to the ODML forecast 
corrections associated with marine layer cloud formation and dissipation. 

Orig. Model1 Model4 Orig. Model1 Model4 Orig. Model1 Model4 Model1 Model4

Location:

IR -0.29 0.01 0.01 0.58 0.55 0.51 0.80 0.69 0.65 13.65 18.72

VIS 0.11 0.02 0.01 0.45 0.43 0.41 0.59 0.57 0.55 4.19 7.77

NDFD 0.12 0.00 0.01 0.54 0.46 0.45 0.77 0.63 0.62 18.67 20.34

Location:

IR -0.08 0.00 0.00 0.12 0.09 0.09 0.17 0.13 0.13 21.32 23.63

VIS -0.02 0.00 0.00 0.12 0.08 0.08 0.16 0.12 0.11 25.71 29.90

NDFD -0.05 0.00 0.00 0.13 0.09 0.08 0.19 0.13 0.13 30.90 33.58

Location:

IR -0.45 0.04 0.01 1.53 1.72 1.43 2.54 2.56 2.36 -0.83 6.80

VIS -0.06 -0.03 -0.03 1.64 1.72 1.47 2.50 2.48 2.34 0.76 6.58

NDFD -0.56 -0.01 -0.03 1.65 1.44 1.29 2.79 2.28 2.14 18.41 23.36

Location:

IR 4.93 1.22 1.34 22.22 20.34 17.68 31.19 29.95 27.81 3.97 10.83

VIS 8.89 -0.74 -0.30 21.08 18.66 15.72 28.23 26.81 24.45 5.03 13.37

NDFD 0.97 0.84 1.06 20.32 17.61 15.36 31.73 27.29 24.85 13.99 21.67

Location:

IR 4.85 0.21 0.09 21.14 27.52 17.59 33.79 40.15 31.36 -18.83 7.20

VIS 7.68 0.25 -0.24 22.86 20.19 17.63 34.08 32.57 31.34 4.45 8.06

NDFD 4.62 0.13 -0.84 19.43 20.51 14.94 33.02 32.06 26.92 2.91 18.49

Location:

IR 0.37 0.05 0.04 1.42 1.75 1.14 2.24 2.58 2.04 -14.97 9.22

VIS 0.55 0.08 0.10 1.39 1.60 1.08 2.02 2.31 1.85 -14.09 8.41

NDFD 0.20 0.03 0.04 1.21 1.25 0.99 2.08 1.97 1.71 5.21 17.99

Location:

IR -1.34 0.11 0.05 3.80 5.63 3.86 6.70 7.71 6.12 -15.00 8.71

VIS -1.72 0.05 0.07 3.47 4.72 3.52 6.12 6.72 5.65 -9.75 7.60

NDFD -0.69 -0.01 0.05 3.67 4.15 3.17 6.20 6.22 5.27 -0.34 14.97

Location:

IR -0.86 0.34 -0.24 13.53 15.18 11.63 20.50 22.29 18.89 -8.71 7.90

VIS 1.81 0.06 0.01 13.17 12.90 11.55 19.54 19.23 18.11 1.56 7.28

NDFD 0.79 0.49 0.16 14.28 11.71 10.82 23.42 18.35 17.91 21.63 23.51

D-4 (large)

SJV-2 (large)

SJV-1  (small)

D-2 (small)

D-3 (small)

MBE MAE RMSE Forecast improvement [%]

D-1 (large)

BA-1 (small)

LA-1 (small)
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Ensemble ODML Forecast Results 

The most promising aspect of the ODML process is the creation of an ensemble PV 
forecast. Ensemble ODML forecast were created using the same inputs (IR and visible 
CMV, NDFD), but with all three inputs under the same configuration. For each one of 
the 8 selected locations we created four ODML re-forecast models for two forecasting 
cycles: the 7 AM LST and the 10 AM LST forecast times. Each model uses different 
input data: 

 

 Model 1: GHI and DNI forecasts 

 Model 2: Power (PO) forecast 

 Model 3: PO and GHI 

 Model 4: PO, GHI and DNI forecasts 
 

The models for the 7 AM LST re-forecast uses CPR’s forecasted data (PO, GHI and 
DNI) issued at 7 AM LST composed of IR CMV and NDFD forecast data. The re-
forecast models for the 10 AM LST cycle use forecast data issued at 10 AM LST based 
in the IR and visible CMV, and NDFD forecast data.  

The training data has been divided into two disjointed sets as discussed in the section 
above. The training set was used to determine the several free parameters in the ODML 
models while the validation set was used to assess the performance of the new forecast 
in terms of the MBE, MAE and RMSE error metrics. The results show that Model 4 
ensemble forecast outperforms all other model forecasts (as shown in Table 8). 
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Table 8 Error metrics for the original forecast and the ODML re-forecasts and the improvement of 
the ODML re-forecasts relative to the two original forecasts. These error metrics were computed 
using the validation data set. MBE, MAE and RMSE values in MW. Site prefixes denote location, as 
described in Table 3. 

 
 

For both individual and ensemble ODML forecasts, Model 4 (with GHI, DNI, and PO 
inputs) allowed for the greatest improvement. In individual trials, coastal PV sites (BA-1 
and LA-1) showed the greatest improvement, likely due to the influence of marine layer 
cloud formation and dissipation on input forecasts, while Desert PV forecasts showed 
moderate forecast improvement with all models. However, this trend was not obvious 
with ensemble forecasts. Additionally, PV array size does not appear to be a major 
factor in forecast improvement. 

California ISO BTM Solar Load Forecast Results (Task 4 Highlights) 

California Electrical Grid Background 

The amount of electric power required at any specific time on an electrical system is 
known as the load. The demand for load originates with the energy-consuming 
equipment of the consumer. The California ISO is responsible for maintaining reliability 
and accessibility to one of the largest and most modern power grids in the world. The 
California ISO team works diligently 24 hours every day to “keep the lights on” while 

Orig. Model1 Model4 Orig. Model1 Model4 Orig. Model1 Model4 Model1 Model4

7:00 AM -0.317 -0.015 -0.012 0.632 0.451 0.437 0.843 0.612 0.594 27.445 29.57

10:00 AM 0.144 0.003 -0.006 0.478 0.438 0.439 0.622 0.582 0.576 6.441 7.38

7:00 AM -0.08 -0.002 0.001 0.125 0.097 0.097 0.174 0.136 0.135 21.756 22.39

10:00 AM -0.018 -0.001 0 0.129 0.08 0.078 0.175 0.116 0.112 33.808 36.186

7:00 AM -0.028 -0.07 -0.006 1.62 1.592 1.316 2.513 2.403 2.209 4.391 12.09

10:00 AM -0.002 0.031 0.044 1.648 1.478 1.351 2.584 2.25 2.168 12.919 16.128

7:00 AM 11.043 2.016 2.221 25.361 18.371 15.724 34.156 26.965 24.649 21.053 27.834

10:00 AM 10.552 0.182 0.293 20.656 15.567 13.779 27.887 22.763 21.839 18.375 21.686

7:00 AM 9.472 -2.272 -1.666 23.896 18.65 12.808 34.609 29.873 24.387 13.686 29.537

10:00 AM 11.738 1.17 0.603 23.537 17.581 14.505 34.228 28.118 26.346 17.851 23.027

7:00 AM 0.921 -0.003 0.009 1.736 1.254 0.916 2.62 1.89 1.579 27.84 39.719

10:00 AM 0.751 0.086 0.155 1.481 1.274 0.984 2.103 1.991 1.74 5.328 17.252

7:00 AM 0.223 0.013 0.011 4.083 4.349 2.995 6.54 6.221 4.995 4.876 23.627

10:00 AM -1.605 0.185 0.254 3.429 4.184 3.467 6.353 6.066 5.477 4.519 13.784

7:00 AM 1.665 0.139 0.006 14.59 11.244 9.496 21.034 16.484 15.083 21.634 28.291

10:00 AM 2.467 -0.39 0.144 13.08 11.564 11.715 20.231 18.411 18.491 8.997 8.601

D-4 (large)

MBE MAE RMSE Forecast improvement [%]

D-1 (large)

SJV-1 (small)

D-2 (small)

SJV-2 (large)

D-3 (small)

LA-1 (small)

BA-1 (small)
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meeting the electricity load needs of Californians through a competitive market-type 
supply and demand system. A map of the primary California ISO load balancing zones 
and sample daily load profiles are shown in Figure 21.  

 

 

Figure 21: A map of California ISO load zones (left) and sample daily load profiles (right) 
from the three large investor owned utilities located in California on 1/22/2015 (publically 
available data obtained from www.oasis.caiso.com). 

California ISO Automated Load Forecasting System (ALFS) 

The California ISO operates an Automated Load Forecast System (ALFS) to generate 
short-term demand forecasts for California ISO Balancing Authority Area (BAA) 
operations. Supplied by Itron, ALFS utilizes an artificial neural network methodology that 
incorporates forecasted weather, such as minimum and maximum temperature, and 
conditions including type of day and business hour to determine the California ISO 
forecast of regional electricity demand. The system “learns” how to improve its load 
forecasting accuracy with increased experience based on historical observations.  

The California ISO currently predicts load demand for five regional zones: 

 PG&E Bay Area 

 PG&E Non Bay Area   

 SCE Coastal 

 SCE Inland 

 SDG&E 

The two PG&E and SCE zones are sub-zones of the California ISO zones mapped in 
Figure 21. These zonal load forecasts are summed by California ISO to obtain a region-
wide BAA load forecast. California ISO ALFS forecasts evaluated in this report include 
the three major load zones as shown in Figure 21.  

FleetView Behind-the-meter (BTM) PV Historical Simulation and Forecasting 
Methodology 

To date, CPR has worked with California ISO to collect all PV system information within 
the state of California. This list includes all BTM systems as well as large utility plants 
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and consists of PV system location, hardware capacity rating, installation angle 
specifications and shading (where available). The systems are also tracked by 
commissioning date so that historical simulations of total PV fleet output will provide an 
accurate representation of overall PV fleet performance history. Subgroups of BTM PV 
systems within the total fleet have been created based on California ISO designation. 
FleetView software was then tasked to simulate historical energy production for the five 
designated BTM PV fleets within California. An overview of the FleetView simulation 
methodology is shown in Figure 22. Each PV system is uniquely characterized and then 
simulated with the resulting power production summed into the aggregated PV energy 
from specified zones. Historical PV simulations are fed with SolarAnywhere satellite-
based irradiance and weather data while forecasts are fed with a combination of CMV 
and NWP-based irradiance forecasts.  

 

 

Figure 22: BTM FleetView simulation methodology where each PV system is located, 
characterized and simulated. Individual forecasts are aggregated into desired groupings 
and reported. 

ALFS Historical Training Methodology and Statistical Results 

California ISO and Itron conducted historical ALFS training incorporating historical load 
and BTM PV simulations from Jan 2010 to Feb 2014 as training input into California 
ISO’s ALFS. An example of the historical BTM PV energy simulation and capacity are 
shown in Figure 23 for the PG&E zone. Zonal BTM PV capacity continues to increase 
over time as more BTM installed solar systems came online. Correspondingly, the zonal 
PV energy production also increases over time contributing to increasing offsets of 
corresponding consumer load. 
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Figure 23: BTM simulated power (hourly) and capacity (monthly) from Jan 2010 to Feb 
2014 for the PG&E load zone. 

Results of ALFS historical training are shown in Table 9. Load forecasting error is 
observed to decrease at all hours of the DA forecast time frame when training includes 
historical BTM PV production. An ideal BTM coefficient of -1 indicates that for every 
predicted MW of BTM generation, one MW of load is shed. In other words, a BTM 
coefficient close to -1 would be the ideal scenario indicating that inclusion of the BTM 
PV forecasts in the ALFS training set is strategic. Table 9 also shows a statistically 
significant reduction in forecast error during mid-day and late-afternoon load forecasting 
periods. However, due to higher morning load variability and to the lower solar 
generation in the early morning hours, BTM production only offers a small impact for 
morning load forecasting. 

Table 9: PG&E load zone DA ALFS historical training results. 
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BTM-infused ALFS Forecast Performance 

Forecast Horizons and Period Analyzed 

Hourly resolution DA ALFS forecast data from 1/10/2015 to 9/15/2015, and hourly 30 
minute-ahead data from 6/22/2015 to 9/15/2015, are compared against actual load 
data. Missing data have been excluded from the comparison. California ISO kindly 
supplied archives of hourly DA ALFS forecasts for the PG&E load zone along with 30 
minute-ahead ALFS forecasts from the PG&E, SCE and SDG&E load zones. In all, 231 
days of DA and 84 days of 30 minute-ahead ALFS regional load forecasts with and 
without BTM treatment are evaluated in this analysis.  

DA Forecasting Error Metrics by Time of Day 

DA ALFS forecast performance with and without the inclusion of BTM PV forecasts 

under all sky conditions are analyzed as a function of time of day in the PG&E load 

zone. Forecast error metrics by time of day are reported in bar graph form in Figure 24. 

An increase in forecast MAE and RMSE is observed during most hours when ALFS is 

run with input BTM PV forecasts, though improvements in MBE are noted in the 

morning hours. Time of day ALFS forecasting error results for the PG&E load zone 

under cloudy skies can be seen in Figure 25. 

Figure 24: Hourly-averaged PG&E load zone DA ALFS forecast MBE, MAE 
and RMSE with and without BTM forecasts for the nine-month analysis 

period under all sky conditions. 
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Figure 25: Hourly-averaged PG&E DA ALFS forecast MAE with and without BTM forecasts 
(cloudy hours). 

Reduction in ALFS forecast MAE is noted during the majority of daytime hours for 
cloudy sky conditions when BTM PV data is included. The largest ALFS load forecast 
improvements are noted during peak daylight hours with a >15% reduction recorded at 
1 PM. For clear sky conditions, forecast MAE reductions are significantly less, and in 
most cases MAE increases. While greater MAE improvements in the afternoon are 
observed during cloudy sky conditions, this is not the case for clear sky conditions. In 
fact, the afternoon ALFS forecast errors are larger with BTM treatment under clear sky 
conditions. Further investigation is needed to determine why ALFS responds this way 
with the inclusion of PG&E zone clear sky BTM PV forecasts.  

30 Minute-Ahead Forecasting Error Metrics by Time of Day 

30 minute-ahead ALFS forecast performance with and without the inclusion of BTM PV 
forecasts for the SDG&E zone under all sky conditions are analyzed as a function of 
time of day in Figure 26. SDG&E forecasts under all sky conditions demonstrate 
reduced error during traditionally less predictable morning hours when BTM forecasts 
are included as shown in Figure 27, respectively. Additionally, during cloudy sky 
conditions MAE is reduced during nearly all daylight hours. 
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Figure 26: Hourly-averaged SDG&E 30 minute ahead forecast MBE, MAE and RMSE with 
and without BTM forecasts under all sky conditions. 

 

Figure 27: Hourly-averaged SDG&E ALFS 30 minute-ahead forecast MAE with and without 
BTM forecasts (cloudy hours). 
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Figure 28: Hourly-averaged SCE ALFS 30 minute ahead forecast MBE, MAE and RMSE 
with and without BTM forecasts under all sky conditions. 

When BTM forecast data are included, SCE 30 minute-ahead forecasts (Figure 28) also 
show reduced MBE, MAE, and RMSE during morning hours, but minor to negligible 
reductions elsewhere under all sky conditions. PG&E forecasts (not shown) 
demonstrated negligible or increased ALFS forecast error with the inclusion of BTM 
data throughout the day. The stronger impact of BTM PV data on SDG&E forecasts can 
be attributed to the geographic distribution of the utilities’ respective load zones. 
Compared to SCE and PG&E, the load zone of SDG&E is relatively small and 
climatologically homogeneous, allowing for less regional variance in the forecasting 
results. Partitioning of SCE and PG&E load zones into the sub-zonal load regions 
described earlier – respectively PG&E Bay Area, PG&E Non Bay Area, SCE Coastal, 
and SCE Inland – could allow for similar forecasting accuracy improvements.  

PG&E DA ALFS Error Metrics by Daily Clearness Index 

Further insight into time of day ALFS forecasting error is gained when the analysis is 
distilled down into clear and cloudy hours. The Clearness Index (Kt) is incorporated in 
the study as defined in the following equation:  

𝑲𝒕 =  
𝑮𝑯𝑰𝑶

𝑮𝑯𝑰𝑪𝑺
 

where GHIO is observed and GHICS is clear sky global horizontal irradiance. Clear sky 
conditions are noted when Kt ≥ 0.8, and cloudy conditions are defined when Kt < 0.8. A 
Kt of 1.0 corresponds to a clear day while a Kt of 0.2 corresponds to a very cloudy day. 
During the time period from 1/10/2015 to 9/15/2015, daily Kt was calculated based on 
SolarAnywhere daily average GHI and SolarAnywhere daily average clear sky GHI. A 
clear day is defined when daily Kt ≥ 0.8, and a cloudy day is defined when daily Kt < 
0.8. Figure 29 shows a scatter plot of BTM included ALFS forecast MAE versus daily Kt. 
71 of the observed days are classified as cloudy. We see that there was improvement 
on the daily level during a majority of clear and cloudy days.  
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Case Study: Five Cloudy Days in February 

ALFS forecasting results for a five-day period of consecutively cloudy days during 
February 2015 are reported here. Figure 30 shows GOES-West satellite imagery at 
noon LST from Feb 5th 2015 through Feb 9th 2015. A large part of California is covered 
by clouds and precipitation associated with an upper-level low pressure system located 
offshore. This represents a challenging load forecasting period due to widely varying 
cloud cover and temperature conditions associated with the passage of the upper level 
low pressure system. Energy production from utility-scale and BTM PV fleet was 
observed to vary significantly during this time period.  

Cloudy Clear 

Figure 29: Daily ALFS forecast delta MAE with BTM forecast treatment 
(over non-BTM ALFS forecasts) binned by clearness index (Kt). 
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Figure 31 shows five days of ALFS DA load forecasts with and without the inclusion of 
BTM forecasts. Significant forecast improvements are observed during all daytime 
hours of the five-day period peaking with a nearly 50% reduction in load forecast error 
during the midday period of Feb 7th.  

 

 

 

Figure 31: A five-day hourly time series of ALFS forecasts with and without BTM forecast 
versus actual load. Note that ALFS forecasts with BTM treatment are closer to the actual 
load during the daytime. 

 

Figure 30: Daily 1200 Local Standard Time (LST) GOES-West 
visible satellite images spanning 2/5/2015 through 2/9/2015. 
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Tasks 5 & 6 (Public Data Access and Dissemination of Project Results) 

 

CPR delivered a web-based interface to show a visual representation of the data 
collected. The site is publically available at: http://www.cleanpower.com/forecast-caiso/ 

Other activities that disseminate the findings from this project consist of technical 
presentations and conference publications. Such efforts are noted below.  

 A New Operational Solar Resource Forecast Model Service for PV Fleet 
Simulation. Paper No. 44 – Presented at the IEEE PVSC 2014 held in Denver, 
CO (June, 2014). 

 Distributed PV Simulation and Forecasting Experiences in California – Presented 
at UVIG Forecasting Workshop held in Denver, CO (February, 2015). 

 Behind-the-Meter PV Fleet Forecasts Impacts on California ISO Load Forecasts 
– Presented as podium presentation at California utility forecasting workshop 
held in Folsom, CA (April, 2015). 

 Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System 
Operations – Presented as podium presentation at Third International 
Conference on Energy & Meteorology (ICEM) held in Boulder, CO (June, 2015). 

 An update briefing on CPR’s DOE Sunrise-sponsored work was presented to the 
California ISO onsite on Mon, Oct 5, 2015 1:00 PM. 

Figure 32:Screenshot of web portal that gives access to 
the forecast data referenced in this project. 

http://www.cleanpower.com/forecast-caiso/
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Conclusions 

Four major forecast research objectives were completed over the course of this study. 
Three new solar irradiance forecasting methods were examined and improved upon: 
The IR satellite-based CMV model; the WRF-SolarCA model and variants; and the 
ODML-training model and variants. These three forecasting methods were compared 
with existing methods such as NDFD and visible satellite CMV forecasts; and with 
operational PV plant power production allowing for real world applicable forecast metric 
evaluations. Additionally, an investigation was conducted on BTM fleet PV forecast 
impacts on the accuracy of California ISO load forecasts.   

PV solar power forecast accuracy for the IR CMV model was evaluated through various 
error metrics at two specific sites in the San Joaquin Valley and LA regions, along with 
aggregate forecast error results evaluated for three California climate regions which 
were composed of 32 utility-scale PV sites located in the Bay Area, LA, Desert and San 
Joaquin Valley. Overall, IR CMV forecasts were more accurate than NDFD forecasts at 
inland CA locations when cloudy sky conditions were present. Clear sky bias was very 
similar for both IR CMV and NDFD forecasts in most regions. Seasonal forecast 
accuracy was also scrutinized in all four regions with results falling in line with expected 
cloud conditions. However, the IR CMV forecasts were shown to be less accurate than 
NDFD forecasts when marine stratus clouds were present due to IR satellite image 
cloud detection limitations. To address this limitation, two experimental UCSD-led solar 
irradiance forecasting models were examined and improved upon: the WRF-SolarCA 
model and the ODML model. 

Initial WRF-SolarCA forecasts were shown to be less accurate than CMV and NDFD 
forecasts. The WRF-SolarCA forecasts exhibited significant clear sky bias which 
systematically reduced their accuracy. Additionally, the initial WRF-SolarCA forecasting 
configuration was likely minimizing cloud assimilation gains by being initialized at 5:00 
PM LST when marine stratus cloud coverage tends to be near its minimum. In 
response, WRF-SolarCA model forecasts were retargeted at coastal marine cloud layer 
forecasting regimes and treated with a Cloud Data Assimilation and Well-Mixed 
Preprocessor scheme (WEMPPDA) and an Inversion Base Height (IBH) adjustment 
scheme in separate trials. WRF-WEMPPDA results demonstrated a strong positive 
bias, suggesting failure to predict adequate cloud cover in the coastal LA region. 
However, WRF-IBH demonstrated a marked improvement over uncorrected WRF 
results, showing low bias error, even when compared against persistence forecasts. 
WRF-IBH results outperform persistence forecasts in every metric except MBEkt. WRF-
IBH results also demonstrated high accuracy in direct PV power generation forecasts, 
yielding consistently lower error than NDFD, IR and visible CMV forecasts.  

The ODML model was tested with increasingly relevant input. ODML-training ensemble 
techniques were applied to benchmark IR and visible CMV and NDFD irradiance 
forecasts, with moderate to significant bias correction noted under almost all conditions 
and locations. The highest-performing ODML model combination was composed of 
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forecasted GHI, DNI, and Power inputs. In individual forecast trainings, NDFD forecasts 
saw the greatest error reduction, with coastal region PV plants experiencing the most 
significant forecast improvements. Ensemble ODML trials applied to IR and visible 
CMV, and NDFD forecasts in tandem yielded further bias and error reduction across all 
PV plant sizes and locations.  

The most exciting and applicable gains in this research project were in the area of 
California ISO load forecasting improvement. Overall, PG&E load zone ALFS-BTM DA 
forecasts performed better than baseline ALFS forecasts when compared to actual load 
data. Cloudy day ALFS-BTM forecast improvement was significant and reached as high 
as 18% at 2PM LST for all cloudy hours observed in this analysis. Specifically, ALFS-
BTM DA forecasts were observed to have the largest reduction of error during the 
afternoon on cloudy days as noted in the five-day case study period. However, DA 
ALFS-BTM forecasts showed little or no improvement during early morning hours due to 
the higher morning load variability associated with the PG&E load zone.  

30 minute-ahead ALFS-BTM forecasts were shown to experience improvement under 
all sky conditions for the SDG&E load zone, especially during the morning time periods 
when traditional load forecast often experience their largest uncertainties. Though less 
pronounced, SCE zone 30 minute-ahead ALFS-BTM forecasts showed modest 
improvements under cloudy sky conditions. PG&E load zone 30 minute-ahead forecasts 
were generally less accurate with the inclusion of associated BTM solar energy 
forecasts likely due to the widely varying weather conditions common across its zonal 
footprint. Partitioning of SCE and PG&E load zones into their respective coastal and 
inland sub-zones could allow for similar forecasting accuracy improvements as noted 
with the SDG&E regional ALFS forecasts. 

All project milestones and deliverables were met and delivered on schedule except for 
milestone and deliverable 4.1 (ALFS load forecast accuracy comparison) which was 
delayed due to California ISO limitations on outside work commitments. CPR engaged 
directly with Itron to provide the required ALFS analysis and data generation needed for 
successful milestone and deliverable completion. 

This overall project work culminated in a GO decision being made by the California ISO 
on including zonal BTM forecasts into its operational ALFS. California ISO’s Manager of 
Short Term forecasting, Jim Blatchford, had this to say about the research performed 
here, “The behind-the-meter (BTM) California ISO region forecasting research 
performed by Clean Power Research and sponsored by the Department of Energy’s 
SUNRISE program was an opportunity to verify value and demonstrate improved load 
forecast capability. In 2016, the California ISO will be incorporating the BTM forecast 
into the Hour Ahead and Day Ahead load models to look for improvements in the overall 
load forecast accuracy as BTM PV capacity continues to grow.” 
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Budget and Schedule  

Recipient:

DOE Award #:

Object Class Categories APPROVED 

BUDGET 

TOTAL SPENT 

TO DATE 

(12/15/2015)

Forecasted Spending                      

(FINAL COSTING FOR 

FY14 SCOPE)

 a. Personnel  $398,603 $409,508 $430,000

 b. Fringe Benefits  $123,567 $126,947 $133,300

 c. Travel 

 d. Equipment 

 e. Supplies 

 f. Contractual  $334,671 $118,290 $123,460

 g. Construction

 h. Other

 i. Total Direct Charges (sum of a to h) $856,841 $654,745 $686,760

 j.  Indirect Charges $196,512 $201,887 $980,400

 k.  Totals (sum of i and j)  $1,053,353 $856,632 $1,667,160

DOE Share $500,000 $406,892 $500,000

Cost Share $553,353 $449,740 $1,167,160

Calculated Cost Share Percentage 52.5% 52.5% 70.0%

Clean Power Research, Tom Hoff

EE0006329

Spending Summary for SF 424A Budget Forms
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Path Forward  

Accurate simulation under challenging weather conditions impacting fleet-scale PV 
energy production is difficult at best. Widely varying weather phenomena, such as 
coastal marine stratus and mid-summer monsoon clouds, present significant challenges 
to current CMV and NWP forecasts. Increasing this challenge is the difficulty of 
simulating individual PV system performance without introducing additional forecast 
errors. Future work will address these challenges, including additional refinements of 
IR-based satellite cloud detection algorithms and further investigation of WRF-IBH 
forecasting options. 

A separate focus for future work will be optimization of forecast blending using machine 
learning.  As Dr. Coimbra’s ODML studies at UCSD demonstrated, training applied to 
CMV and NWP model forecasts in tandem produced maximum reduction in forecast 
error.  Application of ODML training to on-the-fly blended forecasts is a valuable future 
goal in further improving forecast accuracy. 

The most significant future work is improving California ISO’s ALFS accuracy by further 
incorporating BTM into load forecasts. CPR will continue to work with California ISO to 
update the current BTM fleet database, further evaluate and improve BTM forecast 
accuracy, and optimize computation speed for BTM forecast simulations. 

If realistic goals are met by reducing variance in satellite-based forecasts, utilizing 
cutting-edge technology to optimize blending of CMV forecasts with numerical models, 
and consolidating and updating PV fleet data, irradiance and load forecasting will 
become more accurate than ever before. 
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