Use of Standard Fluorescent UV Weathering Lamps to Perform UV Conditioning Tests Prescribed in IEC Qualification Standards

Sean Fowler
Q-Lab Corporation
sfowler@q-lab.com

Scope

IEC qualification tests require UV Conditioning exposures. Precisely how to meet these requirements has caused some confusion in the marketplace. Sources of confusion include:

- Different exposure requirements in each qualification standard
- Lack of readily available single light source to meet two of the standards
- Lack of specifics or references to other standards for guidance

ASTM Committee E44 intends to address these concerns by creating a standard on meeting the UV conditioning requirements of the IEC qualification standards.

WK38365: Standard Practice for Ultraviolet Conditioning of Photovoltaic Panels or Mini-Modules Using a Fluorescent Ultraviolet (UV) Lamp Apparatus

UV Conditioning Test Requirements

- IEC 61215 (Crystalline Si Modules Qualification)
 - 60°C module temperature
 - 15 kWh/m² 280nm-385nm
 - 5 kWh/m² (minimum) 280nm-320nm
 - Consecutive exposures to UVA-340 and UVB-313 lamps
- IEC 61345 (UV Test of PV Modules)
 - 60°C module temperature
 - 15 kWh/m² 320nm-400nm
 - 7.5 kWh/m² (minimum) 280nm-320nm
 - Consecutive exposures to UVA-340 and UVB-313 lamps
 - At end of initial exposure, expose back side of modules for an additional 10% of time
- IEC 61646 (Thin Film Modules Qualification)
 - 60°C module temperature
 - 15 kWh/m² 280nm-400nm
 - .45-1.5 kWh/m² (minimum) 280nm-320nm
 - UVA-340 lamps only

Proposal: ASTM WK38365

 Perform UV conditioning tests according to method and apparatus described in ASTM G154-12: Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials

Apparatus

Fluorescent Ultraviolet Lamp Apparatus (ASTM G154)

QUV Accelerated Weathering Tester from Q-Lab

UVTest Fluorescent/UV Instrument from Atlas

- UVA-340 lamps
- UVB-313 lamps
- Optional moisture (condensation, spray)

Common Fluorescent UV Lamps

UVA-340 Lamps

Spectral Bandpass Wavelength λ in nm	Minimum Percent	Benchmark AM1.5 Solar Radiation Percent	Benchmark AM1 Solar Radiation Percent	Maximum Percent
λ <290				0.01
$290 \le \lambda \le 320$	5.9	3.5	5.8	9.3
320 $< \lambda \le 360$	60.9	38.0	40.0	65.5
$360 < \lambda \le 400$	26.5	58.5	54.2	32.8

UVB-313 Lamps

=_

Spectral Bandpass Wavelength λ in nm	Minimum Percent	Benchmark AM1.5 Solar Radiation Percent	Benchmark AM1 Solar Radiation Percent	Maximum Percent
λ <290	1.3			5.4
$290 \le \lambda \le 320$	47.8	3.5	5.8	65.9
$320 < \lambda \le 360$	26.9	38.0	40.0	43.9
$360 < \lambda \le 400$	1.7	58.5	54.2	7.2

Lamp Aging with Controlled Power Source

Test performed in a QUV with SOLAR EYE Irradiance Control

Irradiance Measurement/Control

- G154 Instruments generally use narrow band irradiance measurement and control and irradiance is measured in Watts per square meter
 - 340 nm for UVA type lamps, 310 nm for UVB type lamps

Example: 0.89 W/m² @ 340 nm

Necessary to convert to wide band values:

 $\int \lambda = lower \ limit \uparrow upper \ limit \equiv irradiance (W/m^2)$

Where lower limit = 280 nm or 320 nm AND upper limit = 320 nm or 385 nm or 400 nm

Depending on the particular IEC method

IEC 61215

IEC 61345

$$\int \lambda = 280 \uparrow 320$$
 | irradiance | W/ m/2 | x | Time (hours) | = 7.5 | kW \bullet hr | AND | $\int \lambda = 320 \uparrow 400$ | irradiance | W/ m/2 | x | Time (hours) | = 15 | kW \bullet hr

IEC 61646

$$\int \lambda = 280 \uparrow 400$$
 | irradiance | W/ m/2 | x | Time (hours) | = 15 kW•hr | AND | $\int \lambda = 280 \uparrow 320$ | irradiance | W/ m/2 | x | Time (hours) | = 0.45-1.5 kW•hr

Integration Factors to convert single wavelength irradiance measurements into wide band measurements

Wavelength Range	UVA-340 (340 nm)	UVB-313 (310 nm)
280-400 nm	54.5	46.3
280-320 nm	4.3	27.2
321-400 nm	50.2	19.2
280-385 nm	52.0	46.0

Irradiance_{narrow band} (W/m^2) x Integration Factor x Time(hours) = Energy Dosage (Watt-hours

IEC 61215, C-Si UV Conditioning

```
[0.87 \text{ W/m}^2 @ 340 \text{ nm}] \times 52.0 \times 168 \text{ hours} = 7.6 \text{ kW} \cdot \text{hr} (280-385 \text{ nm})

[0.87 \text{ W/m}^2 @ 340 \text{ nm}] \times 4.3 \times 168 \text{ hours} = 0.6 \text{ kW} \cdot \text{hr} (280-320 \text{ nm})
```

```
[0.96 \text{ W/m}^2 @ 310 \text{ nm}] \times 46.0 \times 168 \text{ hours} = 7.4 \text{ kW} \cdot \text{hr} (280-385 \text{ nm})

[0.96 \text{ W/m}^2 @ 310 \text{ nm}] \times 27.2 \times 168 \text{ hours} = 4.4 \text{ kW} \cdot \text{hr} (280-320 \text{ nm})
```

Total: 15 kW•hr (280-385 nm) AND 5kW•hr (280-320 nm)

IEC 61646, Thin Film UV Conditioning

 $[1.15 \text{W/m}^2 @ 340 \text{ nm}] \times 54.5 \times 240 \text{ hours} = 15.0 \text{ kW} \cdot \text{hr} (280-400 \text{ nm})$ $[1.15 \text{ W/m}^2 @ 340 \text{ nm}] \times 4.3 \times 240 \text{ hours} = 1.2 \text{ kW} \cdot \text{hr} (280-320 \text{ nm})$

IEC 61345, UV Test of PV Modules

 $[0.86 \text{ W/m}^2 @ 340 \text{ nm}] \times 50.2 \times 240 \text{ hours} = 10.4 \text{ kW} \cdot \text{hr} (320-400 \text{ nm})$ $[0.86 \text{ W/m}^2 @ 340 \text{ nm}] \times 4.3 \times 240 \text{ hours} = 0.9 \text{ kW} \cdot \text{hr} (280-320 \text{ nm})$

[1.02 W/m² @ 310 nm] x 19.2 x 240 hours = 4.7 kW \bullet hr (320-400 nm) [1.02 W/m² @ 310 nm] x 27.2 x 240 hours = 6.6 kW \bullet hr (280-320 nm)

Total: 15 kW•hr (320-400 nm) AND 7.5kW•hr (280-320 nm)