

Study on PID resistance of HIT® PV modules

Tasuku Ishiguro¹, Hiroshi Kanno¹, Mikio Taguchi¹ Shingo Okamoto²

¹ Energy Research Center, Energy Company, SANYO Electric Co., Ltd. ² Solar Business Unit, Energy Company, SANYO Electric Co., Ltd.

Phone: +81-78-993-1018, Fax: +81-78-993-1096, e-mail: ishiguro.tasuku@jp.panasonic.com

Motivation

- 1. For increasing request in reliability, it is important to demonstrate that high-efficiency HIT module shows high PID resistance as originally designed.
- 2. For customer benefit, we aim for increasing high efficiency and reliability at the same time to maximize the lifetime power generation.

Conclusion

- 1. All HIT PV modules have exhibited no sign of degradation under several PID tests.
- 2. Surface layer of HIT cell is TCO without insulating layer which does not cause accumulation of charges.
- 3. No incidences of PID have been reported from the European, U.S. or Japanese markets.

These facts confirm the high quality and high reliability of HIT modules.

Maximizing the advantages of the HIT structure

- ■Optimized textured structure ■High mobility TCO layer
- ■Wide gap a-Si layer
- 100.0 R&D 23.9% HIT (2012) 22.8% HIT 70.0 (2009)60.0 50.0 40.0 20.0 500 300 400 600

Wavelength (nm)

Improved Q.E. at shorter wavelengths

(2) Improved heterostructure

- ■Clean Si surface
- ■Low damage, high quality a-Si deposition

Increased Voc can compensate for the drop in Isc

105

Degradation 6 0

Power

85

Results of PID test by Chemitox Inc.

I-V CURVE

23.9% efficiency with 98-µm thickness

60°C 85%RH +1000V

VBHN240SJ01

VBHN233SJ01

HIP-215NKH5

PID resistance of HIT structure

Relative Max c-Si PV module A c-Si PV module B 70 20 100 60 Hours in Damp Heat Chamber Results of PID test by Fraunhofer CSP 105 Relative Max Power Degradation 100

Hours in Damp Heat Chamber

non-HIT

Conventional c-Si module structure

- (1) Front surface is covered with insulating anti-reflection coating.
- (2)Positive/negative charges are accumulated on the cell surface, that result in the power degradation.

HIT structure

- (1)Both surfaces are transparent conductive oxide (TCO) layers.
- (2) There is no insulating layer that accumulates electric charges under high-voltage biased condition.

PID resistance of HIT PV modules is confirmed.