

### SunShot CSP Program Review 2013 Hilton Phoenix East/Mesa | Phoenix, AZ | April 23-25, 2013

### Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems

PNNL: EWA RÖNNEBRO (PI), GREG WHYATT, MICHAEL POWELL, KEVIN SIMMONS

UNIVERSITY OF UTAH: ZAK FANG

**HEAVYSTONE LAB: RON WHITE** 

ARPA-E: JAMES KLAUSNER







### **Presentation Outline**



- Objective and goal of our ARPA-E HEATS seedling project
- State of the art vs PNNL innovation
- Project team
- Approach
- Key technical results
- Key accomplishments
- Near term scope
- Path forward after seedling project

# **Show Proof of Concept of High Temperature Reversible Metal Hydride for TES**



Objective: Demonstrate Proof of Concept of a New Durable High-Energy Density Thermal Energy Storage (TES) for Efficient High-Temperature Applications



Motivation: High-temperature material for TES >600°C is needed with sufficient energy density, efficiency, lifetime and low cost

Quantitative Objectives: Our Metal Hydride (MH) can increase energy density 10x relative to molten salts and exceeds ARPA-E volumetric capacity 8x

#### ARPA-E targets:

✓ Temperature for power generation >600°C

✓ Charging time <6 hours

√ Volumetric capacity >25kWh/m³

✓ Exergetic efficiencies >95%

#### Our metal hydride:

650°C

<6 hours

200kWh/m³ (system)

We have shown feasibility of our metal hydride for TES!

### Our Metal Hydride TES vs State of the Art



- State of the art is molten salt
- Our Metal Hydride (MH) operates at HIGHER TEMPERATURES than previously explored MHs, and LOWER PRESSURE

| TES Material     | Operation Range               | Gravimetric<br>Energy Density | Volumetric<br>Energy Density |
|------------------|-------------------------------|-------------------------------|------------------------------|
| PNNL MH          | 650°C, 1 bar H <sub>2</sub>   | 1200kJ/kg                     | 1000kWh/m <sup>3</sup>       |
| Molten Salt      | 565°C<br>670°C (Phase change) | 153kJ/kg                      | 100kWh/m³                    |
| MgH <sub>2</sub> | 450°C, >40 bar H <sub>2</sub> | 3000kJ/kg                     | 1000kWh/m <sup>3</sup>       |

Note: Approximate energy densities for material (theoretical), not system

## Pacific Northwest NATIONAL LABORATORY Proudly Operated by Ballelle Since 1965

## **Team and Project Tasks**

- Task 1: Materials Development & Characterization
- Task 2: Design & Build 3kWh TES Prototype
- Task 3: Demonstrate & Validate TES Prototype

ARPA-E HEATS Project start date: December 2011

-2 years seedling project

#### **Key Roles of Project Team**

#### **Pacific Northwest National Laboratory**

- Project Management
- Client communications / interface
- ❖ Cycle life, isotherms and kinetics studies at >600°C
- ❖Thermal management
- System design and fabrication
- Safety
- System demonstration / validation

#### **University of Utah**

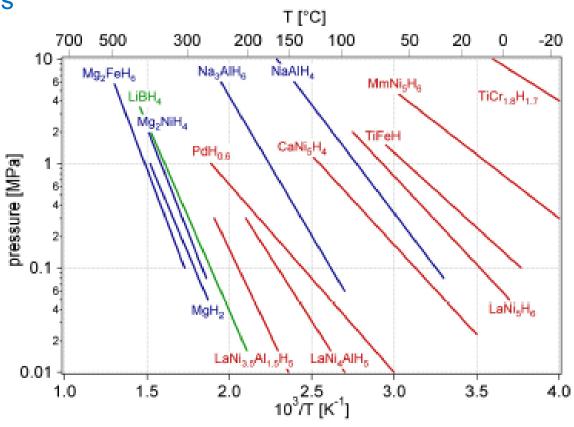
- Materials synthesis
- Materials performance optimization
- Materials Characterization

#### **Heavystone Lab (Industry partner)**

Large scale materials synthesis

### Pacific Northwes

## Metal Hydrides vs. Complex Metal Hydrides Materials Options


Proudly Operated by Baffelle Since 1965

### Complex metal hydrides

- high wt% H<sub>2</sub>
- high enthalpy
- operation T typically <600°C</p>
- high pressures
- complex reaction mechanism
- seldom reversible

### Metal hydrides

- low wt% H<sub>2</sub>
- can be tuned for T range >600°C
- high enthalpy
- low pressures
- reversible



Solution: Choose metal hydride that operates reversibly >600°C and at ambient H<sub>2</sub>-pressure

# Pacific Northwest NATIONAL LABORATORY Proudly Operated by Ballelle Since 1965

## Materials Development of High-T Alloys Materials Tuning

- Explored high-temperature alloys in order to
  - 1) increase reversible hydrogen content, thus, increase thermal energy storage capacity
  - 2) decrease operation pressure to 1 bar H<sub>2</sub>-pressure

#### Results:

- Synthesized several alloys
  - By alloying, plateau pressures can be shifted up or down as hydrogen content changes.
- Optimized performance at 650°C and 1 bar H<sub>2</sub>-pressure
- Showed 60 cycles! Exceeded our initial target

# Materials Development – Break Through Performance of Reversible Metal Hydride



### Performance goals:

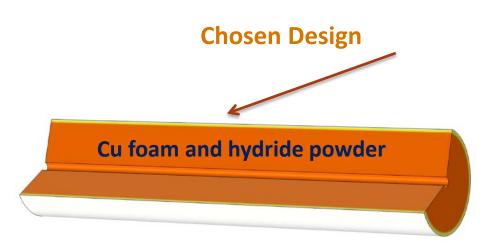
- 10x higher gravimetric energy density than molten salt
  - Demonstrated feasibility for 1200-1600kJ/kg
- Charge within 6 hours
  - Demonstrated feasibility to meet ARPA-E target < 6 hours</li>

### Experiments:

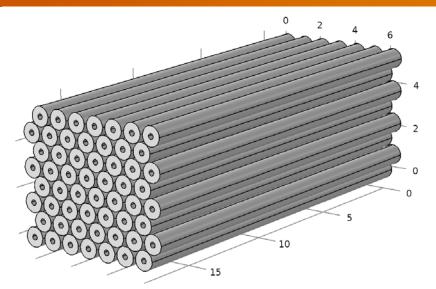
- Performed isotherms to determine best operation pressure and temperature
  - ~650°C and 1 bar established
- Cycle life tests
  - ~60 cycles accomplished

### Approach to Design of Hydride Bed




- Hydride powder is expected to size reduce over multiple hydride cycles
- Small particles lead to low bed thermal conductivity; two options examined for design
  - Use small diameter hydride beds (i.e. ¾")
  - Enhance the thermal conductivity of the bed
- Our approach is to enhance thermal conductivity using copper

### Pacific Northwest NATIONAL LABORATORY


Proudly Operated by Baffelle Since 1965

## TES 3kWh Prototype Design Concept Selected

- Accomplished numerical modeling of physical properties and hydrogen uptake data based on experimental data
- Provided performance predictions with COMSOL Multiphysics



Volumetric energy density is 200kWh/m³ for system (ARPA-E target is 25kWh/m³)

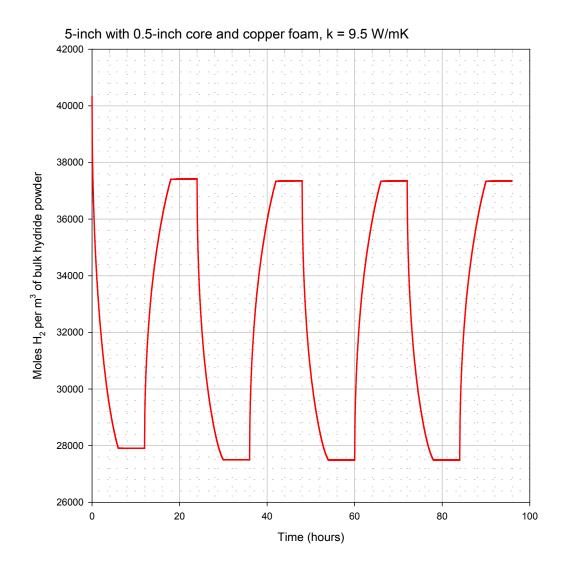


**Design 1**: Close-packed array of 56 tubes for storage

**Design 2**: Storage cylinder with internal structure of Cu-foam

### Copper Foam Fill for Hydride Cylinder




- Use open cell Duocel copper foam with interstitial spaces filled with hydride powder.
  - Allows simple construction of test cylinder
  - Easy to fill with hydride powder
  - Low sensitivity to errors in estimate of hydride bed thermal conductivity
  - Foam enhances conductivity in both radial and axial directions.

## Pacific Northwest NATIONAL LABORATORY

## Modeling of Bed Cycling to Determine Loading Swing for Bed Sizing

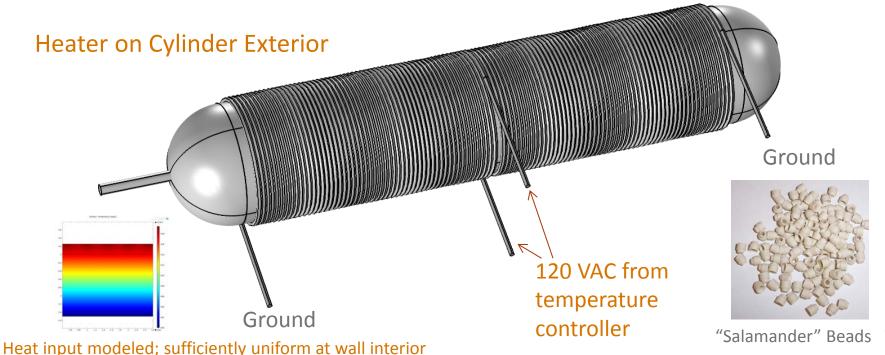
Proudly Operated by Baffelle Since 19

- Repeating Cycle:
  - 6h accept heat
  - 6h rest
  - 6h return heat
  - 6h rest



### **High Temperature Test Bed Design**




- Control shell temperature by balancing heat loss with heat input via electrical heater.
- Heat/cool cylinder by adjusting heat input
  - Heat loss through insulation ~constant
    - Temperature change on plateau region is very small
  - Heating accomplished by increasing power input to level above steadystate heat loss
  - Cooling accomplished by reducing heat input to a level below steady state heat loss.

### **Hydride Test Bed Design Details**



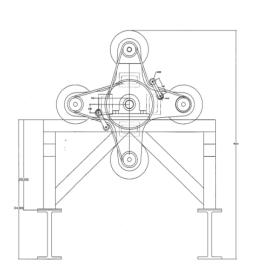
oudly Operated by Battelle Since 1965

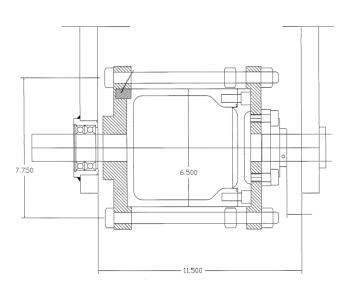
- •Column is made from S40 pipe (316SS)
- •Bed consists of Copper Foam, filled wtih metal hydride powder
- •Cylindrical section is wrapped with a Ni-80 heater insulated with ceramic "Salamander" beads.
- •Heater is covered by controlled thickness insulation layer, ends well insulated
- •Porous metal tube at bed centerline to add/remove H<sub>2</sub> from bed



# Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

## Design Concept: If Copper Foam Cost Is Too High for Commercial Application


- Use thin copper disks with Hydride powder filling the space between disks.
- Conduction in radial direction dominated by copper, axial conduction must occur in powder
- Advantages
  - Material cost of sheet copper is lower than foam
- Disadvantages
  - More difficult to fabricate bed compared to foam




## Scale-Up of Hydride Powder Industry Partner: Heavystone Lab

Designed and fabricated new planetary milling machine for preparation of kilograms of metal powders

#### Drawing of milling machine





## Pacific Northwest NATIONAL LABORATORY Proudly Operated by Baffelle Since 1965

## **Summary Key Results in Year 1**

- ► Task 1: Materials Development & Characterization
  Demonstrated metal hydride's feasibility for high-T TES
  - 10x higher energy density than molten salt
  - Volumetric energy density 200kWh/m³ for system, i.e.8x ARPA-E target
  - Established operation range of ~650°C and ~1 bar H<sub>2</sub> pressure
  - >60 cycles demonstrated: exceeded goal
- ► Task 2: Design & Build 3kWh TES Prototype
  - Two design concepts evaluated by COMSOL modeling
  - Recommend a stainless steel cylinder with Cu-foam
  - Build prototype in Year 2

# Pacific Northwest NATIONAL LABORATORY Proudly Operated by Baffelle Since 1965

## Decisions Made for Go/No-go Decision December 2012

- Go on optimized hydride as TES material
  - Hydride exceeds ARPA-E performance targets on gram size scale
  - Operation range: 1 bar and 600-800°C
- Go on scale up of hydride powder
  - Heavystone Lab to make ~15kg for 7.4 liter container
  - Verify scale up reproducibility
- Go on building 3kWh prototype
  - Design: Stainless steel container with internal Cu-structure for enhanced heat transfer
- Go on build thermal diffusivity device
  - Study thermal conductivity during cycling in hydrogen atmosphere
  - Study cycle life and oxidation mitigation if needed
  - Study materials engineering properties

### Year 2 ARPA-E HEATS Scope



- Design and build bench-scale TES of ~3kWh (PNNL)
  - One bed, "half", system is the current scope
  - Final drawing of high-T prototype accomplished
  - Fabrication in progress
- Scale up to kilogram quantities of TES material (Heavystone Lab)
  - Confirm reproducibility (U. of Utah and PNNL)
- **▶** Demonstrate and validate prototype (PNNL)
  - Evaluate concept and calculate efficiencies
  - Obtain 'one day-one night' cycles at 650°C and 1 bar H<sub>2</sub>-pressure
  - Show proof of concept and feasibility for meeting ARPA-E targets of 95% exergetic efficiencies

### Path Forward after ARPA-E HEATS Seedling



- Next step is to accomplish a full dual bed system with both a HThydride and a LT-hydride
  - Need to explore interplay between HT and LT hydrides to optimize performance
  - Demonstrate full system with on-sun testing

### Path Forward for Metal Hydride TES



Phase 1: Proof of concept of HT-hydride for TES

 Metal Hydride exceeds ARPA-E targets Phase 2: Design, build, demo TES system

 Demonstrate efficiencies and cycle life of full system Phase 3: Integrate TES system with end application

 On-sun testing for high-T power generation



Proudly Operated by Battelle Since 1965

## Acknowledgement: Award from ARPA-E HEATS program