

Quantifying the Value of CSP with Thermal Energy Storage

Paul Denholm, Mark Mehos

Presentation to the SunShot CSP Program Review

April 23, 2013

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overall Motivation

- What is the addition of TES to a CSP plant actually worth?
- Dispatchable energy
- Ancillary services
- Firm capacity
- System Flexibility

DOE supported analysis to date

- Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model
 - Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools
- Evaluate the optimal dispatch of CSP with TES
 - How would a plant actually be used to minimize system production cost?
- Quantify the value of adding storage to CSP in a high renewable energy (RE) scenario in California
 - $_{\odot}\,$ How does TES change the value of CSP?

Analytic Approaches

• Price-Taker

- Simulates a relatively small CSP plant that does not affect prices
- Dispatches CSP against historical prices
- Cannot perform forward-looking analysis in a future system
- Limited in scope, but relatively low-cost effort

• Full-grid simulation

- Use production cost (unit commitment and economic dispatch) model
- Can simulate future grid mixes
- $_{\odot}\,$ Can evaluate interaction of CSP with the grid
- $_{\odot}\,$ Can be costly and time consuming to develop and implement

Example analysis – CSP in California

Rest of Western Electricity Coordinating Council (WECC):

- Simple plant performance curves
- Linear operation

۲

۲

California Independent System Operator (CAISO) Scenarios

		Incremental Capacity (MW)							
Scenario	Region	Biomass/	Geo- thermal	Small Hydro	Solar Photovoltaics (PV)	Distributed Solar	CSP	Wind	TOTAL
Scenario	CREZ-North CA	Biogas 3		пушо 0	(FV) 900		C3P	1,205	2,108
Trajectory	CREZ-South CA	30	667	0	2,344	0	3,069	3,830	
	Out-of-State	34	154	16	340	0	400	4,149	
	Non-CREZ	271	0	0	283	1,052	520		2,126
	Scenario Total	338	821	16	3,867	1,052	3,989	9,184	19,266
Environmentally Constrained	CREZ-North CA	25	0	0	1,700		ý 0	375	2,100
	CREZ-South CA	158	240	0	565	0	922	4,051	5,935
	Out-of-State	222	270	132	340	0	400	1,454	2,818
	Non-CREZ	399	0	0	50	9077	150	0	
	Scenario Total	804	510	132	2,655	9,077	1,472	5,880	20,530
	CREZ-North CA	0	22	0	900	0	0	378	1,300
	CREZ-South CA	60	776	0	599	0	1,129	4,569	7,133
Cost-	Out-of-State	202	202	14	340	0	400	5,639	6,798
Constrained	Non-CREZ	399	0	0	50	1,052	150	611	2,263
	Scenario Total	661	1,000	14	1,889	1,052	1,679	11,198	17,493
Time- Constrained	CREZ-North CA	22	0	0	900	0	0	78	1,000
	CREZ-South CA	94	0	0	1,593	0	934	4,206	6,826
	Out-of-State	177	158	223	340	0	400	7,276	
	Non-CREZ	268	0	0	50	2,322	150	611	3,402
	Scenario Total	560	158	223	2,883	2,322	1,484	12,171	19,802

Note: CREZ = Competitive Renewable Energy Zone

1. Start with base case – Get total production cost

- Base case is a 32% scenario, produced by reducing PV generation in Southern CA
- Also adjusted reserve requirements
- 2. Add a generator Get total production cost
- 3. Subtract Difference is operational benefit of added generator
- 4. Calculate capacity benefits separately

CSP Scenarios

Four scenarios, each with an added plant producing approximately equivalent annual energy:

- 1. CSP plant with 6 hours of storage
 - 762 MW, SM = 2.0
 - Generates about 3,050 GWh, or enough to provide about 1.0% of California demand
 - No change in reserve requirements
- 2. CSP with reserves
 - Same as before, but can provide regulation, load-following, and spin
- 3. Solar PV
 - 0 1548 MW
 - This plant also required additional reserves due to uncertainty and variability
- 4. Flat block (baseload) resource
 - \circ 359 MW of constant output with zero fuel costs

- Three classes of ancillary service requirements were included (Contingency, Regulation, Flexibility)
 - Contingency reserves not modified
 - Regulation and flexibility requirements based on variation of net load using WWSIS II methods

Operational Value Results

PLEXOS generates hour sources of costs for system operation:

- 1. Operational fuel
- 2. Variable operations and maintenance (O&M)
- 3. Startup (fuel + start O&M)
- 4. Emissions

Examining dispatch can explain the origin and differences of these costs.

January Price and Dispatch

June Price and Dispatch

Operation with Reserves

- Much more part-load operation
 - Plant without reserves operates at full output during about 66% of on-line hours
 - Plant providing reserves operates at full output during about 11% of on-line hours
- Stays on line longer
 - 25% fewer starts
- Operates at lower output even when price is high

Operation with Reserves

System marginal price and corresponding CSP generation on January 31–February 2

System marginal price and corresponding CSP generation on June 24–26

	Operational Value per Unit of Delivered Energy (\$/MWh)				
	Baseload	PV	CSP (no Reserves)	CSP (with Reserves)	
Fuel	33.9	29.1	38.9	54.0	
Variable O&M	4.7	4.4	5.2	6.0	
Start	0.1	-2.3	2.1	4.7	
Emissions	21.9	22.7	20.1	18.3	
Total	60.6	53.9	66.2	83.0	

Capacity Value

- Operation value considers only the variable costs of system operation
- Capacity value represents the ability of CSP to displace fossil or other conventional generation resources
- Determined by the ability of a resource to provide generation during periods of highest net load periods

Capacity Value

Output during the highest-price hours

Capacity Value (Previous Study)

NATIONAL RENEWABLE ENERGY LABORATORY

	Flat Block	PV	CSP with TES
Capacity Credit (%)	100	47	100
Capacity Value (Low / High) (\$/kW)	55 / 212	26 /100	55 / 212
Capacity Value of Energy (Low / High) (\$/MWh)	6.3 / 24.7	10.7 / 41.3	13.6 / 52.3

"Low" case assumes the cost of new capacity is \$55/kW-yr, "High" case assumes the cost of new capacity is \$212/kW-yr

Total Operational and Capacity Value

	Value per Unit of Delivered Energy (\$/MWh)				
	Baseload	PV	CSP (no Reserves)	CSP (with Reserves)	
Fuel	33.9	29.1	38.9	54.0	
Variable O&M	4.7	4.4	5.2	6.0	
Start	0.1	-2.3	2.1	4.7	
Emissions	21.9	22.7	20.1	18.3	
Capacity (Low / High)	6.3 / 24.7	10.7 / 41.3	13.6 / 52.3	13.6 / 52.3	
Total	66.8 / 84.7	64.6 / 95.3	79.8 / 118.5	96.6 / 135.3	

Higher emissions benefits from PV and baseload generators are from avoided out-of-state coal generation. CSP times its output to avoid mostly higher-value, in-state gas generation.

Value Difference

	Difference in Value per Unit of Delivered Energy for a CSP Plant Providing Reserves (\$/MWh)				
	Baseload	PV	CSP (no Reserves)		
Fuel	20.1	24.9	15.1		
Variable O&M	1.3	1.6	0.8		
Start	4.6	7.0	2.7		
Emissions	-3.6	-4.4	-1.8		
Capacity (Low / High)	7.3 / 20.8	2.8 / 8.1	0 / 0		
Total (Low / High)	29.8 / 50.6	32.0 / 40.1	16.8 / 16.8		

Challenges of Higher Solar Penetration

System marginal price and corresponding CSP generation on July 21–23. Short price spike partially driven by decrease in PV output.

Example Dispatch in CAISO

PV looks good – high energy and capacity value

Too much of a good thing?

Current System Flexibility

Limited by Baseload Capacity

Example 20% Annual Contribution from PV

WECC-Wide Simulation May 10-13 – 16% of PV is curtailed (5% annual)

PV Curtailment

PV Cost Impact

What Can CSP/TES do?

- Shift solar generation with very high efficiency (close to 100%)
- Add a flexible source of generation with low minimum generation constraints
- Provide firm capacity that can replace retiring generators instead of supplementing their output

What Can CSP/TES do?

• Lets examine just the benefits of energy shifting

Add Dispatchable CSP – 25% solar

May 10-13 with 15% Contribution from PV and 10% from Dispatchable CSP - Solar contribution goes up, curtailment goes down (2% annual)

Curtailment CSP+PV

Curtailment of solar assuming a equal mix (on an energy basis) of PV and CSP

Add the Flexibility of CSP...

- CSP has large operating range and high ramp rates
- Firm capacity can replace retiring generators with limited flexibility

This is real performance data from the ERCOT gas steam fleet, including some old clunkers

CSP Flexibility Impact

25% Contribution from PV and 10% from Dispatchable CSP where CSP Reduces the Minimum Generation Constraint

Impact of Reduce Min Gen Constraint

Increased Use of PV

Increase in PV penetration as a function of CSP penetration assuming a maximum PV marginal curtailment rate of 20%.

High Penetration Scenarios

Project Next Steps

- Different CSP technologies and configurations
- More scenarios (RE mix, higher penetration)
- Sub-hourly dispatch
- More detailed understanding of CSP plants providing reserves
- Optimization of WECC units
- Natural gas prices
- CSP scheduling

Conclusions

- CSP with thermal energy storage has been simulated in several grid simulation tools
- TES can add several quantifiable benefits including dispatchable energy, ancillary services, and firm capacity
- CSP with TES can actually complement other variable generation sources including solar PV and act as an enabling technology to achieve higher overall penetration of renewable energy

References

- Madaeni, S. H., R. Sioshansi, and P. Denholm. "Estimating the Capacity Value of Concentrating Solar Power Plants with Thermal Energy Storage: A Case Study of the Southwestern United States" IEEE Transactions on Power Systems.
- Denholm, P., Y. Wan, M. Hummon, and M. Mehos. (2013). Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario. NREL Report No. TP-6A20-58186.
- Denholm, P. R. Margolis, T. Mai, G. Brinkman, E. Drury, M. Hand, and M. Mowers (2013). "Bright Future Solar Power as a Major Contributor to the U.S. Grid" IEEE Power and Energy 11(2) 22-32.
- Denholm, P., and M. Hummon. (2012). Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model. NREL Report No. TP-6A20-56731
- Denholm, P., M. Hand, T. Mai, R. Margolis, G. Brinkman, E. Drury, M. Mowers, and C. Turchi. (2012) "The Potential Role of Concentrating Solar Power in High Renewables Scenarios in the United States." NREL/TP-6A20-56294.
- Madaeni, S., R. Sioshansi, and P. Denholm. (2012) "How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power" Proceedings of the IEEE 100(2) 335-347.
- Denholm, P. and M. Mehos. (2011) "Enabling Greater Penetration of Solar Power via the Use of Thermal Energy Storage" NREL Report No. TP-6A20-52978.
- Brinkman, G.L., P. Denholm, E. Drury, R. Margolis, and M. Mowers. (2011) "Toward a Solar-Powered Grid Operational Impacts of Solar Electricity Generation" IEEE Power and Energy 9, 24-32.
- Sioshansi, R. and P. Denholm. (2010) "The Value of Concentrating Solar Power and Thermal Energy Storage." IEEE Transactions on Sustainable Energy. 1 (3) 173-183.

Contact: Paul Denholm paul.denholm@nrel.gov