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Outline of Methodology

Localized view of FEA model developed of
intraconnect interface within assembly

- Continuous temperature readings taken at various geographic locations Schematic
- 3 parameter Rainflow algorithm used to reduce raw data to significant cycles
- Temperature data quantified in terms of cyclic T, and AT

 Design space generated to describe life cycle profiles
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Linear dlaf:_'age superposition (Miner’s rule) used to calculated damage A method for determining the durability of a PV module intraconnect was established
accumuiation:

FM2: Acceleration Factor

* The life prediction approach consisted of four parts:
1. FEA & Response Surface Models used to extract stress/strain histories at . . . . . .
interconnect 1) collection and qualification of temperature history data from life cycle environments
2. N; values calculated using extracted data and fatigue model(s) for all field 2) experimental characterization of intraconnect fatigue data
conditions at each location 3) thermal cycle modeling using 2D and 3D FEA

3. Cumulative damage index calculated from field conditions (D;;. 4) 4) damage accumulation modeling to assess product durability

4. Acceleration factor (AF) calculated by comparing damage index ratio of

single accelerated cycle ‘D, .’ to all field cycles ‘Dyg,’ * A 3 parameter Rainflow algorithm was used to reduce module temperature data to significant cycles of Tmean and AT
5. Repeatable for any field location where cycle history is known « FEA models were developed and used to generate response surface models as a function of Tmean and AT over a 2D design space
D= ZL AF = Dace || oG [ Deepionn | loetong » Damage was calculated using the Coffin-Manson relation with model constants from both literature and fatigue test coupons
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* AF values were generated comparing relative damage index between field environments and an accelerated thermal cycle profile
(900C to -401C)
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