PV MODULE INTRACONNECT THERMOMECHANICAL DURABILITY DAMAGE PREDICTION MODEL

Ryan Gaston*, N. Ramesh
The Dow Chemical Company

J. Akman, A. Dasgupta, C. Choi, S. Mukherjee, D. Das University of Maryland - CALCE

Outline of Methodology

Thermal Cycle Design Space

- Continuous temperature readings taken at various geographic locations
- 3 parameter Rainflow algorithm used to reduce raw data to significant cycles
- Temperature data quantified in terms of cyclic T_{mean} and ΔT
- Design space generated to describe life cycle profiles
- Accelerated profile: -40°C to 90°C

Response Surface Models

Mechanical Failure Modes

Damage Accumulation: Approach

FM1: Damage Modeling

T_{mean} (K)

- Plot shows a cumulative damage caused by field conditions normalized with respect to accelerated test
- Cycles with smaller ΔTs that have a higher cycle count in the field (i.e. higher n value) still contribute less damage cumulatively than a small number of the highest ΔT

accumulated from the first

few largest ΔT values

Majority of damage

cycles

FM1: Acceleration Factor

$$\frac{\Delta \varepsilon_{el}}{2} + \frac{\Delta \varepsilon_{pl}}{2} = \frac{\left(\sigma_f - \sigma_m\right)}{E} \left(2N_f\right)^b + \varepsilon'_f \left(2N_f\right)^c$$

- Sensitivity study of model coefficients $\sigma_f^{'}$ and $\epsilon_f^{'}$ (i.e. fatigue curve intercept)
- Values chosen based on values for σ_f and ϵ_f in literature

Normalized Cycles to Failure

N_f values changed by as much as a factor of 2 for most severe field conditions

Combinations		
$\sigma_{f}^{'}$ (MPa)	$\mathbf{\epsilon_f}^{'}$	
135	0.10	
139	0.13	
142	0.14	

	Location 1	Location 2	Location 3
AF	5.7-6.1x	2.7-2.9x	11.7-12.9x

all fatigue data**

FM2: Damage Modeling

- S-N curves generated for metal 2 failure
- The fatigue strength coefficient (P'_f) is modeled using a power-law dependence on temperature and the fatigue exponent b is modeled using a log-linear dependence on temperature
- This allows for fatigue constants to be estimated at any T_{mean} in the field environment.

Cycles to Failure Fatigue exponent

Summary

- A method for determining the durability of a PV module intraconnect was established
- The life prediction approach consisted of four parts:
 - 1) collection and qualification of temperature history data from life cycle environments
 - 2) experimental characterization of intraconnect fatigue data
 - 3) thermal cycle modeling using 2D and 3D FEA
 - 4) damage accumulation modeling to assess product durability
- A 3 parameter Rainflow algorithm was used to reduce module temperature data to significant cycles of Tmean and ΔT
- FEA models were developed and used to generate response surface models as a function of Tmean and ΔT over a 2D design space
- Damage was calculated using the Coffin-Manson relation with model constants from both literature and fatigue test coupons
- AF values were generated comparing relative damage index between field environments and an accelerated thermal cycle profile (90°C to -40°C)

FM2: Acceleration Factor

Linear damage superposition (Miner's rule) used to calculated damage accumulation:

- 1. FEA & Response Surface Models used to extract stress/strain histories at interconnect
- 2. N_f values calculated using extracted data and fatigue model(s) for all field conditions at each location
- 3. Cumulative damage index calculated from field conditions (D_{field})
- 4. Acceleration factor (AF) calculated by comparing damage index ratio of single accelerated cycle ' D_{acc} ' to all field cycles ' D_{field} '
- 5. Repeatable for any field location where cycle history is known

