

Nx-TEC: Next-Generation Thermionic Solar Energy Conversion

SLAC National Accelerator Laboratory

Award Number: CPS 25659

Start date: October, 2012

Nicholas A. Melosh

Materials Science & Engineering, Stanford University SIMES, SLAC

Karl Littau (MSE), ZX Shen (SIMES), Roger Howe (EE)

Solar Power Conversion

A lot of high-quality energy is available from the sun... how can we harvest it?

Solar Thermal (CSP)

- Converts sunlight into heat
- Concentrated solar thermal
- Uses well-known thermal conversion systems
- Efficiencies of 20-25%

Photovoltaics (PV)

- Collects fraction of incident energy
- "High grade" photon energy
- Direct photon to electricity
- Efficiencies 17-24% (single junction Si)

How Efficient are fossil fuels?

Coal Plants are ~30% efficient.

Natural Gas Plants are > 50% efficient!

How come?

Tandem Cycles.

A GE gas turbine

Do 'topping' cycles on solar thermal make sense?

Add a High-Temperature Converter

Ideal: Combined HT-PV/ Thermo Cycle

Combined cycles can take two modest performance devices to form a very high efficiency device.

High-Temperature PV?

The key is a PV cell that can operate at high temperatures (~600+ °C)

- Adding 25% efficient High Temperature-PV (HT-PV) increases a 25% thermal system to 44%
- Possibly add on to existing designs
- PV must operate at higher temperature than the thermal cycle (~600°C)

Can we make a High-Temperature Photovoltaic?

High Temperature Thermal Conversion

Thermionic Emission

Boiling water:

 Input heat energy to overcome energy barrier to change liquid into gas Boiling electrons from a metal:

- Operates at very high temperatures;
 generally >800°C
- Robust

$$J = AT^2 e^{-\Phi_E/kT}$$

(Richardson-Dushman law)

 $J = \text{current density (Acm}^{-2}),$ $\Phi_E = \text{emitter work function (eV)}$

Thermionic Emission Converter (TEC)

Hot cathode Cold anode

- Heating the cathode boils off electrons into vacuum
- Collected by lowworkfunction anode
- Want large cathode ϕ_c for larger V_{out} , requires high T

Two Key problems with TEC:

Low Voltage

- need small cathode ϕ_c to keep temperature reasonable
- need smaller anode ϕ_A
- •V_{out} ~ 0.1- 0.2 eV
- Result: poor efficiency

Space Charge

- Electrons take time to cross vacuum gap
- Electric field builds up, decreasing electron emission
- Current saturation given by Child-Langmuir equation

Why Revisit Thermionics Now?

New Fabrication Techniques:

- MEMS devices
- Wafer-bonded vacuum encapsulation
- Refractory semiconductor processing (SiC)

New Materials:

- Nanowires, nanoparticles
- High-quality III-V's available
- Nano-texured surfaces

New Urgency:

infrastructure?

- Energy harvesting critical
- Can add onto existing solar-thermal

Diamond deposition onto Si tips [Krauss et al., J. Appl. Phys. 2001]

CMUT/ Kuri-Yakub, Stanford

Photon Enhanced Thermionic Emission

semiconductor

Photon-enhanced Thermionic Emission (PETE)

 Acts like a high-T PV cell: direct solar to electrical generation at high-T

What would PETE look like?

Theoretical Efficiency

- To adjust: E_g, χ ,T_C
- $\phi_A = 0.9 \text{ eV}$
 - [Koeck, Nemanich, Lazea, & Haenen 2009]
- $T_A \le 300^{\circ}C$
- Other parameters similar to Si
 - 1e19 Boron doped

Experimental Demonstration

- GaN with Cs coating
- Thermally Stable
 - $E_g = 3.3 \text{ eV}$
 - 0.1 µm Mg doped
 - $-5x10^{18}$ cm⁻³

Gallium Nitride

Photon-independent Emission Energy

- Photon energy should not matter above band gap
- Very different from photoemission
- Green = just above gap
- Blue = well above gap, not above
 E_{vac}

- 0.5 eV thermal voltage boost
- Efficiency ~10-4

Sunshot Goal: Increasing Performance

Problem: Surface Recombination

- Front-surface recombination directly competes with emission
- High surface recombination in most cathode materials
 - 10⁶ cm/s in GaAs
 - Yield < 20% for T < 300°C, χ = 200 meV

Heterostructure cathode for PETE

- Reduce recombination at surface by adding Al_{0.15}Ga_{0.85}As layer
 - Very low recombination
 - Excellent control over barrier height
 - $\Delta E_{CB} \sim = 190 \text{ meV}$, largely independent of temperature
- Coat front surface to be negative electron affinity
 - little sensitivity to surface recombination

Heterostructured cathode performance

- Very strong temperature dependence
- Yield increases 10x from 40°C to 120°C
- PETE current dominates photoemission
- Limited by thermal stability of CsO coating

Improved quantum yield

from 10⁴ to 2.5%

Tantalizing performance with Temperature

- QY increases as calculated from RT to 120 C
- Something happens to sample above 150C
- If we could get just to 400C with exactly these properties, would have >80% QY.

Theoretical Tandem Efficiency

31.5% Thermal to electricity conversion [Mills, Morrison & Le Lieve 2004] 285°C Anode temperature [Mills, Le Lievre, & Morrison 2004]

Take Home Messages

- Combined Cycles may be practical means to greatly increase renewables energy conversion efficiency
- Thermionic systems are worth revisiting with modern tools
- PETE is a new way to combine thermal and photon energy
- Moderate PETE efficiency could make economic impact

