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Project Objectives

" Develop the particle receiver that meets design metrics of
800°C particle-exit temperature, 290% thermal efficiency, with
adequate service life, and cost below $150/kWt.

* Demonstrate a prototype particle-receiver design.

" Design a fluidized-bed heat-exchanger integrated in a high-
temperature CSP system.
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Innovative Features

= Use gas/solid two-phase flow as heat transfer fluid and

separated solid particle as storage medium for low-cost, high-
performance CSP.

Benefits:

" Avoid freezing issue at low temperature (below 0C) and high-
temperature stability concerns (>1000C).

» Use radiation principle analogue to a blackbody furnace.

" Leverage successfully developed and commercialized fluidized-
bed technology for the thermal system integration.

= Build high-temperature particle-thermal energy storage
economically.
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Fluidized Bed (FB)-CSP with Particle Receiver and TES

Fluidization system covers all thermal system from heat
collection, storage, to conversion, effectively and economically.
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This project focus on particle receiver development, performance, and cost analyses.
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Comparisons of FB-CSP to Molten-Salt System

HTF / Storage State-of-the-Art: Our .Approach: Solid Benefits of
Media Nitrate Salt (1.00 $/kg) particle (e.g., ash, sand) the FB-CSP
T | (0.01 $/kg) system

Early revenue

Precondition time | Conditioning, 3 months |None
' : L M

Salt fre.ezmg Required None ow O&

protection

Stability <600°C >1000°C High
efficiency

Corrosion H1gh W1th chloride No Long life

impurity

Structure materials Sltﬁ) e;, stanless steel, or Ceramic/concrete Low cost

TES cost estimation | 30—75 $/kWh,, <10 $/kWhy, Lower LCOE

Supporting power | Super-heated steam/S- | SH/SC-Steam/S-CO,/air- Efficiency

cycles CO, Brayton

Fluidized-bed CSP using stable solid particles have both cost
and performance advantages over a molten-salt system.
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TES L\) Fluidized e T S project will focus on the

Exchanger Design

receiver development.

1 0
B —//3( 2. Heat exchanger and TES leverage
| mature technology.

3. The FB-CSP system provides
20t % L J flexibility to different power cycles.
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Innovative Receiver Design

|. Use blackbody furnace approach with well-known radiative
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2. Transform 2-D panel heat absorption to 3-D volumetric heat

transfer by using arrayed absorber tubes.
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Development Focus

2204
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Parameters for the receiver design.

Material properties Design parameters Operating parameters
Particle physical properties Absorber tube shape: Particle exit temperature:

e Particle size e Circular, polygon e Particle-absorber heat
o Size distribution e Aspect ratio transfer coefficient.

e Thermal conductivity Absorber tube dimension and o Particle speed

e Density heat transfer area: o Flow pattern
Absorber optical properties e Tube repository angle o Residence time

e Reflectivity e Tube number and space |e Absorber temperature
e Specularity Tapered-end angle o Flux distribution

e Thermal conductivity e Tube inclination angle Receiver thermal efficiency
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Preliminary Analyses for Development Focuses

h=300 k=50 h=500 k=50

Parameter sensitivity study on absorber temperature profile indicates
that flux distribution and particle/absorber heat transfer are important.
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Solar Field and Flux Distribution Mapping
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Using the NREL SolarPILOT for solar field layout, and SolTrace
Program for flux distribution across array of hexagonal tubes.
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Absorber Flux Distribution

Flux spreading on absorber: 40° tube angle, |.6MW/m?2
aperture flux

100 FLUX, (W/mA2)
L 350000
300000

SiC, reflectivity = 0.1

200000

Nickel, reflectivity 100000

Flux Spreasding in Max/Min Flux

v ~0.35
0 200 400 600 800 N N E
Specularity Error (mRad) 4000
Flux ratio along the tube Stainless Steel,
reflectivity=0.67

P, SunShot Better flux spreading for high reflective material
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Reflection Efficiency vs. Absorber Shapes
and Properties

Reflectivity
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Reflection loss can be within 2%.
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Thermal Performance Preliminary Results

(a) Velocity vector and temperature at 0°
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(b) Velocity vector and temperature at 45°

(c) Absorber natural convection losses for
different angles and temperatures

The NBB particle receiver is on track to achieve >90%
thermal efficiency for >650°C working fluid temperature.
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Particle Flow Modeling Using Fluent
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Modeling and testing results show granular particle flow

interaction with absorber.
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Particle Flow and Heat Transfer Testing Setup
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Material Candidates for Absorber Tubes

Materials Direct Sintered SiC Stainless Steel Inconel
Thermal conductivity
(W/m-K) 30-150 16-21 10-32
Maximum allowable 1,600 370 980-1,149
temperature-T__ (°C)
Tensile/yield strength 250 200-475 170-670
(MPa)
Corr05|qn/OX|dat|on Excellent Good Very good
resistance
Wear resistance Excellent Good Very good
Fabrication/ Green body Sheet metal - Sheet metal -
manufacturability forming/sintering rolled/welded rolled/welded
Typical material Direct Sintered SiC SS-316, IN-800
Material cost (S/kg) ~2 (powder) ~4 ~16
Cost (life cycle cost) X1 (X3 if replaced) X2 X8
Mass production to Limited @ high .
chellfemzes be defined temperature Altgn e
Benefits Good properties @ Low cost, easy Good properties @
high temperature fabrication high temperature
nShot
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Conclusions

[ Flux spreading makes the receiver be able to work at high incoming
flux., with a maximum of '/4 the incoming flux on the absorber wall.

 Due to a tapered end to form the enclosed particle space, reflection
loss ranges from 0.5% to 3%, for a parabolic concentrator.

J Natural convection loss can be below 2% for an inclined absorber
tube

[ The thermal efficiency is on track to achieve >90% thermal efficiency
for working-fluid exit temperatures of >650° C

[ Testing station is under development to obtain the heat transfer
coefficient of particle-to-absorber tubes.

[ Material selection for the receiver will balance the needs of the
performance requirement, mass-production opportunity, and cost
reduction.
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