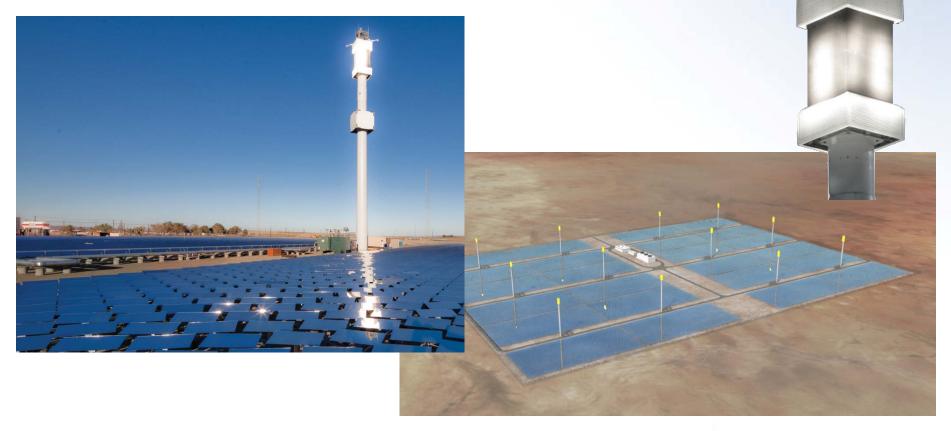

Modular & Scalable Molten Salt Plant Design

DOE SunShot Program Review April 23, 2013


Craig Tyner eSolar
Dave Wasyluk

Beyond eSolar's Direct Steam Technology

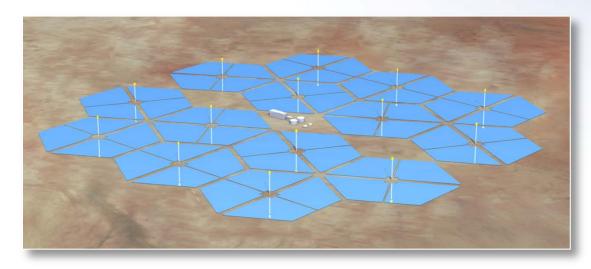
12 field/receiver/tower modules for 30% capacity factor

No storage

Our Molten Salt Development Program

In partnership with B&W, supported by DOE "Baseload FOA"

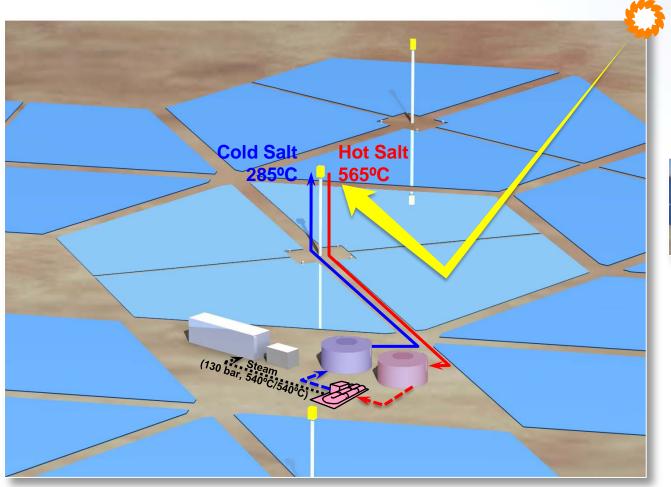
- 100-MW plant; 75% capacity factor; Daggett weather
- No water restriction; 15% fossil contribution allowed
- 8 to 9 ¢/kWh by 2020 (in 2009\$ with SAM assumptions)
- Phase I: System feasibility study & conceptual design
 - Jun 2010 Mar 2011
 - Performance estimates, system optimization and trade studies
- Phase II: Engineering design
 - Apr 2011 Jun 2012
 - Preliminary design of major systems
- Phase III: Demonstration
 - Timing and duration TBD, depending on concept
 - Detailed engineering, site selection, procurement
 - Construction, startup, and commissioning, test and evaluation
- Continuing technology and project development
 - Not part of DOE program


eSolar's Modular Molten Salt Plant

DOE 100-MW Baseload Configuration

- Fourteen 50-MW thermal modules on 530 hectares total land area
- Central power block
 - 13 hours thermal storage
 - 275 MW₁ steam generator
 - 115 MW gross turbine generator
- Capacity factor: 75% (dry cooled (design basis)), 78% (wet-cooled)
- No hybridization

<u>Comparative sizes</u>:

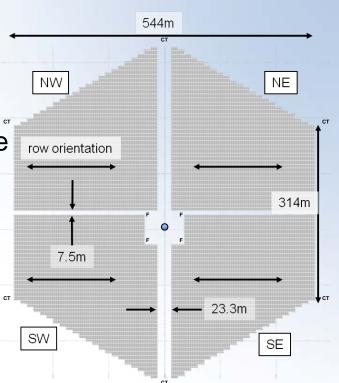


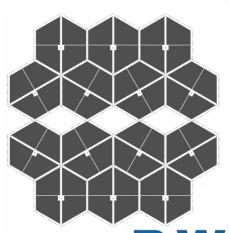
50-MW_t Module Configuration

- Hexagonal heliostat field with 105,000 m² mirror area
- 50-MW, B&W receiver on 100-m monopole tower

Heliostat evolution from:

To:


Next-generation SCS5 heliostats



Solar Collector System

- 14 hexagonal field modules
 - 92,000 1.1 m² SCS3 heliostats per module
 - 1.3 million heliostats total
 - Small north field bias
- SCS/SRS solar multiple: ~1.2

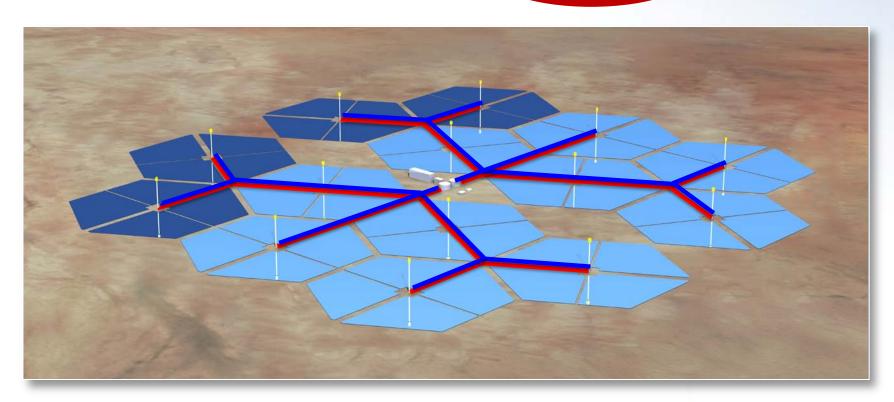
B&W 50-MW_t Molten Salt Receiver

- External, salt-in-tube configuration
 - Vertical tube panels, serpentine flow
 - Fully drainable (30s), fast startup capability
- Factory assembled, truck shippable for rapid field installation
- Leverages Solar Two and Sierra lessons learned

Geometrically similar
Babcock & Wilcox 10-MW_t
direct steam receiver in operation
at eSolar's Sierra plant

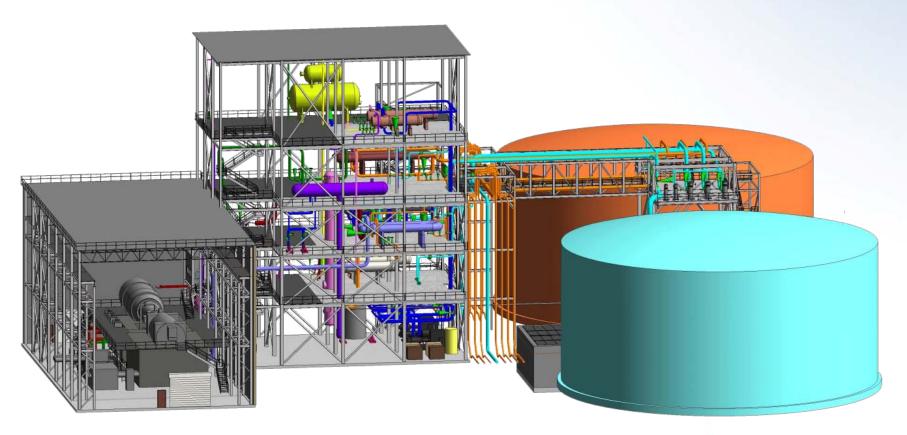
Solar Receiver System

- 100-m tower
 - Wind turbine-type monopole, 5 sections
- Cold pumps

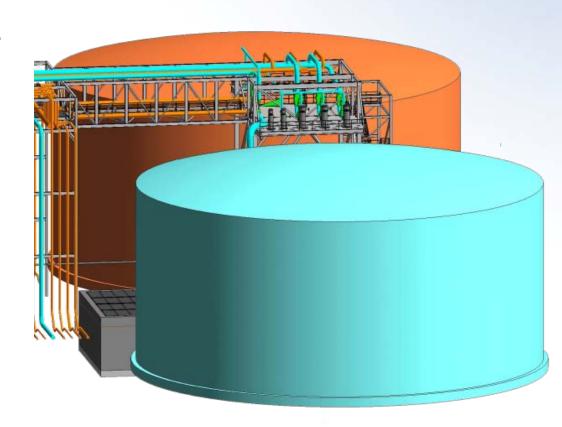

-Three 50%, long-shafted, vertical turbine, suspended in tanks

• SRS/SGS solar multiple: ~2.5

DOE Baseload Configuration Field Piping Details

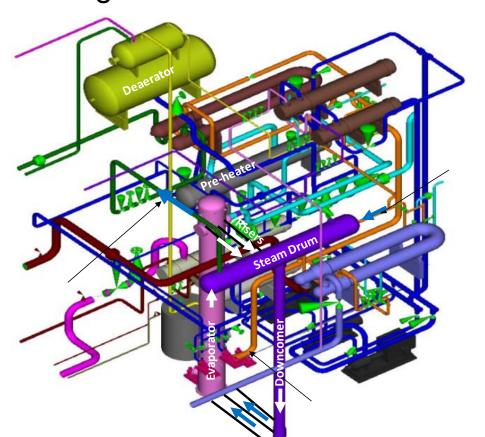

- 10,500 m cold piping (carbon steel)
- 11,200 m hot piping (stainless steel)
- Heat traced, insulated, and drainable

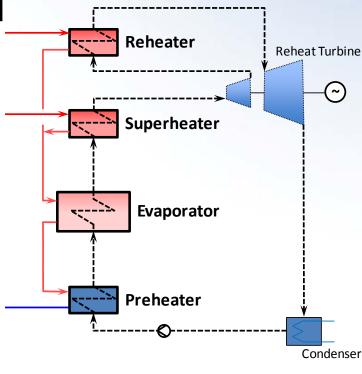
DOE Baseload Configuration Power Block Systems


- Thermal storage system
- Steam generation system
- 100-MW steam turbine w/ reheat

DOE Baseload Configuration Thermal Storage System (TSS)

- Rated capacity
 - -3500 MWh_t (13.1 hours)
 - -36,500 metric tons of salt
- Hot and cold tanks
 - -39-m diameter
 - 17.5-m height

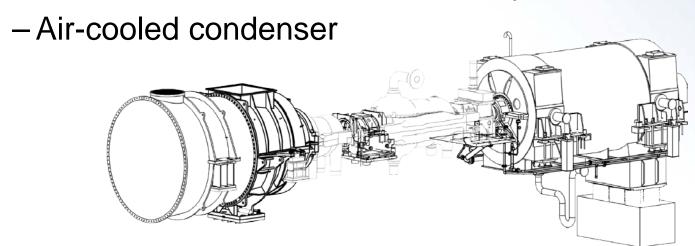




275-MW_t Steam Generation System

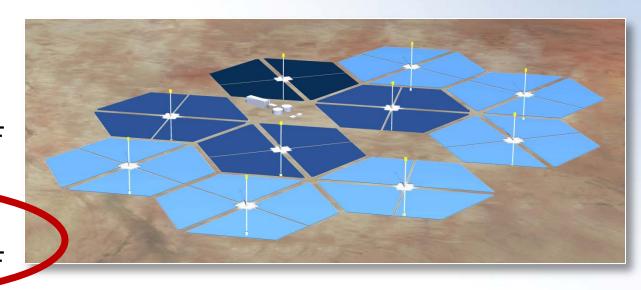
- Preheater, Evaporator, Superheater, & Reheater vessels
- Natural-circulation Evaporator design
- Detailed transient and dynamic analyses

Leverages Solar Two lessons learned



Power Generation and Plant Controls

- Power generation system (PGS)
 - 100-MW Rankine-cycle reheat turbine generator
 - Gross thermal-to-electric efficiency: 42%



- Plant Control System (PCS)
 - Designed for automated operation
 - No manual control required for daily functions
 - -Total IO count: ~8100

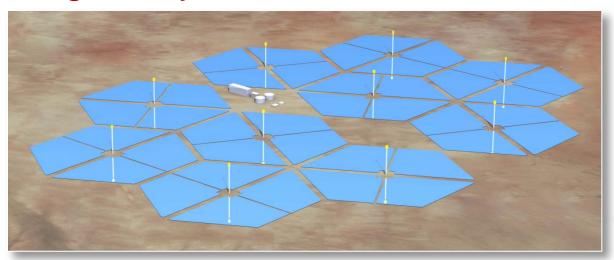
Alternative Configurations

- Single module (possible ISCC integration or demo)
- 4-modules
 - 50-MW, 40%capacity factor
 - 100-MW, 20% CF peaker
- 10-modules
 - 100-MW, 50% CF

- All configurations utilize
 - Identical modules (heliostat field, receiver, tower)
 - Similar, scaled SGS and TSS components

Commercial System Configuration

- Plant rating
- Number of fields/towers
- Hours of storage
- Solar multiple
- Capacity factor
- Dry cooling, no hybridization


100 MW

10 towers

6 hours

1.8

50 %

Our Molten Salt Development Program

In partnership with B&W, supported by DOE "Baseload FOA"

- 100-MW plant; 75% capacity factor; Daggett weather
- No water restriction; 15% fossil contribution allowed
- 8 to 9 ¢/kWh by 2020 (in 2009\$ with SAM assumptions)
- Phase I: System feasibility study & conceptual design
 - Jun 2010 Mar 2011
 - Performance estimates, system optimization and trade studies
- Phase II: Engineering design
 - Apr 2011 Jun 2012
 - Preliminary design of major systems
- **Phase III:** Demonstration
 - Timing and duration TPD depending on concept
 - Detailed engineering, site selection, procurement
 - Construction, startup, and commissioning, test and evaluation
- Continuing technology and project development
 - Not part of DOE program


On-Going Work (Beyond DOE Contract)

- Risk assessment and mitigation
- Receiver design refinement
- Materials testing
- Heliostat development

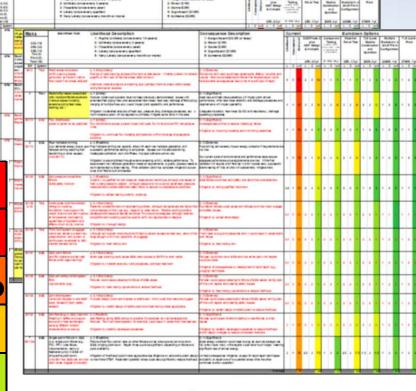
Project development

Likelihood	5	5	10	15	20	25		
	4	4	8	12	16	20 3		
	3	3	6	9	8 12 7	6 4 15 6		
	2	2	4	6	8	9		
	1	1	2	3	4	5		
Analysis		1	2	3	4	5		
Full Module		Consequence						

Risk Assessment and Mitigation

- Based on likelihood and consequences of various failure modes, top receiver risks and other risks identified and ranked
- Range of mitigation options considered
 - Additional design and analysis beyond DOE Phase 2

Component testing


Receiver panel test

Full-scale module test

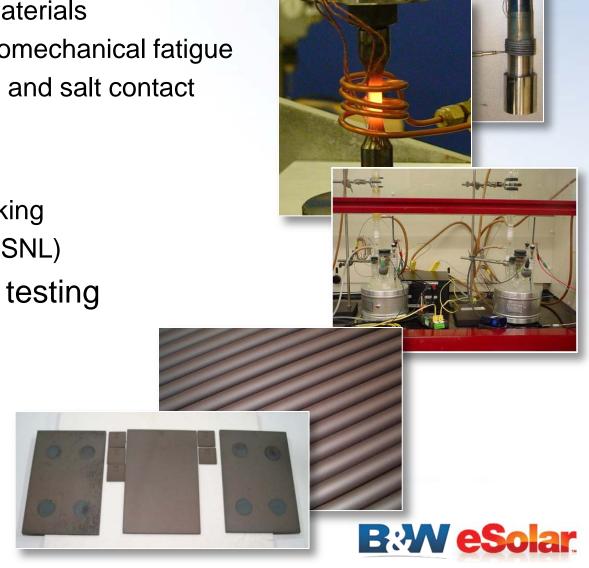
Multi-module plant

Full-scale commercial plant

Likelihood	5	5	10	15	20	25	
	4	4	8	12	16	20 3	
	3	3	6	9	8	6 4 15 5	
	2	2	4	6	8	10	
	1	1	2	3	4	5	
Analysis		1	2	3	4	5	
Full Module		Consequence					

Receiver Design Refinement

- Dynamic modeling
- Transient stress analysis
- Tube-to-header design optimization
- Tube bend testing
- Tube panel optimization for weld access
- Electric heat trace system refinement

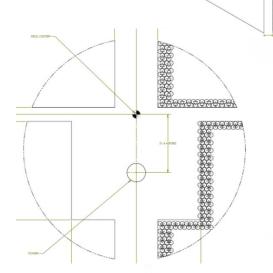


Materials Testing

Receiver material fatigue testing (ORNL & SNL)

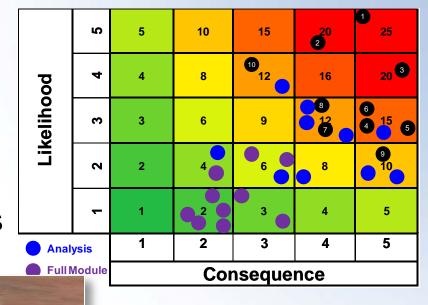
- Tube and bar stock materials
- Isothermal and thermomechanical fatigue
- w/ and w/o hold times and salt contact
- Corrosion testing
 - Electrochemical
 - Stress corrosion cracking
 - Salt immersion tests (SNL)
- Receiver tube paint testing
 - Adhesion
 - Aging (3000 hr)
 - Thermal Cycling

eSolar's New 2-m² SCS5 Heliostat



eSolar's New SCS5 Heliostat

- SCS5 design optimized around molten salt module
 - Higher performance and reliability
 - Simplified electrical and networking systems
 - Parts count reduction and environmental sealing
 - Significantly reduced all-in cost
 - Utilizes eSolar's proven Spectra control system
- Heliostat field layout similar to SCS3 layout



Next Steps

- Investigating
 - Project opportunities
 - First-of-a-kind build strategies

- Full-scale module
- Multi-module plant
- Full-scale commercial plant
- Prefer staged approach of an "Expandable Peaker"
 - Best of multi-module and full-scale plant options combined in a first plant

